
Genetic- Algorithm
Programming
Environments

Jos6 L. Ribeiro Filho and Philip C. Treleaven, University

College London

Cesare Alippi, Politecnico di Milano

volution is a remarkable problem-solving machine. First proposed by John
Holland in 1975,’ genetic algorithms are an attractive class of computa-
tional models that mimic natural evolution to solve problems in a wide va-

riety of domains. Holland also developed the concept of classifier systems, a machine
learning technique using induction systems with a genetic component? Holland’s
goal was twofold: to explain the adaptive process of natural systems and to design com-
puting systems embodying their important mechanisms. Pioneering work by Hol-
land,’ Goldberg.’ DeJong,’ Grefen~te t te ,~ Davis,’ Muhlenbein,(‘and others is fueling
the spectacular growth of GAS.

GAS are particularly suitable for solving complex optimization problems and hence
for applications that require adaptive problem-solving strategies. In addition, GAS are
inherently parallel, since their search for the best solution is performed over genetic
structures (building blocks) that can represent a number of possible solutions. Fur-
thermore, GAS’ computational models can be easily parallelized7 y to exploit the
capabilities of massively parallel computers and distributed systems. - Classes of search techniques

This review classifies
genetic-algorithm
environments into

application-oriented
systems, algorithm-

oriented systems, and
toolkits. It also

presents detailed case
studies of leading

environments.

Figure 1 groups search techniques into three broad classes.’ Calculus-based tech-
niques use a set of necessary and sufficient conditions to be satisfied by the solutions
of an optimization problem. These techniques subdivide into indirect and direct meth-
ods. Indirect methods look for local extrema by solving the usually nonlinear set of
equations resulting from setting the gradient of the objective function equal to zero.
The search for possible solutions (function peaks) starts by restricting itself to points
with zero slope in all directions. Direct methods, such as those of Newton and Fi-
bonacci, seek extrema by “hopping” around the search space and assessing the gradi-
ent of the new point, which guides the search. This is simply the notion of “hill-climb-
ing,” which finds the best local point by climbing the steepest permissible gradient.
These techniques can be used only on a restricted set of “well-behaved” problems.

Enumerative techniques search every point related to an objective function’s domain
space (finite or discretized), one point at a time. They are very simple to implement
but may require significant computation. The domain space of many applications is
too large to search using these techniques. Dynamic programming is a good example
of an enumerative technique.

COMPUTER

Guided random search techniques are
based on enumerative techniques but use
additional information to guide the
search. They are quite general in scope
and can solve very complex problems.
Two major subclasses are simulated an-
nealing and evolutionary algorithms.
Both are evolutionary processes, but sim-
ulated annealing uses a thermodynamic
evolution process to search minimum en-
ergy states. Evolutionary algorithms, on
the other hand, are based on natural-
selection principles. This form of search
evolves throughout generations, improv-
ing the features of potential solutions by
means of biologically inspired operations.
These techniques subdivide, in turn, into
evolutionary strategies and genetic algo-
rithms. Evolutionary strategies were pro-
posed by Rechenbergl” and Schwefel”
in the early 1970s. They can adapt the
process of “artificial evolution” to the re-
quirements of the local response sur-
face.I2 This means that unlike traditional
GAS evolutionary strategies can adapt
their major strategy parameters accord-
ing to the local topology of the objective
func t i~n . ’~

Following Holland’s original genetic-
algorithm proposal, many variations of
the basic algorithm have been introduced.
However, an important and distinctive
feature of all GAS is the population-han-
dling technique. The original GA adopted
a generational replacenlent policy,5 ac-
cording to which the whole population is
replaced in each generation. Conversely,
the steudy-stutepolicys used by many sub-
sequent GAS selectively replaces the pop-
ulation. It is possible. for example, to keep
one or more population members for sev-
eral generations, while those individuals
sustain a better fitness than the rest of the
population.

After we introduce G A models and
their programming, we present a survey
of GA programming environments. We
have grouped them into three major
classes according to their objectives: Ap-
plication-oriented systems hide the details
of GAS and help users develop applica-
tions for specific domains, algorithm-
oriented systems are based on specific C A
models, and toolkits are flexible environ-
ments for programming a range of GAS
and applications. We review the available
environments and describe their common
features and requirements. As case stud-
ies, we select some specific systems for
more detailed examination. To conclude,
we discuss likely future developments in
C A programming environments.

Search techniques

Fib0

Figure 1. Classes of search techniques.

I

Figure 2. The GA cycle.

Genetic algorithms
A genetic algorithm emulates biologi-

cal evolutionary theories to solve opti-
mization problems. A C A comprises a
set of individual elements (the popula-
tion) and a set of biologically inspired op-
erators defined over the population it-
self. According to evolutionary theories,
only the most suited elements in a popu-
lation are likely to survive and generate
offspring, thus transmitting their biolog-
ical heredity to new generations. In com-
puting terms, a genetic algorithm maps a
problem onto a set of (typically binary)
strings, each string representing a poten-
tial solution. The G A then manipulates
the most promising strings in its search

for improved solutions. A G A operates
through a simple cycle of stages:

(1) creation of a “population” of strings,
(2) evaluation of each string,
(3) selection of “best” strings, and
(4) genetic manipulation to create the

new population of strings.

Figure 2 shows these four stages using
the biologically inspired G A terminol-
ogy. Each cycle produces a new genera-
tion of possible solutions for a given
problem. At the first stage, an initial pop-
ulation of potential solutions is created
as a starting point for the search. Each el-
ement of the population is encoded into
a string (the chromosome) to be manip-

June 1994 ’ 29

1 a Offspring
ai 0 2

(D-

Figure 3. Crossover.

Figure 4. Mutation.

ulated by the genetic operators. In the
next stage, the performance (or fitness)
of each individual is evaluated with re-
spect to the constraints imposed by the
problem. Based on each individual’s fit-
ness, a selection mechanism chooses

#define POPULATION-SIZE 4 I* Size of the population *I

#define PCROSS 0.6 I* Crossover probability */
#define PMUT 0.001 I* Mutation probability *I

struct population

#define CHROM-LENGTH 5 I* String size */

int value:
{

t population

Figure 5. Global constants and variable declarations in C.

initializegopulation()

randomize();
for (i=Q i < POPULATION-SIZE; i++)

/* random generator setup *I

encode& random(pow(2.0,CHROM-LENGTH));

t

Figure 6. Initializa-
tion routine.

I

select(sum-fitness)

parsum = 0
md = rand() % sum-fitness;

t
I* spin the roulette *I

for (i=O; i < POPULATION-SIZE, parsum <= md; i++)
parsum += pool{i].fitness; I* look for the slot *I

return (-i); I /* returns a selected string *I
I

1
Figure 7. Selection function.

“mates” for the genetic manipulation
process. The selection policy is ultimately
responsible for assuring survival of the
best fitted individuals. The combined
evaluation and selection process is called
reproduction.

The manipulation process uses genetic
operators to produce a new population
of individuals (offspring) by manipulating
the “genetic information,” referred to as
genes, possessed by members (parents)
of the current population. It comprises
two operations: crossover and mutation.
Crossover recombines a population’s ge-
netic material. The selection process as-
sociated with recombination assures that
special genetic structures, called building
blocks, are retained for future genera-
tions. The building blocks then represent
the most fitted genetic structures in a
population.

The recombination process alone can-
not avoid the loss of promising building
blocks in the presence of other genetic
structures, which could lead to local min-
ima. Also, it cannot explore search space
sections not represented in the popula-
tion’s genetic structures. Here mutation
comes into action. The mutation operator
introduces new genetic structures in the
population by randomly modifying some
of its building blocks, helping the search
algorithm escape from local minima’s
traps. Since the modification is not re-
lated to any previous genetic structure of
the population, it creates different struc-
tures representing other sections of the
search space.

