
2012-03-27

1

Performance Analysis

and Co-Simulation

Performance Analysis

and Co-Simulation

Zebo Peng
Embedded Systems Laboratory (ESLAB)

Linköping University

Zebo Peng
Embedded Systems Laboratory (ESLAB)

Linköping University

22Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Outline

 Micro-architecture
modeling and analysis

 Worst-case execution time
analysis

 Static analysis techniques

 Co-simulation approaches

2012-03-27

2

33Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Introduction

 Analysis and simulation techniques are essential for
embedded system design:
 To guide the design space exploration.
 To provide feedback to the human designers.
 To support design validation.

 Selection of an analysis/simulation technique is
usually based on trade-off between efficiency and
accuracy.

 For certain analysis, such as worst-case execution
time analysis, it is also very important that the result
is safe (i.e., correct or pessimistic).

44Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Typical Data to be Analyzed

 Execution time and performance.
 Schedulability.
 Cost (code size, silicon area, etc.)
 Power consumption.
 Testability.
 Reliability.
 ...

2012-03-27

3

55Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Performance Metrics
 Extreme case performance

 Worst-case execution time
 Best-case execution time

 Average case performance
 Probabilistic performance

 Used in soft real-time applications.
 To accurately handle the variable execution time of tasks,

which may be due to
• Application characteristics (e.g., data dependent loops);
• Architectural factors (e.g., cache misses);
• External factors (e.g., network load); or
• Insufficient knowledge.

 To guarantee a high probability of meeting timing
constraints.

66Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Worst-Case Execution Time Analysis

 Simply measuring the execution time of a task for a
given input is not safe.
 It is impossible to prove that the conditions leading to

maximum execution time are taken into account.

 Processor components like caches and pipelines
complicate the task of determining the WCET
considerably.
 The execution time of a single instruction may depend on

the execution history of many other instructions.

 Switching off caches to simplify WCET prediction can
lead to severe performance degradation.
 e.g., a factor of up to 30 for PowerPC 604.

2012-03-27

4

77Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Simulation-based Techniques

 Software — Running the compiled program
on the simulated target architecture.

 Hardware — Building a simulation model of
the hardware and simulating.

 A very large number of inputs should usually
be used in order to get good results.

 Only practical for average and probabilistic
execution time estimation.

 It is difficult to use when individual programs
are not running in isolation.

88Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Profiling

 A simulation-based approach to execute code directly
on the target architecture.

 Used to obtain dynamic information such as
branching probability, typical loop counts, instruction
frequencies, etc.

 Achieved typically by instrumenting the executable
codes.
 e.g., by inserting a counter at each conditional branch.

 Accuracy and performance of profiling depend on the
ability to characterize the typical inputs.

 Profiling can not be used for worst case analysis.

2012-03-27

5

99Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Static Analysis

Techniques that use results of information collected by
analyzing the programs without executing them.

 No assumption about input data is made.
 Restriction on software

 bounded loops
 absence of recursive functions
 absence of dynamic function calls

 Can be used for:
 program analysis — behavior of a single program on a

processor.
 system performance analysis — behavior of multiple

processes on a single processor or several processors.

1010Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Program Analysis

 The estimated worst-case execution time (WCET)
must be safe and tight.

 The ideal tool for source code analysis would produce
a good WCET estimate based on the following inputs:
 Source code.
 Compiler.
 Machine architecture description.
 Operating system.

Possible execution time

Actual
WCET Estimated

WCET

t

2012-03-27

6

1111Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Program Path Analysis
 To determine what sequence of instructions will be

executed in the worst case scenario.

A basic block is composed of
instructions in a straight line

 Let us first assume that
each instruction takes a
fixed time to execute

1212Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Program Path Analysis

 Infeasible paths can be eliminated by data flow
analysis and path information provided by the
programmer.

 The number of feasible paths is typically exponential
with the program size.

 Efficient methods are needed to avoid enumeration
of all paths.

