
2010-11-08

1

Heuristic Algorithms for

C bi t i l O ti i ti P bl

Heuristic Algorithms for

C bi t i l O ti i ti P bl

CUGS Advanced CourseCUGS Advanced Course

Combinatorial Optimization ProblemsCombinatorial Optimization Problems

Petru Eles and Zebo Peng

Embedded Systems Laboratory (ESLAB)
Linköping University

Petru Eles and Zebo Peng

Embedded Systems Laboratory (ESLAB)
Linköping University

ObjectivesObjectives

 Introduction to combinatorial optimization problems.

 Basic principles of heuristic techniques.

 Modern heuristic algorithms:

 Simulated annealing.

 Tabu search.

 Genetic algorithms.

 Evaluation of heuristic algorithms.

22Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Evaluation of heuristic algorithms.

 Application of heuristic techniques to design automation
and software engineering.

2010-11-08

2

Course OrganizationCourse Organization

 Introductory lectures
 Lectures in 3 blocks.

• The future time slots?• The future time slots?

 Mostly on principles and basic algorithms.

 Project part:
 Implementation of one or two heuristic algorithms.

 You can select the application area, e.g., related to

33Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

pp , g ,
your current research topic.

 Documentation of the implementation work in a term
paper.

 Presentation of the results in a common seminar.

Reference LiteratureReference Literature

 C. R. Reeves, "Modern Heuristic Techniques for
Combinatorial Problems," Blackwell Scientific
P bli ti 1993Publications, 1993.

 Z. Michalewicz, "Genetic Algorithms + Data Structures
= Evolution Programs" Spinger-Verlag, 1992.

 A. H. Gerez, "Algorithms for VLSI Design Automation,"
John Wiley & Sons, 1999.

44Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

2010-11-08

3

Additional PapersAdditional Papers

 A. Colorni et al., “Heuristics from Nature for Hard
Combinatorial Optimization Problems,” Int. Trans.
Operations Research Vol 3 No 1 1996Operations Research, Vol. 3, No. 1, 1996.

 S. Kirkpatrick et al., “Optimization by Simulated
Annealing,” Science, Vol. 220, No. 4598, 1983.

 … (to be distributed in each lecture block).

L

55Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Lecture notes.

Lecture ILecture I

 Combinatorial optimization

 Overview of optimization
heuristics

 Neighborhood search

66Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Evaluation of heuristics

2010-11-08

4

IntroductionIntroduction

 Many computer science problems deal with the choice
of a best set of parameters to achieve some goal.

E Pl t d ti bl i VLSI d iEx. Placement and routing problem in VLSI design:

 Given a set of VLSI cells, with ports on the boundaries,
and a collection of nets, which are sets of ports that
need to be wired together

 Find a way to place the cells and run the wires so that
the total wiring distance is minimized and each wire is

77Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

g
shorter than a given constant.

Placement and RoutingPlacement and Routing

A

CB

88Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

CB

2010-11-08

5

Design Space ExplorationDesign Space Exploration

 The majority of design space exploration tasks can be viewed
as optimization problems:

To findTo find
 the architecture (type and number of processors, memory modules,

and communication blocks, as well as their interconnections),

 the mapping of functionality onto the architecture components, and

 the schedules of basic functions and communications,

such that

99Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 a cost function (in terms of implementation cost, performance,
power, etc.) is minimized; and

 a set of constraints are satisfied.

Mathematical OptimizationMathematical Optimization
 The optimization problems can usually be formulated as to

Minimize f(x)
Subject to gi(x)  bi; i = 1, 2, ..., m;

where
x is a vector of decision variables;
f is the cost (objective) function;
gi’s are a set of constraints.

 If f and gi’s are linear functions, we have a Linear

1010Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

a d gi s a e ea u ct o s, e a e a ea
Programming problem.

 LP problems can be solved by, e.g., the simplex algorithm,
which is an exact method, i.e., it will always identify the
optimal solution if it exists.