The crossover operator takes two chro-
mosomes and swaps part of their genetic
information to produce new chromo-
somes. This operation is analogous to sex-
ual reproduction in nature. As Figure 3
shows, after the crossover point has been
randomly chosen, portions of the parent
strings P1 and P2 are swapped to produce
the new offspring strings 0 1 and 02 . In
Figure 3 the crossover operator i s applied
to the fifth and sixth elements of the
string. Mutation is implemented by occa-
sionally altering a random bit in a string.
Figure 4 shows the mutation operator ap-
plied to the fourth element of the string.

A number of different genetic opera-
tors have been introduced since Holland
proposed this basic model. They are. in
general, versions of the recombination
and genetic alteration processes adapted
to the requirements of particular prob-
lems. Examples of other genetic opera-
tors are inversion. dominance. and ge-
netic edge recombination.

30 COMPUTER

I

The offspring produced by the genetic
manipulation process are the next popu-
lation to be evaluated. Genetic algo-
rithms can replace either a whole popu-
lation (generational approach) or its less
fitted members only (steady-state ap-
proach). The creation-evaluation-selec-
tion-manipulation cycle repeats until a
satisfactory solution to the problem is
found or some other termination crite-
rion is met.

This description of the computational
model reviews the steps needed to design
a genetic algorithm. However, real imple-
mentations take into account a number of
problem-dependent parameters such as
the population size, crossover and muta-
tion rates, and convergence criteria. GAS
are very sensitive to these parameters (a
discussion of the methods for setting them
up is beyond the scope of this article).

Sequential GAS. To illustrate the im-
plementation of a sequential genetic al-
gorithm we use Goldberg’s simple func-
tion optimization example2 and examine
its programming in C. The first step in
optimizing the functionf(x) = x2 over the
interval (parameter set) [0-311 is to en-
code the parameter setx, for example, as
a five-digit binary string (00000-1 11 11).
Next we generate the initial population of
four potential solutions, shown in Table
1, using a random number generator.

To program this G A function opti-
mization, we declare the population pool
as an array with four elements, as shown
in Figure 5 , and then initialize the struc-
ture using a random generator, as shown
in Figure 6. Our next step is reproduc-
tion. Reproduction evaluates and selects
pairs of strings for mating according to
their relative strengths (see Table 1 and
the associated C code in Figure 7). One
copy of string 01 101, two copies of 11000,
and one copy of 1001 1 are selected by us-
ing a roulette wheel method.*

Next we apply the crossover operator,
as illustrated in Table 2. Crossover oper-
ates in two steps (see Figure 8). First it
determines whether crossover is to occur
on a pair of strings by using a flip func-
tion: tossing a biased coin (with proba-
bility pcross) . If the result is heads
(true), the strings are swapped; the
crossoverjoint is determined by a ran-
dom number generator. If tails (false).
the strings are simply copied. In the ex-
ample, crossover occurs at the fifth posi-
tion for the first pair and the third posi-
tion for the other.

After crossover, the mutation opera-

Table 1. Initial strings and fitness values.

Initial f (x) Strength
Population X (fitness) (percent of total)

01101 13 169 14.4
11000 24 576 49.2
01000 8 64 5.5
1001 1 19 361 30.9

Sum-Fitness = 1,170 (100.0)

Table 2. Mating pool strings and crossover.

Mating Pool Mates Swapping New Population

01 101 1 0 1 1 0 [l] 01100
11 000 2 1100[0] 11001

11000 2 11 [OOO] 1101 1
10011 4 10[011] 10000

crossover (parentl, parent2, childl, child2)
{

if (flip(PCR0SS))
I

crossover-point = random(CHR0M-LENGTH);

for (i=O i <= CHROM-L
1

if (i <= site)

Figure 8. The crossover routine.

tor is applied to the new population,
which may have a random bit in a given
string modified. The mutation function
in Figure 9 on the next page uses the bi-
ased coin toss (flip) with probability pnzut
to determine whether to change a bit.

Table 3 shows the new population, to

which the algorithm now applies a termi-
nation test. Termination criteria may in-
clude the simulation time being up, a
specified number of generations ex-
ceeded. or a convergence criterion satis-
fied. In the example, we might set the
number of generations to 50 and the con-

June 1994 31

vergence as an average fitness improve-
ment of less than 5 percent between gen-
erations. For the initial population, the
average is 293, that is, (169 + 576 + 64 +
361) 4, while for the new population it
has improved to 439, that is, 66 percent,
(see the sidebar on Sequential GA C list-
ing on page 34).

Parallel GAS. The G A paradigm of-
fers intrinsic parallelism in searches for
the best solution in a large search space,
as demonstrated by Holland’s schema
theorem.’ Besides the intrinsic paral-
lelism, G A computational models can
also exploit other levels of parallelism
because of the natural independence of
the genetic manipulation operations.

A parallel G A is generally formed by
parallel components, each responsible for
manipulating subpopulations. As was
shown in Figure 1, there are two classes of
parallel GAS: centralized and distributed.
The first has a centralized selection mech-
anism: A single selection operator works
synchronously on the global population
(of subpopulations) at the selection stage.
In distributed parallel GAS, each parallel
component has its own copy of the selec-

tion operator, which works asyn-
chronously. In addition, each component
communicates its best strings to a subset
of the other components. This process re-
quires a migration operator and a migra-
tion frequency defining the communica-
tion interval.

The Asparagos algorithm’ has a dis-
tributed mechanism. Figure 10 shows a
skeleton C-like program, based on this
algorithm, for the simple function opti-
mization discussed for sequential algo-
rithms. In this parallel program the
statements for initialization, selection,
crossover, and mutation remain almost
the same as in the sequential program.
For the main loop, parallel (PAR) sub-
populations are set up for each compo-
nent, as well as values for the new pa-
rameters. Each component then executes
sequentially, apart from the parallel mi-
gration operator.

Taxonomy
To review programming environments

for genetic algorithms, we use a simple
taxonomy of three major classes: appli-

Table 3. Second generation and its fitness values.

Figure 9. The
mutation operator
C implementation.

f(x) Strength
Initial Population X (fitness) (percent of total)

01100 12 144 8.2
11001 25 625 35.6
1 1 0 1 1 27 729 41.5
10000 16 256 14.7

Sum-Fitness = 1,754 (100.0)

32

cation-oriented systems, algorithm-
oriented systems, and toolkits.

Application-oriented systems are essen-
tially “black boxes” that hide the G A im-
plementation details. Targeted at business
professionals, some of these systems sup-
port a range of applications; others focus
on a specific domain, such as finance.

Algorithm-oriented systems support
specific genetic algorithms. They subdi-
vide into

algorithm-specific systems, which
contain a single genetic algorithm,
and
algorithm libraries, which group to-
gether a variety of genetic algorithms
and operators.

These systems are often supplied in
source code and can be easily incorpo-
rated into user applications.

Toolkits provide many programming
utilities, algorithms, and genetic opera-
tors for a wide range of application do-
mains. These programming systems sub-
divide into

educational systems that help novice
users obtain a hands-on introduction
to G A concepts, and
general-purpose systems that provide
a comprehensive set of tools for pro-
gramming any GA and application.

Table 4 lists the GA programming en-
vironments examined in the next sec-
tions, according to their categories. For
each category we present a generic sys-
tem overview, then briefly review exam-
ple systems, and finally examine one sys-
tem in more detail, as a case study. The
parallel environments GAUCSD, Pega-
sus, and GAME are also covered, but no
commercial parallel environments are
currently available. See the sidebar “De-
velopers address list” on page 37 for a
comprehensive list of programming en-
vironments and their developers.

