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ObjectivesObjectives

 Introduction to combinatorial optimization problems. 

 Basic principles of heuristic techniques. 

 Modern heuristic algorithms:

 Simulated annealing.

 Tabu search.

 Genetic algorithms.

 Evaluation of heuristic algorithms.
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 Evaluation of heuristic algorithms. 

 Application of heuristic techniques to design automation 
and software engineering.
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Course OrganizationCourse Organization

 Introductory lectures
 Lectures in 3 blocks.

• The future time slots?• The future time slots?

 Mostly on principles and basic algorithms.

 Project part:
 Implementation of one or two heuristic algorithms.

 You can select the application area, e.g., related to 
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pp , g ,
your current research topic.

 Documentation of the implementation work in a term 
paper.

 Presentation of the results in a common seminar.

Reference LiteratureReference Literature

 C. R. Reeves, "Modern Heuristic Techniques for 
Combinatorial Problems," Blackwell Scientific 
P bli ti 1993Publications, 1993. 

 Z. Michalewicz, "Genetic Algorithms + Data Structures 
= Evolution Programs" Spinger-Verlag, 1992. 

 A. H. Gerez, "Algorithms for VLSI Design Automation," 
John Wiley & Sons, 1999.
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Additional PapersAdditional Papers

 A. Colorni et al., “Heuristics from Nature for Hard 
Combinatorial Optimization Problems,” Int. Trans. 
Operations Research Vol 3 No 1 1996Operations Research, Vol. 3, No. 1, 1996.

 S. Kirkpatrick et al., “Optimization by Simulated 
Annealing,” Science, Vol. 220, No. 4598, 1983.

 … (to be distributed in each lecture block).

L
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 Lecture notes.

Lecture ILecture I

 Combinatorial optimization 

 Overview of optimization 
heuristics

 Neighborhood search
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 Evaluation of heuristics
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IntroductionIntroduction

 Many computer science problems deal with the choice 
of a best set of parameters to achieve some goal.

E Pl t d ti bl i VLSI d iEx. Placement and routing problem in VLSI design:

 Given a set of VLSI cells, with ports on the boundaries, 
and a collection of nets, which are sets of ports that 
need to be wired together

 Find a way to place the cells and run the wires so that 
the total wiring distance is minimized and each wire is 
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g
shorter than a given constant.

Placement and RoutingPlacement and Routing

A

CB
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Design Space ExplorationDesign Space Exploration

 The majority of design space exploration tasks can be viewed 
as optimization problems:

To findTo find
 the architecture (type and number of processors, memory modules, 

and communication blocks, as well as their interconnections),

 the mapping of functionality onto the architecture components, and 

 the schedules of basic functions and communications,

such that
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 a cost function (in terms of implementation cost, performance, 
power, etc.) is minimized; and 

 a set of constraints are satisfied.

Mathematical OptimizationMathematical Optimization
 The optimization problems can usually be formulated as to

Minimize f(x)
Subject to gi(x)  bi; i = 1, 2, ..., m;

where
x is a vector of decision variables;
f is the cost (objective) function;
gi’s are a set of constraints.

 If f and gi’s are linear functions, we have a Linear 
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a d gi s a e ea u ct o s, e a e a ea
Programming problem. 

 LP problems can be solved by, e.g., the simplex algorithm, 
which is an exact method, i.e., it will always identify the 
optimal solution if it exists.



2010-11-08

6

Type of SolutionsType of Solutions

 A solution to an optimization problem specifies the 
values of the decision variables, x, and therefore also 
the value of the objective function f(x)the value of the objective function, f(x).

 A feasible solution satisfies all constraints.

 An optimal solution is feasible and gives the best 
objective function value.

 A near-optimal solution is feasible and provides a 
superior objective function value but not necessarily
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superior objective function value, but not necessarily 
the best. 

Combinatorial Optimization (CO)Combinatorial Optimization (CO)

 There are two types of optimization problems:
 Continuous, with an infinite number of feasible 

solutions;

 Combinatorial, with a finite number of feasible solutions.

 In an CO problem, the decision variables are discrete, 
i.e., where the solution is a set, or a sequence, of 
integers or other discrete objects.