2010-11-08

6

Type of SolutionsType of Solutions

 A solution to an optimization problem specifies the
values of the decision variables, x, and therefore also
the value of the objective function f(x)the value of the objective function, f(x).

 A feasible solution satisfies all constraints.

 An optimal solution is feasible and gives the best
objective function value.

 A near-optimal solution is feasible and provides a
superior objective function value but not necessarily

1111Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

superior objective function value, but not necessarily
the best.

Combinatorial Optimization (CO)Combinatorial Optimization (CO)

 There are two types of optimization problems:
 Continuous, with an infinite number of feasible

solutions;

 Combinatorial, with a finite number of feasible solutions.

 In an CO problem, the decision variables are discrete,
i.e., where the solution is a set, or a sequence, of
integers or other discrete objects.

Ex System partitioning can be formulated as follows:

1212Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Ex. System partitioning can be formulated as follows:

Given a graph with costs on its edges, partition the
nodes into k subsets no larger than a given maximum
size, to minimize the total cost of the cut edges.

2010-11-08

7

The System Partitioning ProblemThe System Partitioning Problem

5

35

2

45

5

35

5

5665

20

40

15

A feasible solution for the k-way partitioning can be

8

35

3 4

35

624 6723

Two-way partitioning

1313Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

represented as:

xi = j; j  {1, 2, ..., k}, i = 1, 2, ..., n.

Features of CO ProblemsFeatures of CO Problems

 Most CO problems, e.g., system partitioning with
constraints, for digital system designs are NP-compete.

 The time needed to solve an NP-compete problem grows The time needed to solve an NP-compete problem grows
exponentially with respect to the problem size n.

 For example, to enumerate all feasible solutions for a
scheduling problem (all possible permutation), we have:
 20 tasks in 1 hour (assumption);

 21 tasks in 20 hour;

1414Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 22 tasks in 17.5 days;

 ...

 25 tasks in 6 centuries.

2010-11-08

8

An Exact Approach to COAn Exact Approach to CO

 Many CO problems can be formulated as an Integer
Linear Programming (ILP) problem, and solved by an
ILP solverILP solver.

 It is inherently more difficult to solve an ILP problem
than the corresponding Linear Programming problem.

 Because there is no derivative information and the
surface are not smooth.

1515Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 The size of problem that can be solved successfully by
ILP algorithms is an order of magnitude smaller than
the size of LP problems that can be easily solved.

Simple Simple vsvs Hard Problems Hard Problems

 Few decision variables

 Independent variables

 Many decision variables

 Dependent variables Independent variables

 Single objective

 Objective easy to
calculate (additive)

 No or light constraints

 Dependent variables

 Multi objectives

 Objective difficult to
calculate

 Severely constraints

1616Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Feasibility easy to
determine

 Deterministic

 Feasibility difficult to
determine

 Stochastic

2010-11-08

9

Approach to COApproach to CO

 Why not solve the corresponding LP and round the
solutions to the closest integer?

Ex if x = 2 75 x will be set of 3 Ex. if x1 = 2,75, x1 will be set of 3.

 This will be plausible if the solution is expected to
contain large integers and therefore is insensitive to
rounding.

 Otherwise, rounding could be as hard as solving the

1717Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

original problem from scratch, since rounding does not
usually even give a feasible solution!

The RoundingThe Rounding--Off ProblemOff Problem

Ex. To maximize f(x1, x2) = 5x1+8x2

subject to x1 + x2 ≤ 6,

5 +9 ≤ 455x1 +9x2≤ 45,

x1, x2 ≥ 0, and be integers.

Continuous
optimum

Round off Nearest
feasible
point

Integer
optimum

1818Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

x1 2.25 2 2 0

x2 3.75 4 3 5

f 41.25 Infeasible
solution

34 40

2010-11-08

10

The Traveling Salesman ProblemThe Traveling Salesman Problem

A salesman wishes to find a route which visits each of n
cities once and only once at minimal cost.