Application-
oriented systems

Many potential users of a novel com-
puting technique are interested in appli-
cations rather than the details of the tech-
nique. Application-oriented systems are
designed for business professionals who
want to use genetic algorithms for spe-

COMPUTER

cific purposes without having to acquire
detailed knowledge about them. For ex-
ample, a manager in a trading company
may need to optimize its delivery sched-
uling. By using an application-oriented
programming environment, the manager
can configure an application for sched-

ule optimization based on the traveling-
salesman problem without having to
know the encoding technique or the ge-
netic operators.

Overview. A typical application-ori-
ented environment is analogous to a

I I I

#define MAX-GEN
#define POPULATION-SIZE
#define SUB-POP-SIZE
#define NUM-OF-GAS

I

50
32
8
POPULATION-SIZE/
SUB-POP-SIZE

Algorithm- Algorithm Educational
specific systems libraries systems

Application-
Oriented Systems

#define NUM-OF-NEIGHBORS 2
#define MIGRATION-FREQ 5
#define NUM-OF-EMIGRANTS 2

General-
purpose systems

main ()
1
PAR for (i=o; i<SUB-POPSIZE; i++) /* Parallel execution */

SEQ 1 initialize();)

Figure 10. Parallel GA with migration.

Table 4. Programming environments and their categories.

spreadsheet or word-processing utility.
Its menu-driven interface (tailored to
business users) gives access to parame-
terized modules (targeted at specific do-
mains). The user interface provides
menus to configure an application, mon-
itor its execution, and, in certain cases,
program an application. Help facilities
are also provided.

Survey. Application-oriented systems
have many innovative strategies. Systems
such as PCiBeagle and XpertRule
GenAsys are expert systems that use
GAS to generate new rules to expand
their knowledge base of the application
domain. Evolver is a companion utility
for spreadsheets. Omega is targeted at fi-
nancial applications.

Evolver. This add-on utility works
within the Excel, Wingz, and Resolve
spreadsheets on Macintosh and PC com-
puters. Axcelis, its marketer, describes it
as “an optimization program that extends
mechanisms of natural evolution to the
world of business and science applica-
tions.” A user starts with a model of a sys-
tem in the spreadsheet and calls the
Evolver program from a menu. After the
user fills a dialog box with the informa-
tion required (the cell to minimize or
maximize), the program starts working,
evaluating thousands of scenarios auto-
matically until it has found an optimal an-
swer. The program runs in the back-
ground, freeing the user to work in the
foreground.

When Evolver finds the best result, it
notifies the user and places the values
into the spreadsheet for analysis. This is
an excellent design strategy, given the im-
portance of spreadsheets in business. In
an attempt to improve the system and ex-

Evolver
Omega
PC/Beagle

XpertRule
GenAsys

Escapade
GAGA

GAUCSD

Genesis
Genitor

EM C A Workbench Engeneer

MicroCA
~ GAME

OOGA 1 Pegasus
Splicer

June 1994 33

pand its market. Axcelis introduced
Evolver 2.0, which has many toolkit-like
features. The new version can integrate
with other applications in addition to
spreadsheets. It also offers more flexibil-
ity in accessing the Evolver engine: This
can be done from any Microsoft Win-

dows application that can call a Dynamic
Link Library.

techniques to create a tool that is “flexi-
ble, powerful, informative and straight-
forward to use,” according to its devel-
opers. Geared to the financial domain,
Omega can be applied to direct market-
ing, insurance, investigations (case scor-
ing), and credit management. The envi-

Omega. The Omega Predictive Mod-
elling System, marketed by KiQ. is a
powerful approach to developing predic-
tive models. It exploits advanced G A

Sequential GA C Listing
crossover(selected[i],seiectedfi+l].i,i+l);

34 COMPUTER

ronment offers facilities for automatic
handling of data; business, statistical, or
custom measures of performance: simple
and complex profit modeling; validation
sample tests; advanced confidence tests;
real-time graphics; and optional control
over the internal genetic algorithm.

PUBeagle. Produced by Pathway Re-
search, this rule-finder program applies
machine learning techniques to create a
set of decision rules for classifying exam-
ples previously extracted from a data-
base. It has a module that generates rules
by natural selection. Further details are

given in the case study section.

XpertRule GenAsys. XpertRule Gen-
Asys is an expert system shell with em-
bedded genetic algorithms. Marketed by
Attar Software, this G A expert system
solves scheduling and design problems.

else for (i=O; i < CHROM-LENGTH; i++)
value += (int)pow(2.O,(double)i) site = CHROM-LENGTH-1; 1 pool[index].string[CHROMJENGTH-l -i];

0; i < CHROM-LENGTH; i++)
retum(va1ue);

((i <= site) II (site=&))
I

I L
I[chikll].string[i] = pool[parentl].string[i];
I[child2].string[i] = pool[parent2].string[i];

ew~[chiWl].string[] = pool[parent2].string[i];
new~ool[child2].string[] = poot[parentl].string[i];

*.+C.ttt~+..t**t+.tt..**.~*~.~*.*~*

values of string position
tt*t**~ttt~~t*.****t'.******~*

*tt.*******~.t~tt~*tt+t**.~"**.***~.****~***,~,*,**~

evaluate
function f(x)=xA2
*t***..**.*ttt*tt+,.*."**"**~~~**~

pow((douMe)value,2.0));

(i=O; I c POPULATION-SIZ

June 1994 . 35

The system combines the power of ge-
netic algorithms in evolving solutions
with the power of rule-base programming
in analyzing the effectiveness of solu-
tions. Rule-base programming can also
be used to generate the initial solutions
for the genetic algorithm and for postop-
timization planning. Problems this sys-
tem can solve include optimization of de-
sign parameters in the electronics and
avionics industries, route optimization in
the distribution sector, and production
scheduling in manufacturing.

Case study: PCIBeagle. PClBeagle is a
rule-finder program that examines a
database of examples and uses machine
learning techniques to create decision
rules for classifying those examples, turn-
ing data into knowledge. The software
analyzes an expression via a historical
database and develops a series of rules to
explain when the target expression is
false or true. The system contains six
main components generally run in se-
quence:

SEED (selectively extracts example
data) puts external data into a suit-
able format and may append leading
or lagging data fields as well.
ROOT (rule-oriented optimization
tester) tests an initial batch of user-
suggested rules.
HERB (heuristic evolutionary rule
breeder) generates decision rules by
natural selection, using G A philoso-
phy and ranking mechanisms.
STEM (signature table evaluation
module) makes a signature table
from the rules produced by HERB.
LEAF (logical evaluator and fore-
caster) uses STEM output to do fore-
casting or classification.
PLUM (procedural language utility
maker) can convert a Beagle rule file
into a language such as Pascal or For-
tran so other software can use the
knowledge gained.

PC/Beagle accepts data in ASCII for-
mat, with items delimited by commas,
spaces, or tabs. Rules are produced as
logical expressions. The system is highly
versatile, covering a wide range of appli-
cations. Insurance, weather forecasting,
finance, and forensic science are some ex-
amples. PC/Beagle requires an IBM PC-
compatible computer with at least 256
Kbytes of RAM and an MS-DOS or PC-
DOS operating system, version 2.1 or
later.

Algorithm-oriented
systems

Our taxonomy divides algorithm-
oriented systems into algorithm-specific
systems that contain a single algorithm
and algorithm libraries, which group to-
gether a variety of genetic algorithms and
operators.

Algorithm-specific environments em-
body a single powerful genetic algorithm.
These systems have typically two groups
of users: system developers requiring a
general-purpose G A for their applica-
tions and researchers interested in the de-
velopment and testing of a specific algo-
rithm and genetic operators.

