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Introduction

 Analysis and simulation techniques are essential for 
embedded system design:
 To guide the design space exploration.
 To provide feedback to the human designers.
 To support design validation.

 Selection of an analysis/simulation technique is 
usually based on trade-off between efficiency and 
accuracy.

 For certain analysis, such as worst-case execution 
time analysis, it is also very important that the result 
is safe (i.e., correct or pessimistic).
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Typical Data to be Analyzed

 Execution time and performance.
 Schedulability.
 Cost (code size, silicon area, etc.)
 Power consumption.
 Testability.
 Reliability.
 ...
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Performance Metrics
 Extreme case performance

 Worst-case execution time
 Best-case execution time

 Average case performance
 Probabilistic performance

 Used in soft real-time applications.
 To accurately handle the variable execution time of tasks, 

which may be due to
• Application characteristics (e.g., data dependent loops);
• Architectural factors (e.g., cache misses);
• External factors (e.g., network load); or
• Insufficient knowledge.

 To guarantee a high probability of meeting timing 
constraints.
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Worst-Case Execution Time Analysis

 Simply measuring the execution time of a task for a 
given input is not safe. 
 It is impossible to prove that the conditions leading to 

maximum execution time are taken into account.

 Processor components like caches and pipelines 
complicate the task of determining the WCET 
considerably.
 The execution time of a single instruction may depend on 

the execution history of many other instructions. 

 Switching off caches to simplify WCET prediction can 
lead to severe performance degradation.
 e.g., a factor of up to 30 for PowerPC 604.
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Simulation-based Techniques

 Software — Running the compiled program 
on the simulated target architecture.

 Hardware — Building a simulation model of 
the hardware and simulating.

 A very large number of inputs should usually 
be used in order to get good results.

 Only practical for average and probabilistic 
execution time estimation.

 It is difficult to use when individual programs 
are not running in isolation.
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Profiling

 A simulation-based approach to execute code directly 
on the target architecture.

 Used to obtain dynamic information such as 
branching probability, typical loop counts, instruction 
frequencies, etc.

 Achieved typically by instrumenting the executable 
codes.
 e.g., by inserting a counter at each conditional branch.

 Accuracy and performance of profiling depend on the 
ability to characterize the typical inputs.

 Profiling can not be used for worst case analysis.
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Static Analysis

Techniques that use results of information collected by 
analyzing the programs without executing them.

 No assumption about input data is made.
 Restriction on software

 bounded loops
 absence of recursive functions
 absence of dynamic function calls

 Can be used for:
 program analysis — behavior of a single program on a 

processor.
 system performance analysis — behavior of multiple 

processes on a single processor or several processors.
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Program Analysis

 The estimated worst-case execution time (WCET) 
must be safe and tight.

 The ideal tool for source code analysis would produce 
a good WCET estimate based on the following inputs:
 Source code.
 Compiler.
 Machine architecture description.
 Operating system.

Possible execution time

Actual
WCET Estimated

WCET

t
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Program Path Analysis
 To determine what sequence of instructions will be 

executed in the worst case scenario.

A basic block is composed of 
instructions in a straight line

 Let us first assume that 
each instruction takes a 
fixed time to execute
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Program Path Analysis

 Infeasible paths can be eliminated by data flow 
analysis and path information provided by the 
programmer.

 The number of feasible paths is typically exponential 
with the program size.

 Efficient methods are needed to avoid enumeration 
of all paths.
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ILP Formulation
Let xi be the number of times a basic block Bi is executed;
ci be the execution time of the basic block Bi, which is 
assumed to be a constant.
The total execution time of the program for a particular 
execution is:

 

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ii xc
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ILP Formulation (Cont’d)

The estimated WCET of the program is:

subject to a set of constraints Ax  b.

 The quality of the constraints define the tightness of 
the estimate.

 Constraint classification:
 Program structural constraints — deduced from the 

program’s control flow graph.
 Program functionality constraints — provided by the user to 

specify loop bounds and other path information.



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
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An Example

/* k >= 0 */
s = k;
while (k < 10) {

if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

x1 s = k;B1

d1

d2

x2 while (k<10)B2

d3

d4

x3 if (ok)B3

d5

x4 j++;B4 x5
j = 0;
ok=true;

B5

d7

x6 k++B6

d6

d8

x7 r = j;B7

d9

d10

CFG
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Constraints I

 Structural constraints:
x1 s = k;B1

d1

d2

x2 while (k<10)B2

d3

d4

x3 if (ok)B3

d5

x4 j++;B4 x5
j = 0;
ok=true;

B5

d7

x6 k++B6

d6

d8

x7 r = j;B7

d9

d10

CFG

d1 = 1
x1 = d1 = d2

x2 = d2 + d8 = d3 + d9

x3 = d3 = d4 + d5

...
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Constraints II

 Functionality constraints:

Loop bound information      
0 x1  x3  10 x1

Path information      
x5  1 x1

/* k >= 0 */
s = k;
while (k < 10) {

if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

X1
X2
X3
X4

X5

X6

X7

 Now an ILP solver can be 
used to find the values of 
xi’s that lead to the 
maximal execution time.