8
13

20
48 7

24

17

14
8

1
5

3
47

2

6

1919Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

A feasible solution can be represented as a
permutation of the numbers from 1 to n.
The size of the solution space is therefore (n - 1)!

ILP Formulation of TSPILP Formulation of TSP

A solution can be expressed by:

xij = 1 if he goes from city i to j, with Cij as cost;

0 th i0 otherwise.

The problem can be formulated as:


 

n

i

n

j
ijij xc

1 1

 minimize

) 21(1 , ...,n, jx
n

ij 

1

1

1

1

1

xij

subject to

2020Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

) 2121(0

) 21(1
1

1

, ..., n, , ...,n; j, ix

, ...,n, ix

ij

n

j
ij

i






 1
1

(Each city should be visited once and only once.)

2010-11-08

11

Additional TSP Constraints Additional TSP Constraints

12

To avoid disjoint sub-tours, (2n - 1) additional constraints
must be added.

Ex

3
47

6

2121Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Ex.

.14,73,71,74,63,61,64,23,21,2  xxxxxxxxx

The BranchThe Branch--andand--Bound ApproachBound Approach

 Traverse an implicit tree to find the best leaf (solution).

4-City TSP
0

y

0 1 2 3

0 3 6 41

0 40 5

0 4

0

1

2

3

3

40

41

0

1

2222Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

0
3

4
23

Total cost of this solution = 88

2010-11-08

12

BranchBranch--andand--Bound ExBound Ex
0 1 2 3

0 3 6 41

0 40 5

0 4

0

0

1

2

3 {0}

 Low-bound on the cost function.

 Search strategy

0

{0,1}

{0,1,2}

L  0

L  3

{0,1,3}

{0,2}
L  6

{0,2,1}

{0,3}
L  41

{0,2,3} {0,3,1} {0,3,2}

2323Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

{0,1,2,3}
L = 88

L  43

{0,1,3,2}

L  8

L = 18

L  46

{0,2,1,3}
L = 92

{0,2,3,1}

L  10

L = 18
{0,3,1,2} {0,3,2,1}

L  46 L  45

L = 92 L = 88

Some ConclusionsSome Conclusions

 The integer programming problem is inherently more
difficult to solve than the simple linear programming
problemproblem.

 We need heuristics, which seek near-optimal solutions
at a reasonable computational cost without being able
to guarantee either feasibility or optimality.

 Heuristic techniques are widely used to solve many
NP-hard problems.

2424Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

a d p ob e s

2010-11-08

13

Lecture ILecture I

 Combinatorial optimization

 Overview of optimization
heuristics

 Neighborhood search

2525Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Evaluation of heuristics

Heuristic: adj. & n.Heuristic: adj. & n.

Webster’s 3rd New International Dictionary:

Greek heuriskein: to find.

“providing aid or direction in the solution of a problem but
otherwise unjustified or incapable of justification.”

“of or relating to exploratory problem-solving techniques that
utilize self-educating techniques to improve performance.”

2626Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

The Concise Oxford Dictionary:

“serving to discover; (of computer problem-solving)
proceeding by trial and error.”

2010-11-08

14

Why HeuristicsWhy Heuristics

 Many exact algorithms involve a huge amount of
computation effort.

 The decision variables have frequently complicated The decision variables have frequently complicated
interdependencies.
 To improve a design, e.g., one might have to simultaneously change

the values of several parameters.

 We have often nonlinear cost functions and constraints, even
no mathematical functions.

Ex The cost function f can for example be defined by a computer

2727Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Ex. The cost function f can, for example, be defined by a computer
program (e.g., for power estimation).

 Approximation of the model for optimization.
 A near optimal solution is usually good enough and could be even

better than the theoretical optimum.