Algorithm-specific
environments

embody a
single powerful

genetic algorithm.

Overview of algorithm-oriented sys-
tems. In general, these systems come in
source code so expert users can make al-
terations for specific requirements. They
have a modular structure for a high de-
gree of modifiability. In addition, user in-
terfaces are frequently rudimentary, of-
ten command-line driven. Typically the
codes have been developed at universi-
ties and research centers, and are avail-
able free over worldwide computer re-
search networks.

System survey. The most well known
programming system in this category is
the pioneering Genesis: which has been
used to implement and test a variety of
new genetic operators. In Europe proba-
bly the earliest algorithm-specific system
was GAGA. For scheduling problems,
Genitor14 is another influential and suc-
cessful system. GAUCSD permits paral-
lel execution: It distributes several copies
of a Genesis-based algorithm to Unix ma-
chines in a network. Escapade13 uses a
somewhat different approach - an evo-
lutionary strategy.

Escapade. Escapade (Evolutionary
Strategies Capable of Adaptive Evolu-

tion) provides a sophisticated environ-
ment for a particular class of evolutionary
algorithms, called evolutionary strategies.
Escapade is based on Korr, Schwefel’s
implementation of a (p, +h)-evolution-
ary strategy, where the p best individu-
als of the h offspring, added to their par-
ents, survive and become the parents of
the new generation. The system provides
an elaborate set of monitoring tools to
gather data from an optimization run of
Korr. According to Escapade’s author, it
should be possible to incorporate a dif-
ferent implementation of an evolution-
ary strategy or even a G A into the
system using its runtime support. The
program is separated into several inde-
pendent components that support the
various tasks during a simulation run.
The major modules are parameter setup,
runtime control, Korr, generic data mon-
itors, customized data monitors, and
monitoring support.

During an optimization run, the mon-
itoring modules are invoked by the main
algorithm (Korr or some other evolu-
tionary strategy or G A implementation)
to log internal quantities. The system is
not equipped with any kind of graphical
interface. Users must pass all parameters
for a simulation as command-line op-
tions. For output, each data monitor
writes its data into separate log files.

GAGA. The Genetic Algorithms for
General Application were originally pro-
grammed in Pascal by Hillary Adams at
the University of York. The program was
later modified by Ian Poole and trans-
lated into C by Jon Crowcroft at Univer-
sity College London. GAGA is a task-
independent genetic algorithm. The user
must supply the target function to be op-
timized (minimized or maximized) and
some technical G A parameters, and wait
for the output. The program is suitable
for the minimization of many difficult
cost functions.

GAUCSD. This software was devel-
oped by Nicol Schraudolph at the Uni-
versity of California, San Diego (hence
UCSD).lS The system is based on Gene-
sis 4.5 and runs on Unix, MS-DOS, Cray
operating system, and VMS platforms,
but it presumes a Unix environment.
GAUCSD comes with an awk script
called “wrapper,” which provides a
higher level of abstraction for defining
the evaluation function. By supplying the
code for decoding and printing this func-
tion’s parameters automatically, it allows

36 COMPUTER

I

the direct use of most C functions as eval-
uation functions. with few restrictions.
The software also includes a dynamic pa-
rameter encoding technique developed
by Schraudolph. which radically reduces
the gene length while keeping the desired
level of precision for the results. Users
can run the system in the background at
low priority using the go command.

The go command can also be used to
execute GAUCSD on remote hosts. The
results are then copied back to the user’s
local directory, and a report is produced
if appropriate. If the host is not binary
compatible, GAUCSD compiles the

Developers address list

C Darwin II
Attar Software
Newlands Road
Leigh, Lancashire, UK
Telephone: +44 94 2608844
Fax: +44 94 2601991
E-mail: 100166.1547

@CompuServe.com

EM - Evolution Machine
H.M. Voigt and J. Born
Technical University of Berlin
Bionics and Evolution

Techniques Laboratory
Bio and Neuroinfonnatics

Research Group
Ackerstasse 71 -76 (ACKl)
D-73355 Berlin, Germany
Telephone: +49 303 147 2677
E-mail: volgt@fblO.tu-berlin.de
born Ofbl O.tu-berlin.de

Escapade
Frank Hoffmeister
University of Dortmund
System Analysis Research Group, LSXl
D-44221 Dortmund, Germany
Telephone: 4 9 231 755 4678

whole system on the remote host. Ex-
periments can be queued in files, dis-
tributed to several hosts, and executed in
parallel. The experiments are distributed
according to a specified loading factor
(how many programs will be sent to each
host), along with the remote execution
arguments to the go command. The ex
command notifies the user via write or
mail when all experiments are completed.
GAUCSD is clearly a very powerful
system.

Genesis. The Genetic Search Imple-
mentation System, or Genesis, was writ-

Science Park, Milton Rd.
Cambridge CB4 4DW, UK

Computer Science
University College
Gower St.

GAUCSD
N.N. Schraudoloh

ten by John Grefenstette4 to promote the
study of genetic algorithms for function
optimization. It has been under develop-
ment since 1981 and widely distributed
to the research community since 1985.
The package is a set of routines written in
C. To build their own genetic algorithms,
users provide only a routine with the fit-
ness function and link it with the other
routines. Users can also modify modules
or add new ones (for example, genetic
operators and data monitors) and create
a different version of Genesis. In fact,
Genesis has been used as a base for test
and evaluation of a variety of genetic al-

Omega
David Barrow
KiQ Ltd.
Easton Hall, Great Easton

June 1994 31

mailto:CompuServe.com
mailto:volgt@fblO.tu-berlin.de
http://O.tu-berlin.de

gorithms and operators. It was primarily
developed to work in a scientific envi-
ronment and is a suitable tool for re-
search. Genesis is highly modifiable and
provides a variety of statistical informa-
tion on output.

Genitor. The modular G A package
Genitor (Genetic Implementor) has ex-
amples for floating-point, integer, and bi-
nary representations. Its features include
many sequencing operators, as well as sub-
population modeling. The software pack-
age is an implementation of the Genitor
algorithm developed by Darrel Whitley.14

Genitor has two major differences
from standard genetic algorithms. The
first is its explicit use of ranking. Instead
of using fitness-proportionate reproduc-
tion, Genitor allocates reproductive trials
according to the rank of the individual in
the population. The second difference is
that Genitor abandons the generational
approach (in which the whole population
is replaced with each generation) and re-
produces new genotypes on an individ-
ual basis. Using the steady-state ap-
proach, Genitor lets some parents and
offspring coexist. A newly created off-
spring replaces the lowest ranking indi-
vidual in the population rather than a
parent. Because Genitor produces only
one new genotype at a time, inserting a
single new individual is relatively simple.
Furthermore, the insertion automatically
ranks the individual in relation to the ex-
isting pool - no further measure of the
relative fitness is needed.

Case study: Genesis. Genesis4 is the
most well known software package for
G A development and simulation. It runs
on most machines with a C compiler.
Version 5.0, now available from the Soft-
ware Partnership, runs successfully on
both Sun workstations and IBM PC-com-
patible computers, according to its au-
thor. The code is designed to be portable,
but minor changes may be necessary for
other systems.

Genesis provides the fundamental pro-
cedures for genetic selection, crossover,
and mutation. The user is only required
to provide the problem-dependent eval-
uation function.

