
2011-01-26

1

Genetic Algorithms:
Introduction and Principles
Genetic Algorithms:

Introduction and Principles

Marcus Schmitz

(Petru Eles)

Marcus Schmitz

(Petru Eles)

2

Outline

 Introduction
 Origin
 Jargon

 Basic Algorithm
 A GA Simulation by Hand
 Mathematical Foundation
 Implementation Issues
 Applications
 Mapping
 Traveling Salesman Problem

 Introduction
 Origin
 Jargon

 Basic Algorithm
 A GA Simulation by Hand
 Mathematical Foundation
 Implementation Issues
 Applications
 Mapping
 Traveling Salesman Problem

2011-01-26

2

3

From Nature to Genetic Algorithms

 Charles R. Darwin (1809-1882)
 The Origin of Species (1859)

• “As natural selection works solely by and
for the good of each being, all corporeal
and mental endowments will tend to
progress towards perfection.”

• Survival of the fittest: Organisms that most
fit to their environment will tend to survive
the struggle for existence. Naturally,
survivors pass on their hereditary
dispositions to off-springs.

 Charles R. Darwin (1809-1882)
 The Origin of Species (1859)

• “As natural selection works solely by and
for the good of each being, all corporeal
and mental endowments will tend to
progress towards perfection.”

• Survival of the fittest: Organisms that most
fit to their environment will tend to survive
the struggle for existence. Naturally,
survivors pass on their hereditary
dispositions to off-springs.

4

From Nature to Genetic Algorithms

 Gregor Mendel (1822-1884)
Father of modern genetics

 Mating experiments with pea
plants

 Mendel’s Laws
• Law of Segregation
• Law of Independent Assortment

 Gregor Mendel (1822-1884)
Father of modern genetics

 Mating experiments with pea
plants

 Mendel’s Laws
• Law of Segregation
• Law of Independent Assortment

2011-01-26

3

5

From Nature to Genetic Algorithms

 Reason for inheritance in organisms is the
cell nucleus

 Chromosome: long, continuous piece of
DNA which carries genes

 Reason for inheritance in organisms is the
cell nucleus

 Chromosome: long, continuous piece of
DNA which carries genes

cell
Nucleus (genetic material in form

chromosomes)
{ { {

Genes

6

From Nature to Genetic Algorithms

 Genetic Algorithms (Rechenberg 1973)
 Mimic the principles of natural selection to

solve search and optimization problems

 Genetic Algorithms (Rechenberg 1973)
 Mimic the principles of natural selection to

solve search and optimization problems

-15
-10

-5
0

5
10

15 -15
-10

-5
0

5
10

15

-1

-0.5

0

Search Space

2011-01-26

4

7

Introduction
 The algorithm requires feedback in form of

a fitness value
 Fitness function (Cost function)

• Some idea of the solution quality to guide search

 Multiple objective optimization

 Multiple solutions are evolved in parallel
 “Communication” through “building blocks” of

solutions

 The algorithm requires feedback in form of
a fitness value
 Fitness function (Cost function)

• Some idea of the solution quality to guide search

 Multiple objective optimization

 Multiple solutions are evolved in parallel
 “Communication” through “building blocks” of

solutions

8

Jargon

 Chromosome: String of genes,
representing a solution candidate

 Population: Set of chromosomes (possible
solutions)

 Gene: Single entry in the chromosome,
parameter of the solution set

 Allele: Value of a gene
 Locus: Gene position in the chromosome
 Genetic operators: Transform current

chromosomes into new chromosomes

 Chromosome: String of genes,
representing a solution candidate

 Population: Set of chromosomes (possible
solutions)

 Gene: Single entry in the chromosome,
parameter of the solution set

 Allele: Value of a gene
 Locus: Gene position in the chromosome
 Genetic operators: Transform current

chromosomes into new chromosomes

2011-01-26

5

9

Jargon: Chromosome, Gene

 String of genes, representing a solution
candidate
 Example: HW/SW Co-Design

 String of genes, representing a solution
candidate
 Example: HW/SW Co-Design

BSB 1

BSB 2

BSB 3

BSB 4

HW

SW

1 0 0 0
BSB1 BSB2 BSB3 BSB4

Ex
ecu

tio
n t

im
e

Fitness: 2,02ms =
1ms + 15us + 5us + 1msHW: 5us

SW: 1ms

HW: 15us
SW: 12ms

HW: 5us
SW: 7ms

HW: 1ms
SW: 1ms

10

The Fundamental Algorithm

begin
t 0
initialize P(t)
evaluate P(t)
while (not termination)
begin

t t + 1
P(t) selection(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

2011-01-26

6

11

Initialize Population

begin
t 0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t t + 1
P(t) select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 0 1 1