Heuristic Approaches to COHeuristic Approaches to CO
Problem specific Generic methods

• Clustering
• List scheduling

• Branch and bounduc
tiv

e

• List scheduling
• Left-edge algorithm

• Divide and conquer

C
on

st
r

at
io

na
l

ov
em

en
t

• Kernighan-Lin
• Neighborhood search

Si l t d li

2828Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

T
ra

ns
fo

rm
a

(I
te

ra
tiv

e
im

pr
o e g a

algorithm
• Simulated annealing
• Tabu search
• Genetic algorithms

2010-11-08

15

List SchedulingList Scheduling
 Resource-constrained (RC) scheduling problem:

To find a (optimal) schedule for a set of operations that obeys the
data dependency and utilizes only the available functional units.

 For each control step the operations that are available to be scheduled For each control step, the operations that are available to be scheduled
are kept in a list.

 The list is ordered by some priority function:

The length of path from the operation to the end of the block;

Mobility: the number of control steps from the earliest to the latest
feasible control step.

 Each operation on the list is scheduled one by one if the resources it
needs are free; otherwise it is deferred to the next control step

2929Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

needs are free; otherwise it is deferred to the next control step.

 Until the whole schedule is constructed, no information about the
schedule length is available.

11

22

List Scheduling ExampleList Scheduling Example

++ ** **++++
11 22 33 44 55

++ 11
**

33

++ 44 55

C
on

tr
ol

 S
te

ps
C

on
tr

ol
 S

te
ps

33

55

44

22++

++

**

--

**

++
66 77 88

99 1010

++ 22

++ **

-- 66

++ 88
**

99

3030Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

55

66 ++ 77
**

1010

2010-11-08

16

The KernighanThe Kernighan--Lin Algorithm (KL)Lin Algorithm (KL)

 A graph is partitioned into two clusters of arbitrary
size, by minimizing a given objective function.

 KL is based on an iterative partitioning strategy: KL is based on an iterative partitioning strategy:
 The algorithm starts with two arbitrary clusters C1 and

C2.

 The partitioning is then iteratively improved by moving
nodes between the clusters.

 At each iteration, the node which produces the minimal
value of the cost function is moved; this value can

3131Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

value of the cost function is moved; this value can,
however, be greater than the value before moving the
node.

KL Execution Trace ExampleKL Execution Trace Example

165000

170000

150000

155000

160000

165000

C
os

t
fu

nc
tio

n
va

lu
e

3232Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

140000

145000

0 5 10 15 20 25 30 35 40 45

Number of iterations

2010-11-08

17

BranchBranch--andand--Bound ExBound Ex
0 1 2 3

0 3 6 41

0 40 5

0 4

0

0

1

2

3 {0}

 Low-bound on the cost function.

 Search strategy

0

{0,1}

{0,1,2}

L  0

L  3

{0,1,3}

{0,2}
L  6

{0,2,1}

{0,3}
L  41

{0,2,3} {0,3,1} {0,3,2}

3333Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

{0,1,2,3}
L = 88

L  43

{0,1,3,2}

L  8

L = 18

L  46

{0,2,1,3}
L = 92

{0,2,3,1}

L  10

L = 18
{0,3,1,2} {0,3,2,1}

L  46 L  45

L = 92 L = 88

Lecture ILecture I

 Combinatorial optimization

 Overview of optimization
heuristics

 Neighborhood search

3434Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Evaluation of heuristics

2010-11-08

18

Search as HeuristicsSearch as Heuristics

 Search  the term used for constructing or improving
solutions to obtain the optimum or near-optimum.

S l ti E di (ti th l ti) Solution  Encoding (representing the solution).

 Neighborhood  Nearby solutions (in the encoding or
solution space).

 Move  Transforming current solution to another
(usually neighboring) solution.

E l i T h l i ’ f ibili d

3535Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Evaluation  To compute the solutions’ feasibility and
objective function value.

 Local search  based on greedy heuristic (local
optimizers).

Neighborhood Search MethodNeighborhood Search Method
 Step 1(Initialization)

(A) Select a starting solution xnow  X.
(B) xbest = xnow, best_cost = c(xbest).

 Step 2 (Choice and termination)
Choose a solution xnext  N(xnow).
If no solution can be selected or the terminating criteria apply, then the

method stop.