Genesis has three levels of represen-
tation for the structures it evolves. The
lowest level, packed representation, max-
imizes both space and time efficiency in
manipulating structures. In general, this
level of representation is transparent to
the user. The next level, the string repre-

sentation, represents structures as null-
terminated arrays of characters, or
“chars.” This structure is for users who
wish to provide an arbitrary interpreta-
tion of the genetic structures, for exam-
ple, nonnumeric concepts. The third
level, the floating-point representation,
is appropriate for many numeric opti-
mization problems. At this level the user
views genetic structures as vectors or real
numbers. For each parameter, or gene,
the user specifies its range, number of val-
ues, and output format. The system then
automatically lays out the string repre-

Algorithm libraries
provide a

powerful collection
of parameterized

genetic algorithms
and operators.

sentation and translates between the
user-level genes and lower representa-
tion levels.

Genesis has five major modules:

Initialization. The initialization pro-
cedure sets up the initial population.
Users can “seed” the initial popula-
tion with heuristically chosen struc-
tures, and the rest of the population
is filled with random structures.
Users can also initialize the popula-
tion with real numbers.
Generation. This module executes
the selection, crossover, mutation,
and evaluation procedures, and col-
lects some data.
Selection. The selection module
chooses structures for the next gen-
eration from the structures in the
current generation. The default se-
lection procedure is stochastic, based
on the roulette wheel algorithm, to
guarantee that the number of off-
spring of any structure is bounded by
the floor and ceiling of the (real-val-
ued) expected number of offspring.
Genesis can also perform selection
using a ranking algorithm. Ranking
helps forestall premature conver-
gence by preventing “super” indi-
viduals from taking over the popula-
tion within a few generations.

Mutation. After Genesis selects the
new population, it applies mutation
to each structure. Each position is
given a chance (according to the mu-
tation rate) of undergoing mutation.
If mutation is to occur, Genesis ran-
domly chooses 0 or 1 for that posi-
tion. If the mutated structure differs
from the original one, it is marked for
evaluation.
Crossover. The crossover module ex-
changes alleles between adjacent
pairs of the first n structures in the
new population. The result of the
crossover rate applied to the popula-
tion size gives the number n of struc-
tures to operate on. Crossover can be
implemented in a variety of ways. If,
after crossover, the offspring are dif-
ferent from the parents, then the off-
spring replace the parents and are
marked for evaluation.

These basic modules are added to the
evaluation function supplied by the user
to create the customized version of the
system. The evaluation procedure takes
one structure as input and returns a dou-
ble-precision value.

To execute Genesis, three programs
are necessary: set-up, report, and ga. The
setup program prompts for a number of
input parameters. All the information is
stored in files for future use. Users can
set the type of representation, number of
genes, number of experiments, trials per
experiment, population size, length of the
structures in bits, crossover and mutation
rates, generation gap, scaling window,
and many other parameters. Each pa-
rameter has a default value.

The report program runs the genetic
algorithm and produces a description of
its performance. It summarizes the mean,
variance, and range of several measure-
ments, including on-line performance,
off-line performance, average perfor-
mance of the current population, and cur-
rent best value.

Overview of algorithm libraries Algo-
rithm libraries provide a powerful col-
lection of parameterized genetic algo-
rithms and operators, generally coded in
a common language, so users can easily
incorporate them in applications. These
libraries are modular, letting users select
a variety of algorithms, operators, and
parameters to solve particular problems.
They allow parameterization so users can
try different models and compare the re-
sults for the same problem. New algo-

38 COMPUTER

I

,

rithms coded in high-level languages like
Cor Lisp can be easily incorporated into
the libraries. The user interface facilitates
model configuration and manipulation,
and presents the results in different
shapes (tables, graphics, and so on).

Library survey. The two leading algo-
rithm libraries are EM and OOGA. Both
provide a comprehensive selection of ge-
netic algorithms, and EM also supports
evolutionary strategy simulation. OOGA
can be easily tailored for specific prob-
lems. It runs in Common Lisp and CLOS
(Common Lisp Object System), an ob-
ject-oriented extension of Common Lisp.

E M . Developed by Hans-Michael
Voigt, Joachim Born, and Jens Treptow16
at the Institute for Informatics and Com-
puting Techniques in Germany, EM
(Evolution Machine) simulates natural
evolution principles to obtain efficient
optimization procedures for computer
models. The authors chose different evo-
lutionary methods to provide algorithms
with different numerical characteristics.
The programming environment supports
the following algorithms:

Rechenberg’s evolutionary strat-

Rechenberg and Schwefel’s evolu-

Born’s evolutionary strategy,
Goldberg’s simple genetic algo-

Voigt and Born’s genetic algorithm.16

egy,’O

tionary strategy,lOJ1

rithm: and

To run a simulation, the user provides
the fitness function coded in C . The sys-
tem calls the compiler and linker, which
produce an executable file containing the
selected algorithm and the user-supplied
fitness function.

EM has extensive menus and default
parameter settings. The program pro-
cesses data for repeated runs, and its
graphical presentation of results includes
on-line displays of evolution progress and
one-, two-, and three-dimensional graphs.
The system runs on an IBM PC-compat-
ible computer with the MS-DOS operat-
ing system and uses the Turbo C (or
Turbo C++) compiler to generate the ex-
ecutable files.

OOGA. The Object-Oriented Genetic
Algorithm is a simplified version of the
Lisp-based software developed in 1980 by
Lawrence Davis. He created it mainly to
support his book: but it can also be used

to develop and test customized or new ge-
netic algorithms and genetic operators.

Case study: OOGA. This algorithm is
designed so each technique used by a GA
is an object that can be modified, dis-
played, or replaced in an object-oriented
fashion. It provides a highly modular ar-
chitecture in which users incrementally
write and modify components in Com-
mon Lisp to define and use a variety of
G A techniques. The files in the OOGA
system contain descriptions of several
techniques used by G A researchers, but

Toolkits contain
educational systems

for novice users
and general-purpose

systems with a
comprehensive

set of tools.

they are not exhaustive. OOGA contains
three major modules:

The evaluation module has the eval-
uation (or fitness) function that mea-
sures the worth of any chromosome
for the problem to be solved.
The population module contains a
population of chromosomes and the
techniques for creating and manipu-
lating that population. There are a
number of techniques for population
encoding (binary, real number, and
so on), initialization (random binary,
random real, and normal distribu-
tion) and deletion (delete all and
delete last).
The reproduction module has a set of
genetic operators for selecting and
creating new chromosomes. This
module allows G A configurations
with more than one genetic operator.
The system creates a list with user-
selected operators and executes their
parameter settings, before executing
them in sequence. OOGA provides a
number of genetic operators for se-
lection (for example, roulette wheel),
crossover (one- and two-point
crossover, mutate-and-crossover),
and mutation. The user can set all pa-

rameters, such as the bit-mutation
and crossover rates.

The last two modules are, in fact, li-
braries of different techniques enabling
the user to configure a particular genetic
algorithm. When the genetic algorithm is
run, the evaluation, population, and re-
production modules work together to
evolve a population of chromosomes to-
ward the best solution. The system also
supports some normalization (for exam-
ple, linear normalization) and parame-
terization techniques for altering the ge-
netic operators’ relative performance
over the course of the run.

To ol kits
Toolkits subdivide into educational

systems for novice users and general-pur-
pose systems that provide a comprehen-
sive set of programming tools.

Educational systems overview. Educa-
tional programming systems help novices
gain a hands-on introduction to GA con-
cepts. They typically provide a rudimen-
tary graphical interface and a simple con-
figuration menu. Educational systems are
typically implemented on PCs for porta-
bility and low cost. For ease of use, they
have a fully menu-driven graphical inter-
face. GA Workbench” is one of the best
examples of this class of programming
environment.

