2012-03-27

Performance Analysis

and ' Co-Simulation

Zebo Peng

Embedded Systems Laboratory (ESLAB)
Linkdping University

INSTITUTE OF HNOLOGY

Outline

e Static analysis techniques

e \Worst-case execution time
analysis

e Micro-architecture
modeling and analysis

e Co-simulation approaches

Prof. Z. Peng, ESLAB/LITH, Sweden 2

2012-03-27

Introduction

e Analysis and simulation techniques are essential for
embedded system design:
- To guide the design space exploration.
- To provide feedback to the human designers.
- To support design validation.

e Selection of an analysis/simulation technique is
usually based on trade-off between efficiency and
accuracy.

e For certain analysis, such as worst-case execution
time analysis, it is also very important that the result
is safe (i.e., correct or pessimistic).

Prof. Z. Peng, ESLAB/LITH, Sweden 3

Typical Data to be Analyzed

Execution time and performance.
e Schedulability.

e Cost (code size, silicon area, etc.)
e Power consumption.

e Testability.
e Reliability.
([

Prof. Z. Peng, ESLAB/LITH, Sweden 4

Performance Metrics

e EXxtreme case performance
- Worst-case execution time
- Best-case execution time

e Average case performance

e Probabilistic performance
- Used in soft real-time applications.
- To accurately handle the variable execution time of tasks,
which may be due to
= Application characteristics (e.g., data dependent loops);
= Architectural factors (e.g., cache misses);
= External factors (e.g., network load); or
= Insufficient knowledge.
- To guarantee a high probability of meeting timing
constraints.

Prof. Z. Peng, ESLAB/LITH, Sweden 5

Worst-Case Execution Time Analysis

e Simply measuring the execution time of a task for a
given input is not safe.
- It is impossible to prove that the conditions leading to
maximum execution time are taken into account.

e Processor components like caches and pipelines
complicate the task of determining the WCET
considerably.

- The execution time of a single instruction may depend on
the execution history of many other instructions.

e Switching off caches to simplify WCET prediction can
lead to severe performance degradation.

- e.g., a factor of up to 30 for PowerPC 604.

Prof. Z. Peng, ESLAB/LITH, Sweden 6

2012-03-27

2012-03-27

Simulation-based Techniques

e Software — Running the compiled program
on the simulated target architecture.

e Hardware — Building a simulation model of
the hardware and simulating.

e A very large number of inputs should usually
be used in order to get good results.

e Only practical for average and probabilistic
execution time estimation.

e It is difficult to use when individual programs
are not running in isolation.

Prof. Z. Peng, ESLAB/LITH, Sweden 7

Profiling

e A simulation-based approach to execute code directly
on the target architecture.

e Used to obtain dynamic information such as
branching probability, typical loop counts, instruction
frequencies, etc.

e Achieved typically by instrumenting the executable
codes.

- e.g., by inserting a counter at each conditional branch.

e Accuracy and performance of profiling depend on the
ability to characterize the typical inputs.

e Profiling can not be used for worst case analysis.

Prof. Z. Peng, ESLAB/LITH, Sweden 8

Static Analysis

Techniques that use results of information collected by
analyzing the programs without executing them.

e NoO assumption about input data is made.
e Restriction on software

- bounded loops

- absence of recursive functions

- absence of dynamic function calls

e Can be used for:

- program analysis — behavior of a single program on a
processor.

- system performance analysis — behavior of multiple
processes on a single processor or several processors.

Prof. Z. Peng, ESLAB/LITH, Sweden 9

Program Analysis

e The estimated worst-case execution time (WCET)
must be safe and tight.

Possible execution time
// / \‘ \ \ —
L1]]] s

Actual
WCET

|
Estimated
WCET

e The ideal tool for source code analysis would produce
a good WCET estimate based on the following inputs:
- Source code.
- Compiler.
- Machine architecture description.
- Operating system.

Prof. Z. Peng, ESLAB/LITH, Sweden 10

2012-03-27

Program Path Analysis

e To determine what sequence of instructions will be
executed in the worst case scenario.

I—_LI A basic block is composed of
instructions in a straight line

T e Let us first assume that
L—_L/I N each instruction takes a
~ fixed time to execute

/ A
|
IFI |
\ /
Prof. Z. Peng, ESLAB/LITH, Sweden 11

Program Path Analysis

e Infeasible paths can be eliminated by data flow
analysis and path information provided by the
programmer.

e The number of feasible paths is typically exponential
with the program size.

e Efficient methods are needed to avoid enumeration
of all paths.

