Tabu Search - Examples

Petru Eles

Department of Computer and Information Science (IDA)
LinkOpings universitet
http://www.ida.liu.se/~petel/

Heuristic Algorithms for Combinatorial Optimization Problems 1

Petru Eles, 2010

Tabu Search Examples
moom o o w T SRR S

= Hardware/Software Partitioning

= Travelling Salesman

Heuristic Algorithms for Combinatorial Optimization Problems 2

Tabu Search Petru Eles, 2010

TS Examples: Hardware/Software Partitioning
nout: moom o o w T SRR S

s The process graph: an abstract model of a system:
0 Each node corresponds to a process.

0 An edge connects two nodes if and only if there exists a direct
communication channel between the corresponding processes

0 Weights are associated to each node and edge:
- Node weights reflect the degree of suitability for hardware
Implementation of the corresponding process.

- Edge weights measure the amount of communication between pro-
cesses

Output:

= Two subgraphs containing nodes assigned to hardware and software
respectively.

Heuristic Algorithms for Combinatorial Optimization Problems 3

Tabu Search Petru Eles, 2010

TS Examples: Hardware/Software Partitioning

Hardware @ @ @

Software

TS Examples: Hardware/Software Partitioning

: : moom o o w T SRR S
Weight assigned to nodes:

woN = MCLx KCL+ MU x KU+ MP x KP — MSO x K50

ket 1S equal to the RCL of process I, and thus is a measure of the computation
load of that process;

— Nr_op;

kv = —=2i_ ; gvis ameasure of the uniformity of operations in process i;
! Nr_kind_op, !
p = Z;ZZZ . kr 1S a measure of potential parallelism inside process i;
% WOPj . - . H
ko = wISE - gso captures suitability for software implementation;
Nr_op,

Heuristic Algorithms for Combinatorial Optimization Problems

5

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: Cost Function
moom o o w T SRR S

The cost function:

g w2k
N

4 N w2
le W]lE-'Fsz(l) Hw ! _Q3x|]l) Hw _ (@O LSw]
(ij) Ucut ’ NH E NH NS E
amount of Ratiocom/cmp Difference of
Hw-Sw comm. of Hw part. average weights

Restrictions:

H
;{H_costi < Max
i

S
%L[S_costi < Max
i

wN>Liml O i O Hw

WN<Liml O iOSw

Heuristic Algorithms for Combinatorial Optimization Problems 6

Tabu Search Petru Eles, 2010

Hw/Sw Partltlomng Moves&Nelghborhood

- O e """yl """l
= Moves:

NOW is the set of

0 The neighborhood N(x"°%) of a certain solution x
solutions which can be obtained by moving a node from its current

partition to the other one.

Heuristic Algorithms for Combinatorial Optimization Problems 7

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: TS Algorithm
om0 T e e T e T e
e Construct initial configuration x"°%= (Hwg, Swp)

start:
for each solution x;, O N(x"°%) do

 Compute change of cost function ACy = C(x) - C(x"°W)
end for

for each AC, < 0, in increasing order of AC, do
if not tabu(x,) or tabu_aspirated(x,) then

xNowW — Xy
goto accept
end if

end for
for each solution x, O N(x"°%) do
e Compute AC; = ACy + penalty(xy)
end for
for each ACy in increasing order of ACy do

if not tabu(xy) then
xNow Xy
goto accept
end if
end for

e Generate x"°" by performing the least tabu move

accept:

if iterations since previous best solution < Nr_w_b then
goto start

end if

if restarts < Nr_r then
» Generate initial configuration x"°" considering frequencies
goto start

end if

return solution corresponding to the minimum cost function

Heuristic Algorithms for Combinatorial Optimization Problems 8

Tabu Search Petru Eles, 2010

HW/SW Partltlonlng TS Algorithm

= First attempt:

0 Animproving non-tabu move (the best possible) is tried.

= Second attempt:
0 Frequency based penalties are applied and the best possible non-tabu

move is tried;

= Third attempt:

o0 The move which is closest to leave the tabu state is executed.

Heuristic Algorithms for Combinatorial Optimization Problems 9

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: The Tabu-List

The last T moves performed are stored in the tabu-list. Their reverse is tabu.

T = tabu tenure (length of the tabu list)

The tabu tenure depends on the size of the problem and of the

neighborhood: large problem sizes are coupled with large tabu tenures.

The tabu tenure depends on the strength of the tabu restriction: stronger

restrictions are coupled with smaller sizes.