Case study: GA Workbench. This en-
vironment was developed by Mark
Hughes of Cambridge Consultants to run
on MS-DOS/PC-DOS microcomputers.
With this mouse-driven interactive pro-
gram, users draw evaluation functions on
the screen. The system produces runtime
plots of GA population distribution, and
peak and average fitness. It also displays
many useful population statistics. Users
can change a range of parameters, in-
cluding the settings of the genetic opera-
tors, population size, and breeder selec-
tion.

G A Workbench’s graphical interface
uses a VGA or EGA adapter and divides
the screen into seven fields consisting of
menus or graphs. The command menu is
a menu bar that lets the user enter the
target function and make general com-
mands to start or stop a GA execution.
After selecting “Enter Targ” from the
command menu, the user inputs the tar-
get function by drawing it on the target

June 1994 39

function graph using the mouse cursor.
The algorithm control chapter can con-

tain two pages (hence “chapter”), but
only one page is visible at a time. Clicking
with the mouse on screen arrows lets the
user flip pages forward or backward. The
initial page, the “simple genetic algorithm
page,” shows a number of input variables
used to control the algorithm’s operation.
The variable values can be numeric or
text strings, and the user can alter any of
these values by clicking the left mouse
button on the up or down arrows to the
left of each value. The “general program
control variables page” contains variables
related to general program operation
rather than a specific algorithm. Here the
user can select the source of data for plot-
ting on the output plot graph, set the scale
for the x or y axis, seed the random num-
ber generated, or determine the fre-
quency with which the population distri-
bution histogram is updated.

The output variables box contains the
current values of variables relating to the
current algorithm. For the simple genetic
algorithm, a counter of generations is
presented as well as the optimum fitness
value, current best fitness, average fit-
ness, optimum x , current best x, and av-
erage x. The population distribution his-
togram shows the genetic algorithm’s
distribution of organisms by value of x.
The histogram is updated according to
the frequency set in the general program
control variables page. The output graph
plots several output variables against
time.

From any graph, the user can read the
coordinate values of the point indicated
by the mouse cursor. When the user
moves the cursor over the plot area of a
graph, it changes to a cross hair and the
axis value box displays the coordinate
values.

By drawing the target function, vary-
ing several numeric control parameters,
and selecting different types of algo-
rithms and genetic operators, the novice
user can practice and see how quickly the
algorithm can find the peak value, or in-
deed if it succeeds at all.

General-purpose programming sys-
tems overviw. General-purpose systems
are the ultimate in flexible C A program-
ming. Not only do they let users develop
their own G A applications and algo-
rithms; they also let users customize the
system.

These programming systems provide a
comprehensive toolkit, including

a sophisticated graphical interface,
a parameterized algorithm library,
a high-level language for program-

an open architecture.
ming GAS, and

Users access system components via a
menu-driven graphical interface. The al-
gorithm library is normally “open,” let-
ting users modify or enhance any mod-
ule. A high-level language - often
object-oriented - may be provided for

General-purpose
systems let

programmers develop
applications and
algorithms and

customize the system.

programming G A applications, algo-
rithms, and operators through specialized
data structures and functions. And be-
cause parallel GAS are becoming impor-
tant, systems provide translators to par-
allel machines and distributed systems,
such as networks of workstations.

General-purpose survey. The number
of general-purpose systems is increasing,
stimulated by growing interest in GA ap-
plications in many domains. Systems in
this category include Splicer, which pre-
sents interchangeable libraries for devel-
oping applications; MicroGA, which is an
easy-to-use object-oriented environment
for PCs and Macintoshes; and the parallel
environments Engeneer, GAME, and
Pegasus.

Engeneer. Logica Cambridge devel-
oped Engeneerl8 as an in-house environ-
ment to assist in G A application devel-
opment in a wide range of domains. The
C software runs on Unix systems as part
of a consultancy and systems package. It
supports both interactive (X Windows)
and batch (command-line) operation.
Also, it supports a certain degree of par-
allelism for the execution of application-
dependent evaluation functions.

Engeneer provides flexible mecha-
nisms that let the developer rapidly bring
the power of GAS to bear on new prob-
lem domains. Starting with the Genetic

Description Language, the developer can
describe, at a high level, the structure of
the “genetic material” used. The lan-
guage supports discrete genes with user-
defined cardinality and includes features
such as multiple models of chromosomes,
multiple species models, and nonevolv-
able parsing symbols, which can be used
for decoding complex genetic material.

A descriptive high-level language, the
Evolutionary Model Language, lets the
user describe the G A type in terms of
configurable options including popula-
tion size, population structure and
source, selection method, crossover type
and probability, mutation type and prob-
ability, inversion, dispersal method, and
number of offspring per generation.

An interactive interface (with on-line
help) supports both high-level languages.
Descriptions and models can be defined
“on the fly” or loaded from audit files,
which are automatically created during a
C A run. Users can monitor C A progress
with graphical tools and by defining in-
tervals for automatic storage of results.
Automatic storage lets the user restart
Engeneer from any point in a run, by
loading both the population at that time
and the evolutionary model.

To connect Engeneer to different
problem domains, a user specifies the
name of the program to evaluate the
problem-specific fitness function and
constructs a simple parsing routine to in-
terpret the genetic material. Engeneer
provides a library of standard interpre-
tation routines for commonly used rep-
resentation schemes such as gray coding
and permutations. The fitness evaluation
can then be run as the GA’s slave pro-
cess or via standard handshaking rou-
tines. Better still, it can be run on the ma-
chine hosting Engeneer or on any
sequential or parallel hardware capable
of connecting to a Unix machine.

GAME. The Genetic Algorithm Ma-
nipulation Environment is being devel-
oped as part of the European Commu-
nity (ESPRIT 111) G A project called
Papagena. It is an object-oriented envi-
ronment for programming parallel C A
applications and algorithms, and map-
ping them onto parallel machines. The
environment has five principal modules.

The virtual machine (VM) is the mod-
ule responsible for maintaining data
structures that represent genetic infor-
mation and providing facilities for their
manipulation and evaluation. It isolates
genetic operators and algorithms from

40 COMPUTER

I

dealing directly with data structures
through a set of low-level commands im-
plemented as a collection of functions
called the VM Application Program In-
terface (VM-API). The VM also sup-
ports fine-grained parallelism and can ex-
ecute several commands simultaneously.
It comprises three modules: the produc-
tion manager, the fitness evaluation
module, and the parallel support mod-
ule. The first executes genetic manipula-
tion commands over the data structures
residing in the VM population pools. The
VM-API includes commands for swap-

the GUI) events that occur during a sim-
ulation session. Each GAME compo-
nent notifies the MCM about messages
received or any modification of the data
elements it maintains. Users can select
the level of monitoring for each compo-
nent. The MCM can also inform other
GAME components about particular
events through its “lists of interests”
mechanism.

The genetic algorithm libraries com-
prise a collection of hierarchically orga-

Macintosh computers.
The application developer can config-

ure an application manually or by using
Galapagos. This Windows-based code
generator produces, from a set of custom
templates and a little user-provided in-
formation, a complete stand-alone Mi-
croGA application. It helps with the cre-
ation of a subclass derived from its
“TIndividual” class, required by the en-
vironment to create the genetic data
structure to be manipulated. Galapagos
requests the number of genes for the pro-
totype individual, as well as the range of

ping, inverting, duplicating, and modify- possible values they can assume. The user
ing genetic structures. The fitness evalu- can specify the evaluation function, but
ation module performs the actual the Galapagos notation does not allow
evaluation of genetic structures and such complex or nonmathematical fitness
related calculations as total, average, and algorithms functions. Galapagos creates a class, de-

rived from TIndividual, which contains
the specific member functions as required by combining by the user application.

problem-dependent objective function is
only “connected” to the fitness evalua-
tion module at link time. Finally, the par- comDonents from Users can manually define applications

New

highest, and lowest fitness values. The can be created

- - _ _
allel support module schedules com- 1ibraAes and setting requiring complex genetic data structures
mands received by the VM among and fitness functions by having them in-
several copies of the population manager their parameters* herit from the TIndividual class and writ-
and fitness evaluation modules.