2012-03-27

7

1313Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

ILP Formulation
Let xi be the number of times a basic block Bi is executed;
ci be the execution time of the basic block Bi, which is
assumed to be a constant.
The total execution time of the program for a particular
execution is:

 


N

i
ii xc

1

1

10

1

11

101

C1

C2C3

C4

C5

C6
C7

C1 + C2 + C4 + 11 C5 + 10 C6 + C7

1414Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

ILP Formulation (Cont’d)

The estimated WCET of the program is:

subject to a set of constraints Ax  b.

 The quality of the constraints define the tightness of
the estimate.

 Constraint classification:
 Program structural constraints — deduced from the

program’s control flow graph.
 Program functionality constraints — provided by the user to

specify loop bounds and other path information.









 


N

i
ii xc

1
max

2012-03-27

8

1515Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

An Example

/* k >= 0 */
s = k;
while (k < 10) {

if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

x1 s = k;B1

d1

d2

x2 while (k<10)B2

d3

d4

x3 if (ok)B3

d5

x4 j++;B4 x5
j = 0;
ok=true;

B5

d7

x6 k++B6

d6

d8

x7 r = j;B7

d9

d10

CFG

1616Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Constraints I

 Structural constraints:
x1 s = k;B1

d1

d2

x2 while (k<10)B2

d3

d4

x3 if (ok)B3

d5

x4 j++;B4 x5
j = 0;
ok=true;

B5

d7

x6 k++B6

d6

d8

x7 r = j;B7

d9

d10

CFG

d1 = 1
x1 = d1 = d2

x2 = d2 + d8 = d3 + d9

x3 = d3 = d4 + d5

...

2012-03-27

9

1717Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Constraints II

 Functionality constraints:

Loop bound information
0 x1  x3  10 x1

Path information
x5  1 x1

/* k >= 0 */
s = k;
while (k < 10) {

if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

X1
X2
X3
X4

X5

X6

X7

 Now an ILP solver can be
used to find the values of
xi’s that lead to the
maximal execution time.

 The question is how tight
the result will be?

1818Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Outline

 Micro-architecture
modeling and analysis

 Worst-case execution time
analysis

 Static analysis techniques

 Co-simulation approaches

2012-03-27

10

1919Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Dependence on System Resources
 Very large variations in program execution time can

result from different uses of system resources:
 memory references
 pipeline utilization

 Instruction execution times are not longer constant
and independent of each other.

 A brutal worst-case assumption, such as always
cache miss, is too pessimistic to be practical (e.g.,
can be 30 times worse).

 What are needed:
 a detailed micro-architectural model.
 adjacent instructions should be analyzed together for

pipeline performance.
 cache access must be analyzed globally.

2020Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Cache Analysis
 Cache activity of a cache line is affected by all instructions

mapping to that cache line.
Ex. A direct mapped cache:

Memory address = 2 1 1
Tag Slot Word

100-Word Cache

Tag Slot No.
9
8
7
6
5
4
3
2
1
0

90-99
80-89
70-79
66-69
50-59
40-49
30-39
20-29
10-19
00-09

0020-0029
0010-0019
0000-0009

9990-9999

0120-0129
0110-0119
0100-0109

10,000-Word Memory

0 1 1 5

2012-03-27

11

2121Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Cache Analysis
 Global analysis is required.
 Must be analyzed with path analysis together.
 Direct-mapped Cache Analysis:

 Determine each instruction’s cache hit and cache miss
counts.

 Instruction in a basic block may not have the same counts.

B1

B2

B3

Cache Lines

0

1

2

3

0

1

2

3

B1

B1

B1

B1.1

B1.2

B1.3 B2

B2

B2.1

B2.2

B3

B3

B3.1

B3.2

Cache Line Basic Block

Cache Table

L-block — A line block is a continuous sequence of instructions
that are in the same basic block and mapped to the same
cache line.