 Step 3 (Update)
R t now next

3636Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Re-set xnow = xnext.
If c(xnow) < best_cost, perform Step 1(B).
Goto Step 2.

N(x) denotes the neighborhood of x, which is a set of solutions
reachable from x by a simple transformation (move).

2010-11-08

19

Neighborhood Search MethodNeighborhood Search Method

 The neighborhood search method is very attractive for many CO
problems as they have a natural neighborhood structure, which
can be easily defined and evaluated.

E Graph partitioning s apping t o nodes Ex. Graph partitioning: swapping two nodes.

5

8

35

2

3

45

5

4
35

5

6

5665

24

20

40

67

15

23

3737Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

5

8

35

2

3

45

5

4

35

5

6

5665

24

20

40

67

15

23

The Descent MethodThe Descent Method
 Step 1(Initialization)

 Step 2 (Choice and termination)
Choose xnext  N(xnow) such that c(xnext) < c(xnow) and terminate if noChoose x  N(x) such that c(x) < c(x), and terminate if no

such xnext can be found.

 Step 3(Update)

C t

 The descent process can easily be stuck at a local
optimum:

3838Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Cost

Solutions

2010-11-08

20

Many Local Optima Many Local Optima

21

23

25

27

3939Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH
2 1

2,7

3,3

3,9

45,
65,

8

6

15

17

19

Dealing with Local OptimalityDealing with Local Optimality

 Enlarge the neighborhood.

 Start with different initial solutions.
T ll “ hill ” To allow “uphill moves”:
 Simulated annealing
 Tabu search

Cost

4040Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Cost

Solutions
X

2010-11-08

21

Heuristics from NatureHeuristics from Nature

 Model (loosely) a phenomenon existing in nature,
derived from physics, biology and social sciences:

Annealing Annealing.

 Evolution.

 Usually non-deterministic, including some randomness
features.

 Often has implicit parallel structure or enable parallel

4141Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

implementation.

Some Heuristics from NatureSome Heuristics from Nature

 Genetic algorithms  evolution process of nature.

 Simulated annealing  heat treatment of materials.

 Tabu search  search and intelligent uses of memory.

 Neural nets  mimic biological neurons.

 Ant system  ant colony.

 Simulating the behavior of a set of agents that
cooperate to solve an optimization problem by means

4242Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

of very simple communications.

 Ants leave trails on paths they visit, which will be
followed by other ants, probabilistically.

 The shorter paths will be enhanced by many ants.

2010-11-08

22

Advantages of MetaAdvantages of Meta--HeuristicsHeuristics

 Very flexible

 Often global optimizersg p

 Often robust to problem size, problem instance and
random variables

 May be the only practical alternative

4343Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Lecture ILecture I

 Combinatorial optimization

 Overview of optimization
heuristics

 Neighborhood search

4444Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

 Evaluation of heuristics

2010-11-08

23

Evaluation of HeuristicsEvaluation of Heuristics

 It is usually very difficult to state how close a heuristic
solution is to the optimum.

 One technique is to find a lower bound which is as
close as possible to the optimal solution for
minimization problem.

 Such lower bound may usually be found by relaxation.

4545Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Evaluation ApproachEvaluation Approach

Cost function value

• Problem specific

Optimal solution to
the minimization

bl

• Problem-specific
• Neighborhood search
• Simulated annealing
• Tabu search
• Genetic algorithms

R l ti

4646Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

problem• Relaxations:
•Linear programming
•Lagrangean Lower bound

2010-11-08

24

SummarySummary

 Combinatorial optimization is the mathematical study
of finding an optimal arrangement, grouping, ordering,
or selection of discrete objects usually finite inor selection of discrete objects usually finite in
numbers.

- Lawler, 1976

 In practice, combinatorial problems are often very
difficult to solve, because there is no derivative
i f ti d th f t th

4747Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

information and the surfaces are not smooth.

 We need therefore to develop heuristic algorithms that
seek near-optimal solutions.