0 0 0 1 1

1 1 0 0 1

chromo 2

chromo 1

chromo n

Population P(t)

12

Evaluate Population

begin
t 0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t t + 1
P(t) select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 0 1 1

0 0 0 1 1

1 1 0 0 1

chromo 2

chromo 1

chromo n

Population P(t) fitness

0.08

1.42

0.93

2011-01-26

7

13

Selection

begin
t 0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t t + 1
P(t) select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 0 1 1

0 0 0 1 1

1 1 0 0 1

chromo 2

chromo 1

chromo n

Population P(t) fitness

0.08

1.42

0.93

Copied into the next population (generation).

Selection is randomly performed, with a higher probability of selecting chromosomes of high fitness.
 The number of individuals with high fitness increases from population to population

14

Crossover

begin
t 0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t t + 1
P(t) select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 1 1 1

0 0 0 1 1

1 1 0 0 1chromo 2

chromo 1

chromo n

Population P(t) fitness

Crossover between parent
chromosomes

0 0 0 1 1 0 0 1 1 1

1 0 0 1 1

offspringsCrossover point
(randomly)

1 0 1 1 1

 New solutions are generated from existing ones

2011-01-26

8

15

Mutation

begin
t 0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t t + 1
P(t) select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

0 0 0 1 1

1 1 0 0 1chromo 2

chromo 1

chromo n

Population P(t) fitness

Mutation: Individual genes are randomly manipulated
(with low probability)

1 0 1 1 1

1 0 0 0 1

 New individuals (points in the search space) are visited. Also solutions that would not be reached
through crossover.

16

Algorithm Outline

0 5 6

01 1 01 00

1 1 10 0 0 1

1 1 1 0 0 00

10 0 1 1 0 1

1 1 1

10 0

1 1 0 1

0 0 00

0 1 1 00 11

0 0 11 1 1 00 0 11 1 1 0

point
Crossover 1 2 3 4

1 00 0 0

String 1

String 2

String 3

String 4

String 5

String 6 0 010 0

10

0 1

Parent 1

Parent 2

Child 1

Child 2

Populations

Selection

Insertion

Evaluation

0 11 1 1 01

Q
ua

lit
y

(F
itn

es
s)

Mutate genes

Mutation

Crossover

High

Low

Assign fitness

Low probability

High probability

2011-01-26

9

17

GA Simulation by Hand

5.0)25.0()(2 xxf

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

((x-0.25)*(x-0.25))+0.5

]1..0[),()(xxfxf m (find minimum)

Analytic solution:

25.0m
x

5.02)(' xxf

0)(' m xf

18

Chromosomes: Binary Encoding

 The interval [0..1] is encoded into a 8 bit string: The interval [0..1] is encoded into a 8 bit string:

00000000 0
00000001 0.0039216
00000010 0.0078431

11111111 1

...
...

...

0039216.0
12

01
8

2011-01-26

10

19

Create Initial Population

00000011
11011000
01111111
10001001
00010010

)(tP

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

Fitness Function 5.0)25.0()(2 xxf

20

Selection

00000011
11011000
01111111
10001001
00010010

)(tP

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

21 3 4 5
33% 25% 20% 15% 7%

0 0.33 0.58 10.78 0.93

1. RandFloat(0,1) = 0.21 1
2. RandFloat(0,1) = 0.65 3
3. RandFloat(0,1) = 0.98 5

selected for P(t+1)

2011-01-26

11

21

Crossover (2-point)

11011000
01111111

00010010

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

01111111
00010010

Parents:

01110010
00011111

0.4471
0.1216

x

f(x) = 0.5388
f(x) = 0.5165

Children:

X-over at random point!

P(t+1)

22

Replacement

00000011
11011000
01111111
10001001
00010010

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

01110010
00011111

0.4471
0.1216

f(x) = 0.5388
f(x) = 0.5165

Children:

P(t+1)

2011-01-26

12

23

Second Iteration

01110010
11011000
01111111
00011111
00010010

)1(tP

 0.4471
 0.8471
 0.4980
 0.1216
 0.0706

x

f(x) = 0.5388
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5165
f(x) = 0.5322 2

3

4
1

5

Rank

• Next selection for crossover: 1 and 4
01111111
00011111

0.3755
0.2471

01011111
00111111

f(x) = 0.5158
f(x) = 0.50001

24

Why do GAs work?