Conflicting L-blocks

Non-conflicting L-block

2222Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

The Modified Cost Function

where
cHITi.j — execution time of L-block Bi.j with cache hit
xHITi.j — cache hit count of L-block Bi.j

cMISSi.j — execution time of L-block Bi.j with cache miss
xMISSi.j — cache miss count of L-block Bi.j

xi = xi.j = xHITi.j + xMISSi.j {j = 1, 2, ..., ni }

 








  
 

N

i

in

j
jiMISSjiMISSjiHITjiHIT xcxcWCET

1 1
....max

Subject to the structural/functionality constraints, discussed
before, as well as additional cache constraints.

2012-03-27

12

2323Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Cache Constraints
For each cache line, three assignments can occur:
 There is only one L-block Bi.j mapping to it — there will be at

most 1 cache miss:
xMISSi.j  1.

0

1

2

3

B1

B1

B1

B1.1

B1.2

B1.3 B2

B2

B2.1

B2.2

B3

B3

B3.1

B3.2

Cache Line Basic Block

Cache Table

 There are two or more conflict L-
blocks mapping to the same cache
line — the order they are executed
will affect the cache hits/misses.

 There are two or more non-conflicting L-blocks mapping to the
same cache line — when a miss occurs in either block, the L-
bocks will be loaded and no more misses will occur:

xMISS1.3 + xMISS2.1  1.

B1.1

B3.1

2424Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Cache Conflict Graphs
 A CCG is constructed for each cache line containing two or

more conflicting L-blocks.

Bk.l Bm,n

s
Start of the program

e
End of the program

p(s, k.l)
p(k.l, k.l)

p(node1, node2) denotes the execution counter associated with
each edge.

p(s, e)
p(k.l, e)

p(k.l, m.n)

p(m.n, k.l)

p(m.n, e)

p(m.n, m.n)
p(s, m.n)

Possible program flow between
Blocks, acquired from CFG

**

2012-03-27

13

2525Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Cache Conflict Graphs (Cont’d)

 s and e nodes represents the start and the end of the
program respectively.

 a node Bi.j for each conflicting l-block.
 edges represent possible program flow between

blocks — acquired from program CFG.
 p(node1, node2) is the execution counter associated

with each edge.

2626Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Cache Conflict Graph Example

B1.1 B3.1

s

e

p(s, 1.1)=1
p(1.1, 3.1)

p(3.1, e)=1

p(3.1, 3.1)
p(s, 3.1)=0

0

1

2

3

B1

B1

B1

B1.1

B1.2

B1.3 B2

B2

B2.1

B2.2

B3

B3

B3.1

B3.2

Cache Line Basic Block

Cache Table

B1

B2

B3

 
vu vu

i vujipjivupx
. .

).,.().,.(

99

100

2012-03-27

14

2727Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Constraints on CCG

 The execution counters are bound to the
structural and functional constraints:
 the execution count of a L-block must be equal to

the execution count of the basic block;
 the control flow to an L-block node must be equal

to the flow from the L-block node

 
vu vu

i vujipjivupx
. .

).,.().,.(

2828Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Advantage of the Approach

Program Measured
WCET

Estimated WCET
with cache

analysis

Estimated WCET
without cache

analysis
Check_data 4.41  102 4.91  102 11.9  102

Piksrt 1.79  103 1.82  103 5.01  103

Line 4.85  103 6.09  103 9.15  103

Circle 1.45  104 1.53  104 1.59  104

FFT 2.05  106 2.71 106 4.04  106

Des 2.42  105 3.66 105 6.69  105

Fullsearch 6.25  104 9.57 104 29.0  104

Whetstone 6.83  106 10.2 106 14.9  106

Dhry 5.52  105 7.53 105 13.3  105

Matgen 9.28  103 10.9 103 17.2  103

1.5% 2.8 time

2012-03-27

15

2929Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

WCET Analysis with General Cache
 There are several variables which influence the

complexity of cache analysis:
 number of competing line-blocks (m);
 cache associativity level (n):
 cache replacement method.