Tabu tenures are tuned experimentally or can be variable:
0 too small tenures [cycling
0 too large tenures [0 deterioration of the solution
0 Recommended values: 7 + 25

Tabu tenures can be selected randomly from a given interval.

Heuristic Algorithms for Combinatorial Optimization Problems 10

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: Tabu Aspiration
moom o o w T SRR S

= The tabu status of a move is ignhored if the solution produced is better than

the best obtained so far.

Heuristic Algorithms for Combinatorial Optimization Problems 11

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: Long Term Memory

= Long term memory stores the number of iterations each node has spent in

the hardware partition. This information is used for diversification:
1. Application of a penalty to the cost function, which favors the transfer
of nodes that have spent along time in their current partition.

2. A move is forbidden (tabu) if the frequency of occurrences of the node
In its current partition is smaller than a certain threshold.

3. If the system is frozen a new search can be started from an initial
configuration which is different from those encountered previously.

Heuristic Algorithms for Combinatorial Optimization Problems

12
Petru Eles, 2010

Tabu Search

Hw/Sw Partitioning: Penalty

: _ moom o o w T SRR S
The penalized cost function:

Z‘ACZ.\ Coefficients experimentally
AC'. = AC. + —1 » set to:
Cr Ci Nr_of_nodes pen(k) n Cy=0.4
where
] CS:O].5

] Node_in_Hw,, _

0 —Cp X ~ if node, U Hw

D .
penty =5

ET_CS X %1 _ 00 it nodey, O Sw

[] Niter

0 Node_in_Hw, : number of iterations node k spent in the Hw partition.
0 Niter : total number of iterations;

0 Nr_of nodes : total number of nodes;

Heuristic Algorithms for Combinatorial Optimization Problems 13

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: Thresholds for Node Movement
mom o e e ey T

= A move is forbidden (tabu) if the frequency of occurrences of the node in its

current partition is smaller than the threshold:

Node _in_ Hw X
>
N

Ty iIf node, U Hw

iter

Ell - Node _in_ Hw i

5> T If node, I Sw

iter

= The thresholds have been experimentally set to:
l TH:O.Z

l TS:O.4.

Heuristic Algorithms for Combinatorial Optimization Problems 14

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: Some Experimental Results
moom o o w T SRR S

Parameters and CPU times for Tabu Search partitioning
(SPARCstation 10)

nurr?obdeer: v INwb| N (ﬁnﬁg \f\i/rirhe S(SA))
20 7 | 30 0 ?O'_OZO;
40 7 | 50 0 (2:(2)‘71)
100 7 | 50 0 (gég)
400 |18| 850 2 (3;%'95)

Heuristic Algorithms for Combinatorial Optimization Problems 15

Tabu Search Petru Eles, 2010

Variation of cost function for TS partitioning with 400 nodes

2.45e+06
2.4e+06 + i

imum at i ion 1941
2.35e+06 optimum at iteration 19 |

2.3e+06
2.25e+06
2.2e+06
2.15e+06

Cost function value

2.1e+06
2.05e+06

26H06 £ \ bAoA AR N AT t] g A p it e i SR

1.95e+06
0

500 1000 1500 100 2500 3000
Number of iterations

2.004e+06

optimum at iteration 1941
2.002e+06 + 7

2+06 - :]

1.998e+06 - ‘ -

1.996e+06 - -

Cost function value

1.994e+06 - -

| i
!
1.99e+06 5 . . . /

500 1000 1500 2000 2500 3000
Number of iterations

1.992e+06

2e+06

. optimum at iteration 1941
1.998e+06 N -

1.996e+06 - -

1.994e+06 - .. }

Cost function value

1.992e+06 . -

1.99e+0 g : : : :
?920 1925 1930 1935 1940 1945 1950

Number of iterations

Embedded Systems for Real-Time Applications: Analysis and Synthesis 16

Tabu Search September 2010

Hw/Sw Partitioning: Some Experimental Results
moom o o w T SRR S

= Variation of cost function for TS partitioning with 100 nodes

56000
54000

52000 optimum at iteration 76
% L

S 50000 |

>

c

5 48000 -

B 46000 -

c

& 44000,

B 42000,
40000 -

38000

0 20 40 60 80 100 120 140
Number of iterations

Heuristic Algorithms for Combinatorial Optimization Problems 17

Tabu Search Petru Eles, 2010

Hw/Sw Partitioning: Some Experimental Results
moom o o w T SRR S

= Partitioning times with SA, TS, and KL

1000} | =)

=
= o
2L

=
|
om

©
=

TS & |]

Execution time ()
(logarithmic)

o
o
=
®©

KL O |]

0.001 l
10 20 40 100 400 1000

Number of graph nodes (logarithmic)

Heuristic Algorithms for Combinatorial Optimization Problems 18

Tabu Search Petru Eles, 2010

TS Examples: Travelling Salesman Problem

A salesman has to travel to a number of cities and then return to the initial city;

each city has to be visited once. The objective is to find the tour with minimum
distance.