Ex System partitioning can be formulated as follows:
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Ex. System partitioning can be formulated as follows:

Given a graph with costs on its edges, partition the 
nodes into k subsets no larger than a given maximum 
size, to minimize the total cost of the cut edges.
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The System Partitioning ProblemThe System Partitioning Problem
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A feasible solution for the k-way partitioning can be 
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Two-way partitioning
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represented as:

xi = j;   j  {1, 2, ..., k},  i = 1, 2, ..., n.

Features of CO ProblemsFeatures of CO Problems

 Most CO problems, e.g., system partitioning with 
constraints, for digital system designs are NP-compete.

 The time needed to solve an NP-compete problem grows The time needed to solve an NP-compete problem grows 
exponentially with respect to the problem size n.

 For example, to enumerate all feasible solutions for a 
scheduling problem (all possible permutation), we have: 
 20 tasks in 1 hour (assumption);

 21 tasks in 20 hour;
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 22 tasks in 17.5 days;

 ...

 25 tasks in 6 centuries.
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An Exact Approach to COAn Exact Approach to CO

 Many CO problems can be formulated as an Integer 
Linear Programming (ILP) problem, and solved by an 
ILP solverILP solver.

 It is inherently more difficult to solve an ILP problem 
than the corresponding Linear Programming problem. 

 Because there is no derivative information and the 
surface are not smooth.
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 The size of problem that can be solved successfully by 
ILP algorithms is an order of magnitude smaller than 
the size of LP problems that can be easily solved.

Simple Simple vsvs Hard Problems Hard Problems 

 Few decision variables

 Independent variables

 Many decision variables

 Dependent variables Independent variables

 Single objective

 Objective easy to 
calculate (additive)

 No or light constraints

 Dependent variables

 Multi objectives

 Objective difficult to 
calculate

 Severely constraints
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 Feasibility easy to 
determine

 Deterministic

 Feasibility difficult to 
determine 

 Stochastic
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Approach to COApproach to CO

 Why not solve the corresponding LP and round the 
solutions to the closest integer?

Ex if x = 2 75 x will be set of 3 Ex. if x1 = 2,75, x1 will be set of 3.

 This will be plausible if the solution is expected to 
contain large integers and therefore is insensitive to 
rounding.

 Otherwise, rounding could be as hard as solving the 
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original problem from scratch, since rounding does not 
usually even give a feasible solution!

The RoundingThe Rounding--Off ProblemOff Problem

Ex. To maximize f(x1, x2) = 5x1+8x2

subject to  x1 + x2  ≤ 6,

5 +9 ≤ 455x1 +9x2≤ 45,

x1, x2 ≥ 0, and be integers.

Continuous 
optimum

Round off Nearest 
feasible 
point

Integer 
optimum

1818Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

x1 2.25 2 2 0

x2 3.75 4 3 5

f 41.25 Infeasible 
solution

34 40
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The Traveling Salesman ProblemThe Traveling Salesman Problem

A salesman wishes to find a route which visits each of n
cities once and only once at minimal cost.
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A feasible solution can be represented as a 
permutation of the numbers from 1 to n.
The size of the solution space is therefore (n - 1)!

ILP Formulation of TSPILP Formulation of TSP

A solution can be expressed by: 

xij = 1 if he goes from city i to j, with Cij as cost; 

0 th i0 otherwise.

The problem can be formulated as:


 

n

i

n

j
ijij xc

1 1

 minimize

) 21(    1 , ...,n, jx
n

ij 

1

1

1

1

1

xij

subject to

2020Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

) 2121(    0

) 21(    1
1

1

, ..., n, , ...,n; j, ix

, ...,n, ix

ij

n

j
ij

i






 1
1

(Each city should be visited once and only once.)
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Additional TSP Constraints Additional TSP Constraints 

12

To avoid disjoint sub-tours, (2n - 1) additional constraints 
must be added.

Ex

3
47

6
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Ex.

.14,73,71,74,63,61,64,23,21,2  xxxxxxxxx

The BranchThe Branch--andand--Bound ApproachBound Approach

 Traverse an implicit tree to find the best leaf (solution).

4-City TSP
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Total cost of this solution = 88
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BranchBranch--andand--Bound ExBound Ex
0        1         2        3

0        3         6       41

0        40       5 

0        4  

0

0

1

2

3 {0}

 Low-bound on the cost function.