 For LRU (least recently used), the complexity grows
as:

 By using a more detailed level of cache modeling
better estimations can be acquired, but the problem
become intractable if the programs are very large.




n

i im

m

0)!(

!

3030Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Remarks on Performance Analysis

 One of the main issues of embedded system design
is estimation and analysis.

 Analysis of average and probabilistic performance
can be done by simulation.

 Worst case execution time analysis can only be
efficiently done by static analysis techniques.

 Efficient techniques for analyzing impacts of many
advanced micro-architecture components are still
research issues.

2012-03-27

16

3131Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Outline

 Micro-architecture
modeling and analysis

 Worst-case execution time
analysis

 Static analysis techniques

 Co-simulation approaches

3232Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Co-Simulation

 How the hardware and software components are
simulated at the same time?

Problems:
 Different simulation platforms are used;
 Software runs fast while hardware simulation is

relatively slow.
 How to run the system simulation as fast as possible and

keep the two domains synchronized?

 Slow models provide full details and produce
accurate results; fast models don’t produce enough
timing information and simulation is less accurate.

2012-03-27

17

3333Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 1
 Gate-level model of the processor

 Gate level simulation of the processor is very slow (tens of
clock cycles/sec).
Ex. 10 cycles/sec, 1 GHz processor  100 million seconds
(3.2 years) are needed to simulate one second of real time.

 This provides a very accurate solution and is very simple
from the co-simulation point of view.

Gate-
level

model
(VHDL)

SW

ASIC
model
(VHDL)

VHDL
simulation VHDL

simulation

Co-simulation framework

3434Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 2
 Instruction-set architecture models

 There is no hardware model of the target processor; the
software is executed on an ISA model (usually in C);
execution on the ISA model provides interface information
(including timing) needed for co-simulation.

 This is fast but timing accuracy depends on the interface
information.

ISA
model

(C
progr.)

SW

ASIC
model
(VHDL)

Program
running
on host

VHDL
simulation

Co-simulation framework

2012-03-27

18

3535Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 3
 Translation-based models

 There is no hardware model of the target processor; the
software is compiled into native code for the host
processor; software execution provides interface
information (including timing) needed for co-simulation.

Software
compiled

into native
code for
the host

Program
running
directly
on host

ASIC
model
(VHDL)

VHDL
simulation

Co-simulation framework

3636Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 4
 Hardware in the loop:

 Combine hardware and software in one solution, by using
the physical device to model its own behavior.
 No necessarily the most accurate model!

 An adaptor formats inputs to the physical device, applies
the input, returns the resulting outputs with timing
information to the simulator.

 This is a good choice for modeling complex standard
components such as microprocessors.

A
d

ap
to

r

2012-03-27

19

3737Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Approaches to Co-Simulation 5
 Mixed level simulation — to combine the strength of

simulation at different levels of abstraction and
provide a possibility to compare results at different
levels.

 Broadband simulator — One broadband language is
used which covered several abstraction levels.

 Multi-simulator — several simulators are used in an
integrated environment. Main issues to deal with:
 The data exchange between the various simulators.
 The synchronization of the simulators, using time stamps.

It allows them to proceed independently. If a signal is
received with a time stamp lower than the current clock in
a simulator, the simulator will have to role back.

3838Prof. Z. Peng, ESLAB/LiTH, SwedenProf. Z. Peng, ESLAB/LiTH, Sweden

Concluding Remarks
 Efficient techniques for static analysis and simulations

are essential for guiding the design process.
 Static analysis techniques are good for extreme-case

performance analysis, but work only for simple
systems.

 In practice, simulations are mainly used in the
industry.

 The basic problem of co-simulation is how to simulate
HW and SW together so that it is fast and accurate.

 Formal verification proves design correctness.
 Computational complexity.
 Integration into the design flow.