In graph theoretical formulation:

Find the shortest Hamiltonian circuit in a complete graph where the nodes
represent cities. The weights on the edges represent the distance between
cities. The cost of the tour is the total distance covered in traversing all cities.

Heuristic Algorithms for Combinatorial Optimization Problems 19

Tabu Search Petru Eles, 2010

TSP: Cost Function
N T SR L T TR N Bt e~ § |
If the problem consists of n cities ¢, 1 =1, .., n, any tour can be represented
as a permutation of numbers 1to n.

d(cj,c;) = d(cj,c;) Is the distance between c; and c;.

Given a permutation mtof the n cities, v; and v;,; are adjacent cities in the

permutation. The permutation 1thas to be found that minimizes:

n—1

Z dv,v,,) +dv, v{)

i=1

The size of the solution space is (n-1)!/2

Heuristic Algorithms for Combinatorial Optimization Problems 20

Tabu Search Petru Eles, 2010

TSP: Moves&Neighborhood
s e TR AR, e e
k-neighborhood of a given tour is defined by those tours obtained by

removing k links and replacing them by a different set of k links, in a way that

maintains feasibility.

For k =2, there is only one way of reconnecting the tour after two links have
been removed.

o Size of the neighborhood: n(n-1)/2

0 As opposed to SA, all alternatives are estimated in order to select the

appropriate move.

0 Any tour can be obtained from any other by a sequence of such

MOVeES.

Heuristic Algorithms for Combinatorial Optimization Problems 21

Tabu Search Petru Eles, 2010

TSP: Moves&Neighborhood

Permutation:
[02467531]

Heuristic Algorithms for Combinatorial Optimization Problems 22

Tabu Search Petru Eles, 2010

TSP: Moves&Neighborhood

links (v3,v;), (V4,Vg) ; 4
are removed

Heuristic Algorithms for Combinatorial Optimization Problems 23

Tabu Search Petru Eles, 2010

TSP: Moves&Neighborhood

Permutation:
[02435761] 3 4

Heuristic Algorithms for Combinatorial Optimization Problems 24

Tabu Search Petru Eles, 2010

TSP: Moves&Neighborhood

= Vjis the city in position i of the tour (ith position in the permutation):
remove (vj, Vi+1) and (vj, Vj+1)

connect v; to vj and Vi1 10 Vj4q

= All 2-neighbors of a certain solution are defined by the pair i, j so thati <j.

= The change of the cost function can be computed incrementally:

AC =d(vj,vj) + d(Vit1.Vje1) - d(Vi,Vie) - d(V),Vj41)

Heuristic Algorithms for Combinatorial Optimization Problems 25

Tabu Search Petru Eles, 2010

TSP: Move Attributes for Tabu-Classification

= We have performed a move as result of which several pairs of cities have
swapped their position in the tour:
o Cities x and y are such a pair;
position(x) and position(y): positions in the tour before the swap.

position(x) < position(y).

Questions:

1. What information do we store (move attributes)?

2. Using this information, which moves are becoming tabu?

Heuristic Algorithms for Combinatorial Optimization Problems 26

Tabu Search Petru Eles, 2010

TSP: Move Attributes for Tabu-Classification
T T S e el il B Bmte w B mm m B

1. Vector(x, y, position(x), position(y))

o To prevent any swap from resulting in a tour with city x and city y

occupying position(x) and position(y) respectively.

2. Vector(x, y, position(x), position(y))

0 To prevent any swap from resulting in a tour with city x occupying

position(x) or city y occupying position(y).

3. Vector(x, position(x))

0 To prevent city x from returning to position(x).

Heuristic Algorithms for Combinatorial Optimization Problems 27

Tabu Search Petru Eles, 2010

TSP: Move Attributes for Tabu-Classification
T T S e el il B Bmte w B mm m B

4. City X

0 To prevent city x from moving LEFT.

5. City x

0 To prevent city x from moving.

6. Vector(y, position(y))

0 To prevent city y from returning to position(y).

28
Petru Eles, 2010

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for Tabu-Classification
T T S e el il B Bmte w B mm m B

7. City y

o To prevent city y from moving RIGHT.

8. Cityy

0 To prevent city y from moving.

9. Cityxandy

o To prevent both cities from moving.