 Search strategy

0 
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L  0

L  3

{0,1,3}

{0,2}
L  6

{0,2,1}

{0,3}
L  41
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{0,1,2,3}
L = 88

L  43

{0,1,3,2}

L  8

L = 18

L  46

{0,2,1,3}
L = 92

{0,2,3,1}

L  10

L = 18
{0,3,1,2} {0,3,2,1}

L  46 L  45

L = 92 L = 88

Some ConclusionsSome Conclusions

 The integer programming problem is inherently more 
difficult to solve than the simple linear programming 
problemproblem.

 We need heuristics, which seek near-optimal solutions 
at a reasonable computational cost without being able 
to guarantee either feasibility or optimality.

 Heuristic techniques are widely used to solve many 
NP-hard problems.
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a d p ob e s
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Lecture ILecture I

 Combinatorial optimization 

 Overview of optimization 
heuristics

 Neighborhood search
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 Evaluation of heuristics

Heuristic: adj. & n.Heuristic: adj. & n.

Webster’s 3rd New International Dictionary:

Greek heuriskein: to find.

“providing aid or direction in the solution of a problem but 
otherwise unjustified or incapable of justification.”

“of or relating to exploratory problem-solving techniques that 
utilize self-educating techniques to improve performance.”
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The Concise Oxford Dictionary:

“serving to discover; (of computer problem-solving) 
proceeding by trial and error.”
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Why HeuristicsWhy Heuristics

 Many exact algorithms involve a huge amount of 
computation effort.

 The decision variables have frequently complicated The decision variables have frequently complicated 
interdependencies. 
 To improve a design, e.g., one might have to simultaneously change 

the values of several parameters.

 We have often nonlinear cost functions and constraints, even 
no mathematical functions.

Ex The cost function f can for example be defined by a computer
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 Ex. The cost function f can, for example, be defined by a computer 
program (e.g., for power estimation).

 Approximation of the model for optimization.
 A near optimal solution is usually good enough and could be even 

better than the theoretical optimum.

Heuristic Approaches to COHeuristic Approaches to CO
Problem specific Generic methods

• Clustering
• List scheduling

• Branch and bounduc
tiv

e

• List scheduling
• Left-edge algorithm

• Divide and conquer
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• Kernighan-Lin      
• Neighborhood search

Si l t d li
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algorithm
• Simulated annealing
• Tabu search
• Genetic algorithms
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List SchedulingList Scheduling
 Resource-constrained (RC) scheduling problem:

To find a (optimal) schedule for a set of operations that obeys the 
data dependency and utilizes only the available functional units.

 For each control step the operations that are available to be scheduled For each control step, the operations that are available to be scheduled 
are kept in a list.

 The list is ordered by some priority function:

The length of path from the operation to the end of the block;

Mobility: the number of control steps from the earliest to the latest 
feasible control step.

 Each operation on the list is scheduled one by one if the resources it 
needs are free; otherwise it is deferred to the next control step
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needs are free; otherwise it is deferred to the next control step.

 Until the whole schedule is constructed, no information about the 
schedule length is available.

11

22

List Scheduling ExampleList Scheduling Example
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The KernighanThe Kernighan--Lin Algorithm (KL)Lin Algorithm (KL)

 A graph is partitioned into two clusters of arbitrary 
size, by minimizing a given objective function.

 KL is based on an iterative partitioning strategy: KL is based on an iterative partitioning strategy:
 The algorithm starts with two arbitrary clusters C1 and 

C2. 

 The partitioning is then iteratively improved by moving 
nodes between the clusters.

 At each iteration, the node which produces the minimal 
value of the cost function is moved; this value can
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value of the cost function is moved; this value can, 
however, be greater than the value before moving the 
node.

KL Execution Trace ExampleKL Execution Trace Example
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BranchBranch--andand--Bound ExBound Ex
0        1         2        3

0        3         6       41
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 Low-bound on the cost function.

 Search strategy
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{0,1,2,3}
L = 88

L  43

{0,1,3,2}

L  8

L = 18

L  46

{0,2,1,3}
L = 92

{0,2,3,1}

L  10

L = 18
{0,3,1,2} {0,3,2,1}

L  46 L  45

L = 92 L = 88

Lecture ILecture I

 Combinatorial optimization 

 Overview of optimization 
heuristics

 Neighborhood search
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 Evaluation of heuristics
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Search as HeuristicsSearch as Heuristics

 Search  the term used for constructing or improving 
solutions to obtain the optimum or near-optimum.