 The question is how tight 
the result will be?
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Dependence on System Resources
 Very large variations in program execution time can 

result from different uses of system resources:
 memory references
 pipeline utilization

 Instruction execution times are not longer constant
and independent of each other.

 A brutal worst-case assumption, such as always 
cache miss, is too pessimistic to be practical (e.g., 
can be 30 times worse).

 What are needed:
 a detailed micro-architectural model.
 adjacent instructions should be analyzed together for 

pipeline performance.
 cache access must be analyzed globally.
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Cache Analysis
 Cache activity of a cache line is affected by all instructions 

mapping to that cache line.
Ex. A direct mapped cache:

Memory address = 2 1 1
Tag Slot Word

100-Word Cache

Tag Slot No.
9
8
7
6
5
4
3
2
1
0

90-99
80-89
70-79
66-69
50-59
40-49
30-39
20-29
10-19
00-09

0020-0029
0010-0019
0000-0009

9990-9999

0120-0129
0110-0119
0100-0109

10,000-Word Memory

0          1                  1               5
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Cache Analysis
 Global analysis is required.
 Must be analyzed with path analysis together.
 Direct-mapped Cache Analysis:

 Determine each instruction’s cache hit and cache miss 
counts.

 Instruction in a basic block may not have the same counts.

B1

B2

B3

Cache Lines

0

1

2

3

0

1

2

3

B1

B1

B1

B1.1

B1.2

B1.3 B2

B2

B2.1

B2.2

B3

B3

B3.1

B3.2

Cache Line           Basic Block

Cache Table

L-block — A line block is a continuous sequence of instructions 
that are in the same basic block and mapped to the same 
cache line.

Conflicting L-blocks

Non-conflicting L-block
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The Modified Cost Function

where
cHITi.j — execution time of L-block Bi.j with cache hit
xHITi.j — cache hit count of L-block Bi.j

cMISSi.j — execution time of L-block Bi.j with cache miss
xMISSi.j — cache miss count of L-block Bi.j

xi = xi.j = xHITi.j + xMISSi.j {j = 1, 2, ..., ni }

 








  
 

N

i

in

j
jiMISSjiMISSjiHITjiHIT xcxcWCET

1 1
....max

Subject to the structural/functionality constraints, discussed 
before, as well as additional cache constraints.
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Cache Constraints
For each cache line, three assignments can occur:
 There is only one L-block Bi.j mapping to it — there will be at 

most 1 cache miss:   
xMISSi.j  1.

0

1

2

3

B1

B1

B1

B1.1

B1.2

B1.3 B2

B2

B2.1

B2.2

B3

B3

B3.1

B3.2

Cache Line           Basic Block

Cache Table

 There are two or more conflict L-
blocks mapping to the same cache 
line — the order they are executed 
will affect the cache hits/misses.

 There are two or more non-conflicting L-blocks mapping to the 
same cache line — when a miss occurs in either block, the L-
bocks will be loaded and no more misses will occur:

xMISS1.3 + xMISS2.1  1.

B1.1

B3.1
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Cache Conflict Graphs
 A CCG is constructed for each cache line containing two or 

more conflicting L-blocks.

Bk.l Bm,n

s
Start of the program

e
End of the program

p(s, k.l)
p(k.l, k.l)

p(node1, node2) denotes the execution counter associated with 
each edge.

p(s, e)
p(k.l, e)

p(k.l, m.n)

p(m.n, k.l)

p(m.n, e)

p(m.n, m.n)
p(s, m.n)

Possible program flow between 
Blocks, acquired from CFG

**
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Cache Conflict Graphs (Cont’d)

 s and e nodes represents the start and the end of the 
program respectively.

 a node Bi.j for each conflicting l-block.
 edges represent possible program flow between 

blocks — acquired from program CFG.
 p(node1, node2) is the execution counter associated 

with each edge.
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Cache Conflict Graph Example

B1.1 B3.1

s

e

p(s, 1.1)=1
p(1.1, 3.1)

p(3.1, e)=1

p(3.1, 3.1)
p(s, 3.1)=0

0

1

2

3

B1

B1

B1

B1.1

B1.2

B1.3 B2

B2

B2.1

B2.2

B3

B3

B3.1

B3.2

Cache Line           Basic Block

Cache Table

B1

B2

B3

 
vu vu

i vujipjivupx
. .