Prof. Z. Peng, ESLAB/LITH, Sweden 12

2012-03-27

ILP Formulation

Let x; be the number of times a basic block B; is executed;

c; be the execution time of the basic block B;, which is
assumed to be a constant.

The total execution time of the program for a particular
execution is:

N
2.Cj - X
i=1

Prof. Z. Peng, ESLAB/LITH, Sweden 13

ILP Formulation (Cont’d)

The estimated WCET of the program is:

N B,
max| >.Cj:X:
£

subject to a set of constraints Ax < b.

e The quality of the constraints define the tightness of
the estimate.

e Constraint classification:

- Program structural constraints — deduced from the
program’s control flow graph.

- Program functionality constraints — provided by the user to
specify loop bounds and other path information.

Prof. Z. Peng, ESLAB/LITH, Sweden 14

2012-03-27

2012-03-27

An Example

4
K 5 il x[By s = k;
5 - k; ldz dg
Whlle (k < 10) { XZ B2 While (k<10) MEELTERELREN
if (ok) * Wivnveane
I+ (—
else { | g Bs/ if (oK)
=G dy, .U
ok = true; X%[Ba jtr; | x|Bs i =0;
} o ok=true;
K+ o d,
—_ Bs k+t

Prof. Z. Peng, ESLAB/LITH, Sweden

Constraints |

e Structural constraints:

d, =1 d, dg
S dl = d2 leBz while (k<10)r W
26 = d2 + dg = d3 = d9 @ 1 \d3

X3 =d; = d, + dg “ Xs|83 if (oK)
(e d4‘,x'// \\‘\‘C

%[Ba ja+; | x|Bs jk:to;
ok=true;

5

Prof. Z. Peng, ESLAB/LITH, Sweden

e Functionality constraints:

Constraints 11

/* k >= 0 */
Loop bound information X, s N k;
o 3% NP &, Wh1.1€ LA Lo
Path information j;” if J(-(I)-E)
4 b
Bl else {
X j =0;
e Now an ILP solver can be ok = true;
used to find the values of }
xi's that lead to the X, k++;
maximal execution time. }
e The question is how tight A7 L =15
the result will be?
Prof. Z. Peng, ESLAB/LITH, Sweden 17
Outline

e Static analysis techniques

e \Worst-case execution time

analysis

e Micro-architecture

modeling and analysis

e Co-simulation approaches

Prof. Z. Peng, ESLAB/LITH, Sweden

18

2012-03-27

Dependence on System Resources

e Very large variations in program execution time can
result from different uses of system resources:
- memory references
- pipeline utilization

e Instruction execution times are not longer constant
and independent of each other.

e A brutal worst-case assumption, such as always
cache miss, is too pessimistic to be practical (e.g.,
can be 30 times worse).

e What are needed:

- a detailed micro-architectural model.

- adjacent instructions should be analyzed together for
pipeline performance.

- cache access must be analyzed globally.

Prof. Z. Peng, ESLAB/LITH, Sweden 19

Cache Analysis

e Cache activity of a cache line is affected by all instructions
mapping to that cache line.

Ex. A direct mapped cache: Tag Slot Word
Memory address = | 2 | 1 | 1 I
9990-9999] DAL L 5
/ Tag Slot No.
/ 9 90-99
/ 8 80-89
0120-0129 / 7 70-79
0110-0119 / 6 66-69
0100-0109 / 5 50-59
4 40-49
3 30-39
0020-0029 / 2 20-29
0010-0019 \§ 7 1 10-19
00000000 | 0 0009
10,000-Word Memory 100-Word Cache
Prof. Z. Peng, ESLAB/LITH, Sweden 20

2012-03-27

10

Cache Analysis

e Global analysis is required.
e Must be analyzed with path analysis together.
e Direct-mapped Cache Analysis:

- Determine each instruction’s cache hit and cache miss
counts.

- Instruction in a basic block may not have the same counts.

