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= Hardware/Software Partitioning

= Travelling Salesman
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TS Examples: Hardware/Software Partitioning
nout: moom o o w T SRR S

s The process graph: an abstract model of a system:
0 Each node corresponds to a process.

0 An edge connects two nodes if and only if there exists a direct
communication channel between the corresponding processes

0 Weights are associated to each node and edge:
- Node weights reflect the degree of suitability for hardware
Implementation of the corresponding process.

- Edge weights measure the amount of communication between pro-
cesses

Output:

= Two subgraphs containing nodes assigned to hardware and software
respectively.
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TS Examples: Hardware/Software Partitioning
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TS Examples: Hardware/Software Partitioning
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Weight assigned to nodes:

woN = MCLx KCL+ MU x KU+ MP x KP — MSO x K50

ket 1S equal to the RCL of process I, and thus is a measure of the computation
load of that process;

— Nr_op;

kv = —=2i_  ; gvis ameasure of the uniformity of operations in process i;
! Nr_kind_op, !
p = Z;ZZZ . kr 1S a measure of potential parallelism inside process i;
% WOPj . - . H
ko = wISE - gso captures suitability for software implementation;
Nr_op,
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Hw/Sw Partitioning: Cost Function
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The cost function:
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Hw/Sw Partltlomng Moves&Nelghborhood

- O e """yl """l
= Moves:

NOW is the set of

0 The neighborhood N(x"°%) of a certain solution x
solutions which can be obtained by moving a node from its current

partition to the other one.
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Hw/Sw Partitioning: TS Algorithm
om0 T e e T e T e
e Construct initial configuration x"°%= (Hwg, Swp)

start:
for each solution x;, O N(x"°%) do

 Compute change of cost function ACy = C(x) - C(x"°W)
end for

for each AC, < 0, in increasing order of AC, do
if not tabu(x,) or tabu_aspirated(x,) then

xNowW — Xy
goto accept
end if

end for
for each solution x, O N(x"°%) do
e Compute AC; = ACy + penalty(xy)
end for
for each ACy in increasing order of ACy do

if not tabu(xy) then
xNow Xy
goto accept
end if
end for

e Generate x"°" by performing the least tabu move

accept:

if iterations since previous best solution < Nr_w_b then
goto start

end if

if restarts < Nr_r then
» Generate initial configuration x"°" considering frequencies
goto start

end if

return solution corresponding to the minimum cost function
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HW/SW Partltlonlng TS Algorithm

= First attempt:

0 Animproving non-tabu move (the best possible) is tried.

= Second attempt:
0 Frequency based penalties are applied and the best possible non-tabu

move is tried;

= Third attempt:

o0 The move which is closest to leave the tabu state is executed.
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Hw/Sw Partitioning: The Tabu-List

The last T moves performed are stored in the tabu-list. Their reverse is tabu.

T = tabu tenure (length of the tabu list)

The tabu tenure depends on the size of the problem and of the

neighborhood: large problem sizes are coupled with large tabu tenures.

The tabu tenure depends on the strength of the tabu restriction: stronger

restrictions are coupled with smaller sizes.

Tabu tenures are tuned experimentally or can be variable:
0 too small tenures [ cycling
0 too large tenures [0 deterioration of the solution
0 Recommended values: 7 + 25

Tabu tenures can be selected randomly from a given interval.
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Hw/Sw Partitioning: Tabu Aspiration
moom o o w T SRR S

= The tabu status of a move is ignhored if the solution produced is better than

the best obtained so far.
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Hw/Sw Partitioning: Long Term Memory

= Long term memory stores the number of iterations each node has spent in

the hardware partition. This information is used for diversification:
1. Application of a penalty to the cost function, which favors the transfer
of nodes that have spent along time in their current partition.

2. A move is forbidden (tabu) if the frequency of occurrences of the node
In its current partition is smaller than a certain threshold.

3. If the system is frozen a new search can be started from an initial
configuration which is different from those encountered previously.
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Hw/Sw Partitioning: Penalty
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The penalized cost function:

Z‘ACZ.\ Coefficients experimentally
AC'. = AC. + —1 » set to:
Cr Ci Nr_of_nodes pen(k) n Cy=0.4
where
] CS:O].5

] Node_in_Hw,, _

0 —Cp X ~ if node, U Hw

D .
penty =5

ET_CS X %1 _ 00 it nodey, O Sw

[] Niter

0 Node_in_Hw, : number of iterations node k spent in the Hw partition.
0 Niter : total number of iterations;

0 Nr_of nodes : total number of nodes;
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Hw/Sw Partitioning: Thresholds for Node Movement
mom o e e ey T

= A move is forbidden (tabu) if the frequency of occurrences of the node in its

current partition is smaller than the threshold:

Node _in_ Hw X
>
N

Ty iIf node, U Hw

iter

Ell - Node _in_ Hw i

5> T If node, I Sw

iter

= The thresholds have been experimentally set to:
l TH:O.Z

l TS:O.4.
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Hw/Sw Partitioning: Some Experimental Results
moom o o w T SRR S

Parameters and CPU times for Tabu Search partitioning
(SPARCstation 10)

nurr?obdeer: v INwb| N (ﬁnﬁg \f\i/rirhe S(SA))
20 7 | 30 0 ?O'_OZO;
40 7 | 50 0 (2:(2)‘71)
100 7 | 50 0 (gég)
400 |18| 850 2 (3;%'95)
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Variation of cost function for TS partitioning with 400 nodes
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Hw/Sw Partitioning: Some Experimental Results
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= Variation of cost function for TS partitioning with 100 nodes
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Hw/Sw Partitioning: Some Experimental Results
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= Partitioning times with SA, TS, and KL
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TS Examples: Travelling Salesman Problem

A salesman has to travel to a number of cities and then return to the initial city;

each city has to be visited once. The objective is to find the tour with minimum
distance.