00000011
11011000
01111111
00011111
00010010

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5165
f(x) = 0.5322 2

3

4
1

5

Rank

 Relationship between similarities and
high fitness!
 Information to help guide the search

 Relationship between similarities and
high fitness!
 Information to help guide the search

2011-01-26

13

25

Similarity Templates (Schemata)

 Which information is admitted?
 Schemata help to answer this question

 Which information is admitted?
 Schemata help to answer this question

*0000 {00000,10000}matches
111 matches {01110,01110,

11110,11111}

* Don’t care symbol

kl: alternative string

(k+1)l: schemata

(25 = 32)

(35 = 243)

26

Information Amount
 Number of unique schemata in population

Each string is a member of 2l schemata
 Between 2l and n·2l (n: population size)

 Defining length of a schema
Distance between last and first fixed string
position
d(*11*00*) = 6 – 2 = 4

 Order of a schema
Number of 0 and 1 (fixed) positions
O(*11*00*) = 4

 Number of unique schemata in population
Each string is a member of 2l schemata

 Between 2l and n·2l (n: population size)

 Defining length of a schema
Distance between last and first fixed string
position
d(*11*00*) = 6 – 2 = 4

 Order of a schema
Number of 0 and 1 (fixed) positions
O(*11*00*) = 4

2011-01-26

14

27

Usefully Processed?

 Effect of Selection (Reproduction)
 Ever-increasing number of individuals with good

similarity patterns
 Effect of Crossover

 Schema can be disrupted or left unscathed
Examples: 1***0 and **11*

 Effect of Mutation
 Schema is disrupted with low frequently (low mutation

rate)
 Conclusion: Highly fit schemata with short-

defining-length and low order (building blocks) are
propagated from generation to generation.

 Effect of Selection (Reproduction)
 Ever-increasing number of individuals with good

similarity patterns
 Effect of Crossover

 Schema can be disrupted or left unscathed
Examples: 1***0 and **11*

 Effect of Mutation
 Schema is disrupted with low frequently (low mutation

rate)
 Conclusion: Highly fit schemata with short-

defining-length and low order (building blocks) are
propagated from generation to generation.

28

Algorithm Setup & Parameters

 Chromosome type (Encoding)

 Population type & size

 Selection scheme

 Crossover types (2-point, 3-point, etc.)

 Mutation strategy & probability

 Fitness function

 Termination criterion

 Chromosome type (Encoding)

 Population type & size

 Selection scheme

 Crossover types (2-point, 3-point, etc.)

 Mutation strategy & probability

 Fitness function

 Termination criterion

2011-01-26

15

29

Chromosome

 Principle of meaningful building blocks
 “Select encoding so that short, low-order

schemata are relevant to the underlying
problem”, i.e., short distance between related
bit positions

 Principle of minimal alphabets
 “Choose smallest alphabet that permits a

natural expression of the problem”

 Principle of meaningful building blocks
 “Select encoding so that short, low-order

schemata are relevant to the underlying
problem”, i.e., short distance between related
bit positions

 Principle of minimal alphabets
 “Choose smallest alphabet that permits a

natural expression of the problem”

30

Population Types & Size
 Generation-based GAs
 In each generation all individuals of the

population are replaced

 Steady-state GAs
 Generational overlap: A certain fraction of the

population is replaced by new individuals

 Multiple Populations with Immigration
 Several populations evolve in parallel,

individuals can immigrate between population
islands (computing clusters)

 Typical Sizes 25 - 2000 chromosomes

 Generation-based GAs
 In each generation all individuals of the

population are replaced

 Steady-state GAs
 Generational overlap: A certain fraction of the

population is replaced by new individuals

 Multiple Populations with Immigration
 Several populations evolve in parallel,

individuals can immigrate between population
islands (computing clusters)