L-block — A line block is a continuous sequence of instructions
that are in the same basic block and mapped to the same

cache line.
S Conflicting L-blocks
ST Cache Line - Basic Block
% Cache Lines
ST 0 0 [B.18.. EA L
‘"'lliil'lﬁllgll%llllll NN ¢ 1 [Bde, [BBe
7Pyl 2 2 [Ele[Ee.
et 24 3 3 [B.18.,
m \\i Non-conflicting L-block Cache Table
Prof. Z. Peng, ESLAB/LITH, Sweden 21
The Modified Cost Function
N N
WCET =max| > . (CHITi_j - XHIT; j +CMISSj j -XMISSi_j)
i=1j=1
where

cHIT; ; — execution time of L-block B;; with cache hit
XHIT; ; — cache hit count of L-block B;;

CMISS; ; — execution time of L-block B;; with cache miss
XMISS; ; — cache miss count of L-block B,

Xi = X;; = xHIT;; + xMISS;; {H=1,2,...,n;}

Subject to the structural/functionality constraints, discussed
before, as well as additional cache constraints.

Prof. Z. Peng, ESLAB/LITH, Sweden 22

2012-03-27

11

Cache Constraints

For each cache line, three assignments can occur:

e There is only one L-block B;; mapping to it — there will be at
most 1 cache miss:

XMISS;; < 1.

e There are two or more non-conflicting L-blocks mapping to the
same cache line — when a miss occurs in either block, the L-
bocks will be loaded and no more misses will occur:

XMISS, 5 + XMISS, ,; < 1.

e There are two or more conflict L- _Cache Line Basic Block
blocks mapping to the same cache
. B B
line — the order they are executed 2 L o
will affect the cache hits/misses. 1 [B1B.. [B:1B..
£X 2 [B.18.; [B-1B.:
“‘\ Cache Table
Prof. Z. Peng, ESLAB/LITH, Sweden 23

Cache Conflict Graphs

e A CCG is constructed for each cache line containing two or
more conflicting L-blocks.

Possible program flow between _Start of the program
Blocks, acquired from CFG

PG, €)

~~ End of the program

p(nodel, node2?) denotes the execution counter associated with
each edge.

Prof. Z. Peng, ESLAB/LITH, Sweden 24

2012-03-27

12

Cache Conflict Graphs (Cont’d)

e s and e nodes represents the start and the end of the
program respectively.

e a node B;; for each conflicting I-block.

e edges represent possible program flow between
blocks — acquired from program CFG.

e p(nodel, node2) is the execution counter associated
with each edge.

Prof. Z. Peng, ESLAB/LITH, Sweden 25

Cache Conflict Graph Example

— Cache Line Basic Block
= 0 e Eley >
W i [B.1B., [B:18B:,
B, 2 [Ele[ElR.
i ‘ 99 3 Bz.z
B3 ‘ Cache Table

X = 3 puv,i.j)= = p(i.j.u

u.v u.v .V) @

Prof. Z. Peng, ESLAB/LITH, Sweden 26

2012-03-27

13

Constraints on CCG

e The execution counters are bound to the
structural and functional constraints:

- the execution count of a L-block must be equal to
the execution count of the basic block;

- the control flow to an L-block node must be equal

to the flow from the L-block node

X = ¥ pUv,i.j) = ¥ p(i.j,uv)

u.v

Prof. Z. Peng, ESLAB/LITH, Sweden

u.v

27

Advantage of the Approach

Program Measured Estimated WCET | Estimated WCET
WCET with cache without cache
analysis analysis

Check_data | 4.41 x 102 4.91 x 102 11.9 x 102
Piksrt 1.79 x 103 1.82 x 1031.59 5.01 x 1082.8t
Line 4.85 x 108 6.09 x 108 9.15 x 108
Circle 1.45 x 104 1.53 x 104 1.59 x 10
FFT 2.05 x 1068 2.71x 106 4.04 x 108
Des 2.42 x 10° 3.66x 10° 6.69 x 10°
Fullsearch 6.25 x 104 9.57x 10* 29.0 x 104
Whetstone 6.83 x 1068 10.2x 106 14.9 x 106
Dhry 5.52 x 10° 7.53x 10° 13.3 x 10°
Matgen 9.28 x 108 10.9x 108 17.2 x 103

Prof. Z. Peng, ESLAB/LITH, Sweden

28

mq

2012-03-27

14

WCET Analysis with General Cache

e There are several variables which influence the
complexity of cache analysis:

- number of competing line-blocks (m);
- cache associativity level (n):
- cache replacement method.

e For LRU (least recently used), the complexity grows
as:

n m!
3, R
i=0 (m = I).
e By using a more detailed level of cache modeling

better estimations can be acquired, but the problem
become intractable if the programs are very large.