S l ti E di ( ti th l ti ) Solution  Encoding (representing the solution).

 Neighborhood  Nearby solutions (in the encoding or 
solution space).

 Move  Transforming current solution to another 
(usually neighboring) solution.

E l i T h l i ’ f ibili d
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 Evaluation  To compute the solutions’ feasibility and 
objective function value.

 Local search  based on greedy heuristic (local 
optimizers).

Neighborhood Search MethodNeighborhood Search Method
 Step 1(Initialization)

(A) Select a starting solution xnow  X.
(B) xbest = xnow, best_cost = c(xbest).

 Step 2 (Choice and termination)
Choose a solution xnext  N(xnow).
If no solution can be selected or the terminating criteria apply, then the 

method stop.

 Step 3 (Update)
R t now next

3636Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Re-set xnow = xnext.
If c(xnow) < best_cost, perform Step 1(B). 
Goto Step 2.

N(x) denotes the neighborhood of x, which is a set of solutions 
reachable from x by a simple transformation (move).
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Neighborhood Search MethodNeighborhood Search Method

 The neighborhood search method is very attractive for many CO 
problems as they have a natural neighborhood structure, which 
can be easily defined and evaluated.

E Graph partitioning s apping t o nodes Ex. Graph partitioning: swapping two nodes.
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The Descent MethodThe Descent Method
 Step 1(Initialization)

 Step 2 (Choice and termination)
Choose xnext  N(xnow) such that c(xnext) < c(xnow) and terminate if noChoose x  N(x ) such that c(x ) < c(x ), and terminate if no 

such xnext can be found.

 Step 3(Update)

C t

 The descent process can easily be stuck at a local 
optimum:
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Cost

Solutions
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Many Local Optima Many Local Optima 
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Dealing with Local OptimalityDealing with Local Optimality

 Enlarge the neighborhood.

 Start with different initial solutions.
T  ll  “ hill ” To allow “uphill moves”:
 Simulated annealing
 Tabu search

Cost

4040Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Cost

Solutions
X
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Heuristics from NatureHeuristics from Nature

 Model (loosely) a phenomenon existing in nature, 
derived from physics, biology and social sciences:

Annealing Annealing.

 Evolution.

 Usually non-deterministic, including some randomness 
features.

 Often has implicit parallel structure or enable parallel 
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implementation.

Some Heuristics from NatureSome Heuristics from Nature

 Genetic algorithms  evolution process of nature.

 Simulated annealing  heat treatment of materials.

 Tabu search  search and intelligent uses of memory.

 Neural nets  mimic biological neurons.

 Ant system  ant colony.

 Simulating the behavior of a set of agents that 
cooperate to solve an optimization problem by means 

4242Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

of very simple communications.

 Ants leave trails on paths they visit, which will be 
followed by other ants, probabilistically. 

 The shorter paths will be enhanced by many ants.
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Advantages of MetaAdvantages of Meta--HeuristicsHeuristics

 Very flexible

 Often global optimizersg p

 Often robust to problem size, problem instance and 
random variables

 May be the only practical alternative

4343Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

Lecture ILecture I

 Combinatorial optimization 

 Overview of optimization 
heuristics

 Neighborhood search
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 Evaluation of heuristics
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Evaluation of HeuristicsEvaluation of Heuristics

 It is usually very difficult to state how close a heuristic 
solution is to the optimum.

 One technique is to find a lower bound which is as 
close as possible to the optimal solution for 
minimization problem.

 Such lower bound may usually be found by relaxation.
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Evaluation ApproachEvaluation Approach

Cost function value

• Problem specific

Optimal solution to
the minimization

bl

• Problem-specific
• Neighborhood search
• Simulated annealing
• Tabu search
• Genetic algorithms

R l ti
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problem• Relaxations:
•Linear programming
•Lagrangean Lower bound
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SummarySummary

 Combinatorial optimization is the mathematical study 
of finding an optimal arrangement, grouping, ordering, 
or selection of discrete objects usually finite inor selection of discrete objects usually finite in 
numbers.

- Lawler, 1976

 In practice, combinatorial problems are often very 
difficult to solve, because there is no derivative 
i f ti d th f t th

4747Zebo Peng, IDA, LiTHZebo Peng, IDA, LiTH

information and the surfaces are not smooth.

 We need therefore to develop heuristic algorithms that 
seek near-optimal solutions.