 Typical Sizes 25 - 2000 chromosomes

2011-01-26

16

31

Initial Population

 Randomly selected individuals

 Mixed population
 A fixed amount of individual constructed

through different constructive heuristic
 In addition, random individuals

 Randomly selected individuals

 Mixed population
 A fixed amount of individual constructed

through different constructive heuristic
 In addition, random individuals

32

Selection Scheme

 Roulette Wheel Selection
 Fitness determines selection probability

 Ranking-based Selection
 Ranking determines selection probability
 Avoids problems with “super-individuals”

 Tournament Selection
 Randomly select two individuals, the better one

is chosen

 Roulette Wheel Selection
 Fitness determines selection probability

 Ranking-based Selection
 Ranking determines selection probability
 Avoids problems with “super-individuals”

 Tournament Selection
 Randomly select two individuals, the better one

is chosen

Assignment of reproduction
opportunities to the individuals

2011-01-26

17

33

Crossover Types

1-point : 2-point:
random

34

String Encoding

 Recall: Short defining-length, low order, high
fitness schemata (building blocks) recombine

 The coding decision influences the efficiency of GAs

 Recall: Short defining-length, low order, high
fitness schemata (building blocks) recombine

 The coding decision influences the efficiency of GAs

a b c d e f

1 * * * * 1 highest average fitness

a f c d e b

1 1 * * * *

Likely to be disrupted
(long defining-length)

Likely to be left undisrupted
(short defining-length)

Reordering of genes

2011-01-26

18

35

Mutation Strategies & Probability

 Constant Mutation Rate
 Genes are altered permanently during

optimization with fixed probability (common
value <1%)

 Decreasing Mutation Rate
 An initially high mutation rate decreases

during optimization run

 Stimulating Mutation
 If premature convergence is detected, an

increasing number of individuals are mutated

 Constant Mutation Rate
 Genes are altered permanently during

optimization with fixed probability (common
value <1%)

 Decreasing Mutation Rate
 An initially high mutation rate decreases

during optimization run

 Stimulating Mutation
 If premature convergence is detected, an

increasing number of individuals are mutated

36

Fitness function

 Single-objective optimization

 Fitness depends on calculated cost

 Multi-objective optimization

 Objective weighting:

 Pareto ranking: Distance based

 Single-objective optimization

 Fitness depends on calculated cost

 Multi-objective optimization

 Objective weighting:

 Pareto ranking: Distance based

k

i
ii fwF

1

)()(xx

2011-01-26

19

37

Pareto Ranking

Timing (QoS)

energy
Pareto front

Non-Dominated solutions

Dominated
solutions

8

8

8
8

3

6

[10,2]

10

2 15

3
[2,15]

Non-dominated solutions: at least on of the solution weights
is the smallest among all other solutions!

38

Termination Criterion

 A given maximal number of generations has
been reached

 A certain amount of generations has not
produced any further improvements

 The diversity in the population has reached
a lower limit

 A given maximal number of generations has
been reached

 A certain amount of generations has not
produced any further improvements

 The diversity in the population has reached
a lower limit

2011-01-26

20

39

Applicability

 Large Search Space
 Not perfectly smooth (no gradient-based tech.)
 Not unimodal (extreme points)
 Not well understood
 Noisy fitness function

 Global optimum is not essential
 High quality solution is sufficient

 Large Search Space
 Not perfectly smooth (no gradient-based tech.)
 Not unimodal (extreme points)
 Not well understood
 Noisy fitness function

 Global optimum is not essential
 High quality solution is sufficient

40

Knowledge-based Techniques

 In the most general case, GAs are “blind”
heuristics, i.e., no problem specific
knowledge is required

 Hybrid Schemes
 Example: GA + local search (GA finds hills,

local search climbs hills)
 Performance improvement

 In the most general case, GAs are “blind”
heuristics, i.e., no problem specific
knowledge is required

 Hybrid Schemes
 Example: GA + local search (GA finds hills,

local search climbs hills)
 Performance improvement

2011-01-26

21

41

Evolution Programs

 Difference between GAs and EPs?

 GAs: binary string representations
 EPs: Complex data structures

 GAs: Standard genetic operators
 EPs: Specialized genetic operators

 Difference between GAs and EPs?