In graph theoretical formulation:

Find the shortest Hamiltonian circuit in a complete graph where the nodes
represent cities. The weights on the edges represent the distance between
cities. The cost of the tour is the total distance covered in traversing all cities.
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TSP: Cost Function
N T SR L T TR N Bt e~ § |
If the problem consists of n cities ¢, 1 =1, .., n, any tour can be represented
as a permutation of numbers 1to n.

d(cj,c;) = d(cj,c;) Is the distance between c; and c;.

Given a permutation mtof the n cities, v; and v;,; are adjacent cities in the

permutation. The permutation 1thas to be found that minimizes:

n—1

Z dv,v,, ) +dv, v{)

i=1

The size of the solution space is (n-1)!/2
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TSP: Moves&Neighborhood
s e TR AR, e e
k-neighborhood of a given tour is defined by those tours obtained by

removing k links and replacing them by a different set of k links, in a way that

maintains feasibility.

For k =2, there is only one way of reconnecting the tour after two links have
been removed.

o Size of the neighborhood: n(n-1)/2

0 As opposed to SA, all alternatives are estimated in order to select the

appropriate move.

0 Any tour can be obtained from any other by a sequence of such

MOVeES.
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TSP: Moves&Neighborhood

Permutation:
[02467531]
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TSP: Moves&Neighborhood

links (v3,v;), (V4,Vg) ; 4
are removed
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TSP: Moves&Neighborhood

Permutation:
[02435761] 3 4
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TSP: Moves&Neighborhood

= Vjis the city in position i of the tour (ith position in the permutation):
remove (vj, Vi+1) and (vj, Vj+1)

connect v; to vj and Vi1 10 Vj4q

= All 2-neighbors of a certain solution are defined by the pair i, j so thati <j.

= The change of the cost function can be computed incrementally:

AC =d(vj,vj) + d(Vit1.Vje1) - d(Vi,Vie) - d(V),Vj41)
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TSP: Move Attributes for Tabu-Classification

= We have performed a move as result of which several pairs of cities have
swapped their position in the tour:
o Cities x and y are such a pair;
position(x) and position(y): positions in the tour before the swap.

position(x) < position(y).

Questions:

1. What information do we store (move attributes)?

2. Using this information, which moves are becoming tabu?
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TSP: Move Attributes for Tabu-Classification
T T S e el il B Bmte w B mm m B

1. Vector(x, y, position(x), position(y))

o To prevent any swap from resulting in a tour with city x and city y

occupying position(x) and position(y) respectively.

2. Vector(x, y, position(x), position(y))

0 To prevent any swap from resulting in a tour with city x occupying

position(x) or city y occupying position(y).

3. Vector(x, position(x))

0 To prevent city x from returning to position(x).
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TSP: Move Attributes for Tabu-Classification
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4. City X

0 To prevent city x from moving LEFT.

5. City x

0 To prevent city x from moving.

6. Vector(y, position(y))

0 To prevent city y from returning to position(y).

28
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TSP: Move Attributes for Tabu-Classification
T T S e el il B Bmte w B mm m B

7. City y

o To prevent city y from moving RIGHT.

8. Cityy

0 To prevent city y from moving.

9. Cityxandy

o To prevent both cities from moving.
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TSP: Move Attributes for Tabu-Classification

0 Condition 1 is the least restrictive (prevents the smallest amount of

moves).

0 Condition 9 is the most restrictive (prevents a large amount of moves).

o Conditions 3, 4, 5 have increasing restrictiveness.
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TSP: Tabu List Size

moom o o w T SRR S
= T has to be experimentally tuned.

o For highly restrictive tabu conditions t can be relatively small.

0 For less restrictive tabu conditions 1 has to be larger.

o ttoo small O cycling

0 Tttoo large OO exploration driven away from possibly good vicinity.
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TSP: Tabu List Size
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= Tabu list size:

o for conditions 4 and 7: nr_cities/4 + nr_cities/3
o for conditions 5, 8, 9: nr_cities/5

o for conditions 1, 2, 3, 6: =nr_cities

L Best results for conditions 4 and 7
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TSP: Long Term Memory

= Long term memory maintains the number of times an edge is visited.

= After a certain number of iterations a new starting tour is generated

consisting of edges that have been visited less frequently.
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TSP: Some Experimental Results

= 100 city problem; optimal solution: C = 21247.

0 Best solution C = 21352 (21255 for SA)
o Time =210 s (Sun4/75) - (1340 s for SA)

0 Standard deviation over 10 trials: 30.3;

(randomly generated starting tour!)

0 Average cost: 21372

s 57 city problem; optimal solution: C = 12955

0 Optimal solution in 109 s (673 s for SA).
(Sequent Balance 8000)
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