29
Petru Eles, 2010

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for Tabu-Classification

0 Condition 1 is the least restrictive (prevents the smallest amount of

moves).

0 Condition 9 is the most restrictive (prevents a large amount of moves).

o Conditions 3, 4, 5 have increasing restrictiveness.

Heuristic Algorithms for Combinatorial Optimization Problems 30

Tabu Search Petru Eles, 2010

TSP: Tabu List Size

moom o o w T SRR S
= T has to be experimentally tuned.

o For highly restrictive tabu conditions t can be relatively small.

0 For less restrictive tabu conditions 1 has to be larger.

o ttoo small O cycling

0 Tttoo large OO exploration driven away from possibly good vicinity.

Heuristic Algorithms for Combinatorial Optimization Problems 31

Tabu Search Petru Eles, 2010

TSP: Tabu List Size

S T T TR Rt e B mimiell B BEnts n B mim m N |
= Tabu list size:

o for conditions 4 and 7: nr_cities/4 + nr_cities/3
o for conditions 5, 8, 9: nr_cities/5

o for conditions 1, 2, 3, 6: =nr_cities

L Best results for conditions 4 and 7

Heuristic Algorithms for Combinatorial Optimization Problems 32

Tabu Search Petru Eles, 2010

TSP: Long Term Memory

= Long term memory maintains the number of times an edge is visited.

= After a certain number of iterations a new starting tour is generated

consisting of edges that have been visited less frequently.

Heuristic Algorithms for Combinatorial Optimization Problems 33

Tabu Search Petru Eles, 2010

TSP: Some Experimental Results

= 100 city problem; optimal solution: C = 21247.

0 Best solution C = 21352 (21255 for SA)
o Time =210 s (Sun4/75) - (1340 s for SA)

0 Standard deviation over 10 trials: 30.3;

(randomly generated starting tour!)

0 Average cost: 21372

s 57 city problem; optimal solution: C = 12955

0 Optimal solution in 109 s (673 s for SA).
(Sequent Balance 8000)

Heuristic Algorithms for Combinatorial Optimization Problems 34

Tabu Search Petru Eles, 2010

	Tabu Search - Examples
	Petru Eles
	Department of Computer and Information Science (IDA) Linköpings universitet http://www.ida.liu.se/~petel/
	CH=0.4
	CS=0.15.

	Tabu Search Examples
	Hardware/Software Partitioning
	Travelling Salesman

	TS Examples: Hardware/Software Partitioning
	The process graph: an abstract model of a system:
	Each node corresponds to a process.
	An edge connects two nodes if and only if there exists a direct communication channel between the corresponding processes
	Weights are associated to each node and edge:
	- Node weights reflect the degree of suitability for hardware implementation of the corresponding process.
	- Edge weights measure the amount of communication between processes

	Two subgraphs containing nodes assigned to hardware and software respectively.

	TS Examples: Hardware/Software Partitioning
	TS Examples: Hardware/Software Partitioning
	Hw/Sw Partitioning: Cost Function
	Hw/Sw Partitioning: Moves&Neighborhood
	Moves:
	The neighborhood N(xnow) of a certain solution xnow is the set of solutions which can be obtained by moving a node from its current partition to the other one.

	Hw/Sw Partitioning: TS Algorithm
	Hw/Sw Partitioning: TS Algorithm
	First attempt:
	An improving non-tabu move (the best possible) is tried.

	Second attempt:
	Frequency based penalties are applied and the best possible non-tabu move is tried;

	Third attempt:
	The move which is closest to leave the tabu state is executed.

	Hw/Sw Partitioning: The Tabu-List
	The last t moves performed are stored in the tabu-list. Their reverse is tabu.
	The tabu tenure depends on the size of the problem and of the neighborhood: large problem sizes are coupled with large tabu tenures.
	The tabu tenure depends on the strength of the tabu restriction: stronger restrictions are coupled with smaller sizes.
	Tabu tenures are tuned experimentally or can be variable:
	too small tenures ﬁ cycling
	too large tenures ﬁ deterioration of the solution
	Recommended values: 7 ¸ 25

	Tabu tenures can be selected randomly from a given interval.

	Hw/Sw Partitioning: Tabu Aspiration
	The tabu status of a move is ignored if the solution produced is better than the best obtained so far.

	Hw/Sw Partitioning: Long Term Memory
	Long term memory stores the number of iterations each node has spent in the hardware partition. This information is used for diversification:
	1. Application of a penalty to the cost function, which favors the transfer of nodes that have spent a long time in their current partition.
	2. A move is forbidden (tabu) if the frequency of occurrences of the node in its current partition is smaller than a certain threshold.
	3. If the system is frozen a new search can be started from an initial configuration which is different from those encountered previously.