The parallel execution module (PEM)
implements a hardware/operating sys-
tem-independent interface that supports
multiple, parallel computational models.
It provides straightforward API-contain-
ing functions for process initiation, ter-
mination, synchronization, and commu-
nication. It is responsible for integrating
application components (algorithms, op-
erators, user interface, and virtual ma-
chine) defined as GAME components.
The PEM is implemented in two layers.
The upper layer defines the standard in-
terface functions used by all GAME com-
ponents of an application. The lower
layer implements the functions that map
the upper layer requests into the particu-
lar environment. PEM’s design permits
porting GAME applications to diverse
sequential and parallel machines by sim-
ply linking with the PEM library imple-
mented for the required machine/oper-
ating system.

A graphical user interface module con-
taining simple graphic widgets for MS-
Windows and X Windows environments
is also provided. It enables applications to
input and output data in a variety of for-
mats. GAME’S GUI contains standard
dialog boxes, buttons, and charting win-
dows that can be associated by the user
with events reported by the monitoring
control module.

The monitoring control module
(MCM) collects and displays (through

nized modules containing predefined, pa-
rameterized applications; genetic algo-
rithms; and genetic operators. New ap-
plications and algorithms can be created
by simply combining the required com-
ponents from the libraries and setting
their parameters in a configuration file.

The environment is programmed in
C++ and is available in source code for
full user modification.

MicroGA. Marketed by Emergent Be-
havior, MicroGA is designed for a wide
range of complex problems. It is small
and easy to use, but expandable. Because
the system is a framework of C++ objects,
several pieces working together give the
user some default behavior. In this, Mi-
croGA is far from the library concept, in
which a set of functions (or classes) is of-
fered for incorporation in user applica-
tions. The framework is almost a ready-
to-use application. MicroGA needs only
a few user-defined parameters to start
running. The package comprises a com-
piled library of C++ objects, three sample
programs, a sample program with an Ob-
ject Windows Library user interface
(from Borland), and the Galapagos code-
generation system. MicroGA runs on
IBM PC-compatible systems with Mi-
crosoft Windows 3.0 (or later), using
Turbo or Borland C++. It also runs on

ing the code for its member functions. Af-
ter creating the application-dependent
genetic data structure and fitness func-
tion, MicroGA compiles and links ev-
erything using the Borland or Turbo C++
compiler, and produces a file executable
in Microsoft Windows.

MicroGA is very easy to use and lets
users create G A applications quickly.
However, for real applications the user
must understand basic concepts of ob-
ject-oriented programming and Windows
interfacing.

Pegasus. The Programming Environ-
ment for Parallel Genetic Algorithms, or
Pegasus, was developed at the German
National Research Center for Computer
Science. The toolkit can be used for pro-
gramming a wide range of genetic algo-
rithms, as well as for educational pur-
poses. The environment is written in
ANSI-C and is available for many differ-
ent Unix-based machines. It runs on mul-
tiple instruction, multiple data parallel
machines, such as transputers, and dis-
tributed systems of workstations. Pega-
sus is structured in four hierarchical
levels:

the user interface,
the Pegasus kernel and library,
compilers for several Unix-based ma-

the sequential and distributed or par-
chines, and

allel hardware.

June 1994

The user interface consists of three
parts: the Pegasus script language, a
graphical interface, and a user library. The
user library has the same functionality as
the Pegasus G A library. It lets the user
define application-specific functions not
provided by the system library, using the
script language to specify the experiment.
The user defines the application-depen-
dent data structures, attaches the genetic
operators to them, and specifies the I10
interface. The script language specifies
the construction of subpopulations con-
nected via the graphical interface.

The kernel includes base and frame
functions. The basefunctions control the
execution order of the genetic operators,
manage communication among different
processes, and provide I/O facilities.
They build general frames for simulating
GAS and can be considered as au-
tonomous processes. They interpret the
Pegasus script, create appropriate data
structures, and describe the order of
frame functions. Invoked by a base func-
tion, a frame function controls the exe-
cution of a single genetic operator. Frame
functions prepare the data representing
the genetic material and apply the genetic
operators to it, according to the script
specification. The library contains genetic
operators, a collection of fitness func-
tions, and I10 and control procedures.
Hence, it gives the user validated mod-
ules for constructing applications.

Currently Pegasus can be compiled
with the GNU C, RS/6000 C, ACE-C,
and Alliant FW2800 C compilers. It runs
on Sun and IBM RS16000 workstations,
as well as on the Alliant FX128 MIMD
architecture.

Splicer. Created by the Software Tech-
nology Branch of the Information Sys-
tems Directorate at NASA Johnson
Space Flight Center, with support from
the Mitre Corp~ration, '~ Splicer is one of
the most comprehensive environments
available. We present it in the case study.

Case study: Splicer. The modular ar-
chitecture includes three principal parts
- the genetic-algorithm kernel, inter-
changeable representation libraries, and
interchangeable fitness modules - and
user interface libraries. It was originally
developed in C on an Apple Macintosh
and then ported to Unix workstations
(Sun 3 and 4, IBM RS16000) using X Win-
dows. The three modules are completely
portable.

The genetic-algorithm kernel comprises

all functions necessary to manipulate
populations. It operates independently
from the problem representation (en-
coding), the fitness function, and the user
interface. Some functions it supports are
creation of populations and members, fit-
ness scaling, parent selection and sam-
pling, and generation of population
statistics.

Interchangeable representation li-
braries store a variety of predefined prob-
lem-encoding schemes and functions,
permitting the G A kernel to be used for
any representation scheme. There are

We expect the number
and diversity of

application-oriented
systems to expand
rapidly in the next

few years.

representation libraries for binary strings
and permutations. These libraries con-
tain functions for the definition, creation,
and decoding of genetic strings, as well
as multiple crossover and mutation op-
erators. Furthermore, the Splicer tool de-
fines interfaces to let the user create new
representation libraries.

Fitness modules are interchangeable
and store fitness functions. They are the
only component of the environment
a user must create or alter to solve a par-
ticular problem. Users can create a
fitness (scoring) function, set the initial
values for various Splicer control pa-
rameters (for example, population size),
and create a function that graphically dis-
plays the best solutions as they are found.

There are two user interface libraries:
one for Macintoshes and one for X Win-
dows. They are event-driven and provide
graphical output in windows.

Stand-alone Splicer applications can
be used to solve problems without any
need for computer programming. How-
ever, to create a Splicer application for
a particular problem, the user must create
a fitness module using C. Splicer, Ver-
sion 1.0, is currently available free
to NASA and its contractors for use on
government projects. In the future it will
be possible to purchase Splicer for a
nominal fee.

Future
developments

As with any new technology, in the
early stages of development the empha-
sis for tools is on ease of use. Applica-
tion-oriented systems have a crucial role
in bringing the technology to a growing
set of domains, since they are targeted
and tailored for specific users. Therefore,
we expect the number and diversity of
application-oriented systems to expand
rapidly in the next few years. This devel-
opment, coupled with the discovery of
new algorithms and techniques, should
bring an increase in algorithm-specific
systems, possibly leading to general-pur-
pose GAS. Algorithm libraries will pro-
vide access to efficient versions of these
algorithms.