 GAs: binary string representations
 EPs: Complex data structures

 GAs: Standard genetic operators
 EPs: Specialized genetic operators

42

Available Implementations

 GALib (MIT, http://lancet.mit.edu/ga)
 Includes several GA types
 Comes with numerous crossover, replacement,

mutation types
 Easily adaptable to specific problems (new

genetic operators can be created)
 GAUL (GNU, http://gaul.sourceforge.net)
 Support for multiple, simultaneously evolving

populations (computing clusters)
 Additional optimization algorithms are built-in

• Simulated annealing
• Tabu search

 GALib (MIT, http://lancet.mit.edu/ga)
 Includes several GA types
 Comes with numerous crossover, replacement,

mutation types
 Easily adaptable to specific problems (new

genetic operators can be created)
 GAUL (GNU, http://gaul.sourceforge.net)
 Support for multiple, simultaneously evolving

populations (computing clusters)
 Additional optimization algorithms are built-in

• Simulated annealing
• Tabu search

2011-01-26

22

43

Further Readings
 Books

 Goldberg, “Genetic Algorithms in Search, Optimization &
Machine Learning”

 Michalewicz, “Genetic Algorithms + Data Structures =
Evolution Programs”

 Mazumder and Rudnick, “Genetic Algorithms for VLSI
Design, Layout & Test Automation”

 Conference proceedings
 International Conference on Genetic Algorithms
 International Conference on Evolutionary Programming

 Journals
 IEEE Transactions on Evolutionary Computation
 Evolutionary Computation Journal (MIT Press)

 Books
 Goldberg, “Genetic Algorithms in Search, Optimization &

Machine Learning”
 Michalewicz, “Genetic Algorithms + Data Structures =

Evolution Programs”
 Mazumder and Rudnick, “Genetic Algorithms for VLSI

Design, Layout & Test Automation”
 Conference proceedings

 International Conference on Genetic Algorithms
 International Conference on Evolutionary Programming

 Journals
 IEEE Transactions on Evolutionary Computation
 Evolutionary Computation Journal (MIT Press)

44

Applications

 Application Mapping in Multiprocessor
Systems

 Traveling Salesman Problem

 Application Mapping in Multiprocessor
Systems

 Traveling Salesman Problem

2011-01-26

23

45

Application Mapping

Available area:

Mapping 1 Mapping 2

50mm2

Specification

Available area:
50mm2

Performance: 10ms
Power dissipation: 350mW

Performance: 9ms
Power dissipation: 370mW

46

Task Properties

 ti(C) is the execution time of task i on component
C

 ai(C) is the area required to accommodate task i
on component C

 Pi(C) is the power dissipated by task i on
component C

 Competing objectives:
 Performance
 Area
 Power consumption

 ti(C) is the execution time of task i on component
C

 ai(C) is the area required to accommodate task i
on component C

 Pi(C) is the power dissipated by task i on
component C

 Competing objectives:
 Performance
 Area
 Power consumption

2011-01-26

24

47

Encoding: Mapping String

Task Graph

MEM

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

P
C

I-
B

u
s

C1

C2

C3

MEM

0

1

3

2

1

3

2

1

2

3

4

5

String Architecture

• Locus determines task position
• Allele determines task mapping

48

Fitness Function

areapenalty

C

timepentalty

rep
energy

T
M AP

DV
EF

T
_

_

2

2

1)(

otherwise11

 if1

AA

UA
k

SAAA

AP

2011-01-26

25

49

GA Mapping Algorithm

Scheduling

Assign fitness

Ranking

Selection

Mutation

Mating

Insertion

GA (Mapping)

no yes

Timing,
Energy +
Area

By itself a hard problem!
Initial
Population

Final
Population

Iter.

Termination

50

Experimental Setup

 Population size: 50

 Generational overlap: 20%

 Two-point crossover

 Dynamic mutation probability 5%

 Population size: 50

 Generational overlap: 20%

 Two-point crossover

 Dynamic mutation probability 5%

2011-01-26

26

51

Evolution Run

8500

9000

9500

10000

10500

11000

11500

12000

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generation

'Min'
'Individual'

30 nodes
3 processors

52

Multi-Objective Optimization

A
re

a
ov

er
he

ad

Average Power (mW)

Pareto-points
Pareto-front

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

2011-01-26

27

53

Experimental Results

No. Nodes CPU time (s)

20 5.5

30 11

40 37

100 127

PentiumIII/500MHz

Optimization times include overheads due
to scheduling and energy management

54

Traveling Salesman Problem

 “…given a finite number n of "cities" along
with the cost of travel between each pair of
them, find the cheapest way of visiting all
the cities and returning to your starting
point.”