Prof. Z. Peng, ESLAB/LITH, Sweden 29

Remarks on Performance Analysis

e One of the main issues of embedded system design
is estimation and analysis.

e Analysis of average and probabilistic performance
can be done by simulation.

e Worst case execution time analysis can only be
efficiently done by static analysis techniques.

e Efficient techniques for analyzing impacts of many
advanced micro-architecture components are still
research issues.

Prof. Z. Peng, ESLAB/LITH, Sweden 30

2012-03-27

15

Outline

e Static analysis techniques

e \Worst-case execution time
analysis

e Micro-architecture
modeling and analysis

e Co-simulation approaches

Prof. Z. Peng, ESLAB/LITH, Sweden 31

Co-Simulation

e How the hardware and software components are
simulated at the same time?

Problems:
e Different simulation platforms are used;
e Software runs fast while hardware simulation is

relatively slow.

- How to run the system simulation as fast as possible and
keep the two domains synchronized?

e Slow models provide full details and produce
accurate results; fast models don’t produce enough
timing information and simulation is less accurate.

Prof. Z. Peng, ESLAB/LITH, Sweden 32

2012-03-27

16

Approaches to Co-Simulation 1

e Gate-level model of the processor

VHDL
simulation

A 3

Gate-

level
model
(VHDL)

ASIC
model
(VHDL)

VHDL
simulation

/

from the co-simulation

Prof. Z. Peng, ESLAB/LITH, Sweden

point of view.

Co-simulation framework

- Gate level simulation of the processor is very slow (tens of
clock cycles/sec).

Ex. 10 cycles/sec, 1 GHz pprocessor = 100 million seconds
(3.2 years) are needed to simulate one second of real time.

- This provides a very accurate solution and is very simple

Approaches to Co-Simulation 2

Program
running
on host

Instruction-set architecture models

ASIC
model
(VHDL)

VHDL
simulation

/

Co-simulation framework

- There is no hardware model of the target processor; the
software is executed on an ISA model (usually in C);
execution on the ISA model provides interface information
(including timing) needed for co-simulation.

- This is fast but timing accuracy depends on the interface
information.

Prof. Z. Peng, ESLAB/LITH, Sweden

34

2012-03-27

17

2012-03-27

Approaches to Co-Simulation 3

e Translation-based models

Program
running Software ASIC VHDL
directly compiled model simulation
on host into native /
VHDL
\ code for ()
the host

Co-simulation framework

- There is no hardware model of the target processor; the
software is compiled into native code for the host
processor; software execution provides interface
information (including timing) needed for co-simulation.

Prof. Z. Peng, ESLAB/LITH, Sweden 35

Approaches to Co-Simulation 4

e Hardware in the loop:

- Combine hardware and software in one solution, by using
the physical device to model its own behavior.

- No necessarily the most accurate model!
- An adaptor formats inputs to the physical device, applies

the input, returns the resulting outputs with timing
information to the simulator.

- This is a good choice for modeling complex standard
components such as microprocessors.

Prof. Z. Peng, ESLAB/LITH, Sweden 36

18

2012-03-27

Approaches to Co-Simulation 5

e Mixed level simulation — to combine the strength of
simulation at different levels of abstraction and
provide a possibility to compare results at different
levels.

e Broadband simulator — One broadband language is
used which covered several abstraction levels.

e Multi-simulator — several simulators are used in an
integrated environment. Main issues to deal with:

- The data exchange between the various simulators.

- The synchronization of the simulators, using time stamps.
It allows them to proceed independently. If a signal is
received with a time stamp lower than the current clock in
a simulator, the simulator will have to role back.

Prof. Z. Peng, ESLAB/LITH, Sweden 37

Concluding Remarks

e Efficient techniques for static analysis and simulations
are essential for guiding the design process.

e Static analysis techniques are good for extreme-case
performance analysis, but work only for simple
systems.

e In practice, simulations are mainly used in the
industry.

e The basic problem of co-simulation is how to simulate
HW and SW together so that it is fast and accurate.

e Formal verification proves design correctness.
- Computational complexity.
- Integration into the design flow.

Prof. Z. Peng, ESLAB/LITH, Sweden 38

19