Interest in educational systems and
demonstrators of GAS is rapidly grow-
ing. The contribution of such systems
comes at the start of a new technology,
but their usage traditionally diminishes
as general-purpose systems mature. Thus
we expect a decline in educational sys-
tems as sophisticated general-purpose
systems become available and easier to
use. General-purpose systems appeared
very recently. With the introduction of
Splicer, we expect commercial develop-
ment systems in the near future. We
should see programming environments
for an expanding range of sequential and
parallel computers, and more public-
domain open-system programming envi-
ronments from universities and research
centers.

One high-growth area should be the
association of genetic algorithms and
other optimization algorithms in hybrid
systems. Recently there has been consid-
erable interest in creating hybrids of ge-
netic algorithms and expert systems or
neural networks. If a particularly com-
plex problem requires optimization and
either decision-support or pattern-recog-
nition processes, then using a hybrid sys-
tem makes sense. For example, neural
networks and genetic algorithms have
been used to train networks and have
achieved performance levels exceeding
that of the commonly used back-propa-
gation model. GAS have also been used
to select the optimal configurations for
neural networks, such as learning rates
and the number of hidden units and lay-
ers. By the end of the century, hybrid GA
neural networks will have made signifi-
cant progress with some currently in-

42 COMPUTER

tractable machine learning problems.
Promising domains include autonomous
vehicle control, signal processing, and in-
telligent process control.

G enetic algorithms are robust,
adaptive search techniques that
may be immediately tailored to

real problems. The two major trends in
future environments will be the exploita-
tion of parallel GAS and the program-
ming of hybrid applications linking GAS
with neural networks, expert systems,
and traditional utilities such as spread-
sheets and databases.

Acknowledgments
We thank Lawrence Davis, Darrel Whitley,

and Nicol Schraudolph for recommending GA
programming environments for us to survey.
We also thank Frank Hoffmeister, Hans-
Michael Voigt, and Joachim Born for their ad-
vice. Finally, we acknowledge our colleagues
Jason Kingdon and Suran Goonatilake for
commenting on early drafts of this article.

References
1. J.H. Holland, Adapiaiion in Natural and

Artificial Systems, Univ. of Michigan Press,
Ann Arbor, Mich., 1975.

2. D.E. Goldberg, Genetic Algorithms in
Search, Optimization and Machine Learn-
ing, Addison-Wesley, Reading, Mass.,
1989.

3. K.A. DeJong, A n Analysis of the Behavior
of a Class of Genetic Adaptive Systems,
doctoral dissertation, Univ. of Michigan,
Ann Arbor, Mich., 1975.

4. J.J. Grefenstette, “Genesis: A System for
Using Genetic Search Procedures,” Proc.
ConJ Intelligent Systems and Machines,
1984, pp. 161-165.

5. L. Davis, Handbook of Genetic Algo-
rithms, Van Nostrand Reinhold, New
York, 1991.

6. H. Muhlenbein, “Parallel Genetic Algo-
rithms, Population Genetics and Combi-
natorial Optimization,” Proc. Third Int’l
Con$ Genetic Algorithms, Morgan Kauf-
mann, San Mateo, Calif., 1989, pp. 416-421.

7. M. Gorges-Schleuter, “Asparagos: An
Asynchronous Parallel Genetic Optimisa-
tion Strategy,” Proc. Third Int’l Con5 Ge-
netic Algorithms, Morgan Kaufmann, San
Mateo, Calif., 1989, pp. 422-427.

June 1994

8. H. Miihlenbein, “Evolution in Time and
Space - The Parallel Genetic Algo-
rithm,” in Foundations of Genetic Algo-
rithms, G. Rawlins, ed., Morgan Kauf-
mann, San Mateo, Calif., 1991, pp.
316-337.

9. R. Tanese, “Distributed Genetic Algo-
rithms,” Proc. Third Int’l Conf: Genetic Al-
gorithms, Morgan Kaufmann, San Mateo,
Calif., 1989, pp. 434-440.

10. I. Rechenberg, Evolutionsstrategie: Opti-
mierung technischer Systeme nach Prinzip-
ien der biologischen Evolution [Evolu-
tionary Strategy: Optimization of Technical
Systems According to the Principles of Bi-
ological Evolution], Frommann-Holzboog
Verlag, Stuttgart, Germany, 1973.

11. H.P. Schwefel, “Numerische Optimierung
von Computer-Modellen mittels der Evo-
lutionsstrategie” [Numerical Optimization
of Computer Models by Means of the Evo-
lutionary Strategy], Interdisciplinary Sys-
tems Research, Vol. 26, Birkauser, Basel,
Switzerland, 1977.

12. F. Hoffmeister and T. Back, “Genetic Al-
gorithms and Evolution Strategies: Simi-
larities and Differences,” Tech. Report
“Grune Reihe,” No. 365, Dept. of Com-
puter Science, Univ. of Dortmund, Ger-
many, 1990.

13. F. Hoffmeister, “The User’s Guide to Es-
capade 1.2: A Runtime Environment for
Evolution Strategies,” Dept. of Computer
Science, Univ. of Dortmund, Germany,
1991.

14. D. Whitley and J. Kauth, “Genitor: A Dif-
ferent Genetic Algorithm,” Proc. Rocky
Mountain Con$ Artificial Intelligence,
1988, pp. 118-130.

15. N.N. Schraudolph and J.J. Grefenstette,
“A User’s Guide to GAUCSD 1.2,” Com-
puter Science and Eng. Dept., Univ. of
California, San Diego, 1991.

16. H.M. Voigt, J. Born, and J. Treptow, “The
Evolution Machine Manual - V 2.1,” Inst.
for Informatics and Computing Tech-
niques, Berlin, 1991.

17. M. Hughes, “Genetic Algorithm Work-
bench Documentation,” Cambridge Con-
sultants, Cambridge, UK, 1989.

18. G. Robbins, “Engeneer - The Evolution
of Solutions,” Proc. Fifth Ann. Seminar
Neural Networks and Genetic Algorithms,
IBC Technical Services Ltd., London,
1992, pp. 218-232.

19. NASA Johnson Space Flight Center,
“Splicer - A Genetic Tool for Search and
Optimization,” Genetic Algorithm Digest,
Vol. 5, Issue 17,1991, p. 4.

Jose L. Ribeiro Filho is a research staff mem-
ber in the Nucleo de Computa@o EletrBnica
at the Universidade Federal do Rio de Janeiro,
Brazil. His research interests include computer
architectures, parallel processing, communi-
cation systems, and optimization techniques
such as genetic algorithms.

Ribeiro Filho received an MS in computer
science in 1989 from the Federal University of
Rio de Janeiro and is now working on a PhD
at University College London.

Philip C. Treleaven is a professor of computer
science at University College London. His re-
search interests are in neural computing, com-
puting applications in finance, and fifth-gen-
eration computers for artificial intelligence.
He has consulted for IBM, DEC, GEC, Fu-
jitsu, Mitsubishi, Philips, Siemens, and Thom-
son, and acted as adviser to government min-
isters in Japan, Germany, France, Korea, and
other countries. Among the European collab-
orative research projects he is involved with
is the Galatea neural computing project.

Cesare Alippi is working on a PhD in artifi-
cial intelligence at Politecnico di Milano,
where he is analyzing the sensitivity of neural
networks to neural value quantization. His
other research interests include genetic algo-
rithms and fault tolerance. Previously he was
a researcher in the Department of Computer
Science at University College London. Alippi
received a BS degree in electronic engineer-
ing from Politecnico di Milano in 1990.

Readers can contact Ribeiro Filho at the
Department of Computer Science, University
College London, Gower St., London WClE
6BT, UK; e-mail j.ribeirofilho@cs.ucl.ac.uk.

43

mailto:j.ribeirofilho@cs.ucl.ac.uk