 The problem has a solution space of
(n-1)!/2

 “…given a finite number n of "cities" along
with the cost of travel between each pair of
them, find the cheapest way of visiting all
the cities and returning to your starting
point.”

 The problem has a solution space of
(n-1)!/2 Cities Possible routes

10 181,440
25 310e21
100 466e153

2011-01-26

28

55

Recombination Problem

 Standard GA operators fail to produces
meaningful chromosomes
 Example: 1-point crossover

 Standard GA operators fail to produces
meaningful chromosomes
 Example: 1-point crossover

[A B C D E F]

[B D C A E F]

[A B C A E F]

[B D C D E F]

 Repair algorithm to restore a valid solution
is not effective

 Using appropriate operator that lead to
feasible solutions

 Repair algorithm to restore a valid solution
is not effective

 Using appropriate operator that lead to
feasible solutions

56

Edge Recombination Operator

 Similarities between tours should be
preserved
 Offspring should be constructed from “links”

that exist in the parent tours

 Similarities between tours should be
preserved
 Offspring should be constructed from “links”

that exist in the parent tours

 Key to solve the problem is a meaningful
recombination technique
For example: Edge recombination operator [1]

 Key to solve the problem is a meaningful
recombination technique
For example: Edge recombination operator [1]

2011-01-26

29

57

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[? ? ? ? ? ?]

58

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

1. Initialize child tour with one of the two
initial cities of the parents.

Randomly chosen B.

Child tour:[B ? ? ? ? ?]

2011-01-26

30

59

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

2. Remove all occurrences of B in the edge
map.

Child tour:[B ? ? ? ? ?]

60

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

3. Which of the cities in edge list B has the
fewest cities in its own edge list? C, D, F!

Randomly chosen C.

Child tour:[B C ? ? ? ?]

2011-01-26

31

61

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

4. Remove all occurrences of C in the edge
lists.

Child tour:[B C ? ? ? ?]

62

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[B C D ? ? ?]

5. Which of the cities in edge list C has the
fewest cities in its own edge list? D!

Chosen D.

2011-01-26

32

63

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

6. Remove all occurrences of D in the edge
lists.

Child tour:[B C D ? ? ?]

64

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[B C D E ? ?]

7. Which of the cities in edge list D has the
fewest cities in its own edge list? E!

Chosen E.

2011-01-26

33

65

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

8. Remove all occurrences of E in the edge
lists.

Child tour:[B C D E ? ?]

66

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[B C D E A ?]

9. Which of the cities in edge list E has the
fewest cities in its own edge list? F!

Randomly chosen A.

2011-01-26

34

67

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

All cities have been visit STOP

Child tour:[B C D E A F]

68

GA-TSP: Results

 30 cities (optimal solution 420)
 4.42e30 possible tours
 10 sub-populations with a size of 200 each
 7,000 recombinations
 30 out of 30 runs optimal solution found

 105 cities (optimal solution 14,383)
 5.14e165 possible tours
 10 sub-populations with a size of 1000 each
 200,000 recombinations
 15 out of 30 runs optimal solution found
 15 out of 30 runs with 1 percent of optimal solution

 30 cities (optimal solution 420)
 4.42e30 possible tours
 10 sub-populations with a size of 200 each
 7,000 recombinations
 30 out of 30 runs optimal solution found

 105 cities (optimal solution 14,383)
 5.14e165 possible tours
 10 sub-populations with a size of 1000 each
 200,000 recombinations
 15 out of 30 runs optimal solution found
 15 out of 30 runs with 1 percent of optimal solution

2011-01-26

35

69

References

[1] D. Whitley et al, “The Traveling Salesman
and Sequence Scheduling: Quality Solutions
Using Genetic Edge Recombination”, 1993.

[1] D. Whitley et al, “The Traveling Salesman
and Sequence Scheduling: Quality Solutions
Using Genetic Edge Recombination”, 1993.

70

Conclusions

 Simple GA has been introduced
 We have examined how GAs work
 Implementation issues

 Crossovers
 Encoding

 Applications
 Task mapping
 TSP

 GAs provide a robust, easy to implement heuristic
search strategy that can be applied to large
number of optimization and search problems

 Simple GA has been introduced
 We have examined how GAs work
 Implementation issues

 Crossovers
 Encoding

 Applications
 Task mapping
 TSP

 GAs provide a robust, easy to implement heuristic
search strategy that can be applied to large
number of optimization and search problems