).,.().,.(

99

100
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Constraints on CCG

 The execution counters are bound to the 
structural and functional constraints:
 the execution count of a L-block must be equal to 

the execution count of the basic block;
 the control flow to an L-block node must be equal 

to the flow from the L-block node 

 
vu vu

i vujipjivupx
. .

).,.().,.(
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Advantage of the Approach

Program Measured 
WCET

Estimated WCET 
with cache 

analysis

Estimated WCET 
without cache 

analysis
Check_data 4.41  102 4.91  102 11.9  102

Piksrt 1.79  103 1.82  103 5.01  103

Line 4.85  103 6.09  103 9.15  103

Circle 1.45  104 1.53  104 1.59  104

FFT 2.05  106 2.71 106 4.04  106

Des 2.42  105 3.66 105 6.69  105

Fullsearch 6.25  104 9.57 104 29.0  104

Whetstone 6.83  106 10.2 106 14.9  106

Dhry 5.52  105 7.53 105 13.3  105

Matgen 9.28  103 10.9 103 17.2  103

1.5% 2.8 time
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WCET Analysis with General Cache
 There are several variables which influence the 

complexity of cache analysis:
 number of competing line-blocks (m);  
 cache associativity level (n):
 cache replacement method.

 For LRU (least recently used), the complexity grows 
as:

 By using a more detailed level of cache modeling 
better estimations can be acquired, but the problem 
become intractable if the programs are very large.




n

i im

m

0 )!(

!
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Remarks on Performance Analysis

 One of the main issues of embedded system design 
is estimation and analysis.

 Analysis of average and probabilistic performance 
can be done by simulation.

 Worst case execution time analysis can only be 
efficiently done by static analysis techniques.

 Efficient techniques for analyzing impacts of many 
advanced micro-architecture components are still 
research issues.
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Co-Simulation

 How the hardware and software components are 
simulated at the same time?

Problems:
 Different simulation platforms are used;
 Software runs fast while hardware simulation is 

relatively slow.
 How to run the system simulation as fast as possible and 

keep the two domains synchronized?

 Slow models provide full details and produce 
accurate results; fast models don’t produce enough 
timing information and simulation is less accurate.



2012-03-27

17

3333Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 1
 Gate-level model of the processor

 Gate level simulation of the processor is very slow (tens of 
clock cycles/sec).
Ex. 10 cycles/sec, 1 GHz processor  100 million seconds 
(3.2 years) are needed to simulate one second of real time.

 This provides a very accurate solution and is very simple 
from the co-simulation point of view.

Gate-
level 

model 
(VHDL)

SW

ASIC 
model 
(VHDL)

VHDL
simulation VHDL

simulation

Co-simulation framework
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Approaches to Co-Simulation 2
 Instruction-set architecture models

 There is no hardware model of the target processor; the 
software is executed on an ISA model (usually in C); 
execution on the ISA model provides interface information 
(including timing) needed for co-simulation.

 This is fast but timing accuracy depends on the interface 
information.

ISA 
model 

(C 
progr.)

SW

ASIC 
model 
(VHDL)

Program
running
on host

VHDL
simulation

Co-simulation framework
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Approaches to Co-Simulation 3
 Translation-based models

 There is no hardware model of the target processor; the 
software is compiled into native code for the host 
processor; software execution provides interface 
information (including timing) needed for co-simulation.

Software
compiled 

into native
code for 
the host

Program
running 
directly
on host

ASIC 
model 
(VHDL)

VHDL
simulation

Co-simulation framework

3636Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 4
 Hardware in the loop:

 Combine hardware and software in one solution, by using 
the physical device to model its own behavior.
 No necessarily the most accurate model!

 An adaptor formats inputs to the physical device, applies 
the input, returns the resulting outputs with timing 
information to the simulator.

 This is a good choice for modeling complex standard 
components such as microprocessors.

A
d

ap
to

r
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Approaches to Co-Simulation 5
 Mixed level simulation — to combine the strength of 

simulation at different levels of abstraction and 
provide a possibility to compare results at different 
levels.

 Broadband simulator — One broadband language is 
used which covered several abstraction levels.

 Multi-simulator — several simulators are used in an 
integrated environment. Main issues to deal with:
 The data exchange between the various simulators.
 The synchronization of the simulators, using time stamps. 

It allows them to proceed independently. If a signal is 
received with a time stamp lower than the current clock in 
a simulator, the simulator will have to role back.
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Concluding Remarks
 Efficient techniques for static analysis and simulations 

are essential for guiding the design process.
 Static analysis techniques are good for extreme-case 

performance analysis, but work only for simple 
systems.

 In practice, simulations are mainly used in the 
industry.

 The basic problem of co-simulation is how to simulate 
HW and SW together so that it is fast and accurate.

 Formal verification proves design correctness.
 Computational complexity.
 Integration into the design flow.