	Hw/Sw Partitioning: Penalty
	Node_in_Hwk : number of iterations node k spent in the Hw partition.
	Niter : total number of iterations;
	Nr_of_nodes : total number of nodes;

	Hw/Sw Partitioning: Thresholds for Node Movement
	A move is forbidden (tabu) if the frequency of occurrences of the node in its current partition is smaller than the threshold:
	The thresholds have been experimentally set to:
	TH=0.2
	TS=0.4.

	Hw/Sw Partitioning: Some Experimental Results
	Hw/Sw Partitioning: Some Experimental Results
	Variation of cost function for TS partitioning with 100 nodes

	Hw/Sw Partitioning: Some Experimental Results
	Partitioning times with SA, TS, and KL

	TS Examples: Travelling Salesman Problem
	TSP: Cost Function
	If the problem consists of n cities ci, i = 1, .., n, any tour can be represented as a permutation of numbers 1 to n.
	Given a permutation p of the n cities, vi and vi+1 are adjacent cities in the permutation. The permutation p has to be found that minimizes:
	The size of the solution space is (n-1)!/2

	TSP: Moves&Neighborhood
	k-neighborhood of a given tour is defined by those tours obtained by removing k links and replacing them by a different set of k links, in a way that maintains feasibility.
	For k = 2, there is only one way of reconnecting the tour after two links have been removed.
	Size of the neighborhood: n(n - 1) / 2
	As opposed to SA, all alternatives are estimated in order to select the appropriate move.
	Any tour can be obtained from any other by a sequence of such moves.

	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	vi is the city in position i of the tour (ith position in the permutation):
	All 2-neighbors of a certain solution are defined by the pair i, j so that i < j.
	The change of the cost function can be computed incrementally:

	TSP: Move Attributes for Tabu-Classification
	We have performed a move as result of which several pairs of cities have swapped their position in the tour:
	Cities x and y are such a pair; position(x) and position(y): positions in the tour before the swap. position(x) < position(y).

	1. What information do we store (move attributes)?
	2. Using this information, which moves are becoming tabu?

	TSP: Move Attributes for Tabu-Classification
	1. Vector(x, y, position(x), position(y))
	To prevent any swap from resulting in a tour with city x and city y occupying position(x) and position(y) respectively.

	2. Vector(x, y, position(x), position(y))
	To prevent any swap from resulting in a tour with city x occupying position(x) or city y occupying position(y).

	3. Vector(x, position(x))
	To prevent city x from returning to position(x).

	TSP: Move Attributes for Tabu-Classification
	4. City x
	To prevent city x from moving LEFT.

	5. City x
	To prevent city x from moving.

	6. Vector(y, position(y))
	To prevent city y from returning to position(y).

	TSP: Move Attributes for Tabu-Classification
	7. City y
	To prevent city y from moving RIGHT.

	8. City y
	To prevent city y from moving.

	9. City x and y
	To prevent both cities from moving.

	TSP: Move Attributes for Tabu-Classification
	Condition 1 is the least restrictive (prevents the smallest amount of moves).
	Condition 9 is the most restrictive (prevents a large amount of moves).
	Conditions 3, 4, 5 have increasing restrictiveness.

	TSP: Tabu List Size
	t has to be experimentally tuned.
	For highly restrictive tabu conditions t can be relatively small.
	For less restrictive tabu conditions t has to be larger.
	t too small ﬁ cycling
	t too large ﬁ exploration driven away from possibly good vicinity.

	TSP: Tabu List Size
	Tabu list size:
	for conditions 4 and 7: nr_cities/4 ¸ nr_cities/3
	for conditions 5, 8, 9: nr_cities/5
	for conditions 1, 2, 3, 6: ªnr_cities

	Best results for conditions 4 and 7

	TSP: Long Term Memory
	Long term memory maintains the number of times an edge is visited.
	After a certain number of iterations a new starting tour is generated consisting of edges that have been visited less frequently.

	TSP: Some Experimental Results
	100 city problem; optimal solution: C = 21247.
	Best solution C = 21352 (21255 for SA)
	Time = 210 s (Sun4/75) - (1340 s for SA)
	Standard deviation over 10 trials: 30.3; (randomly generated starting tour!)
	Average cost: 21372

	57 city problem; optimal solution: C = 12955
	Optimal solution in 109 s (673 s for SA). (Sequent Balance 8000)

