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Moves: 

❚ The neighborhood N(xnow) of a certain so

solutions which can be obtained by movin

partition to the other one.



Hw/Sw Partitioning: TS Algorithm 
• Construct initial configuration xnow= (Hw0, Sw0)
start:
for each solution xk ∈  N(xnow) do

• Compute change of cost function ∆Ck = C(xk) - C(xnow) 
end for
for each ∆Ck < 0, in increasing order of ∆Ck do

if not tabu(xk) or tabu_aspirated(xk) then
xnow = xk
goto accept

end if
end for
for each solution xk ∈  N(xnow) do

• Compute ∆C′k = ∆Ck + penalty(xk)
end for
for each ∆C′k in increasing order of ∆C′k do

if not tabu(xk) then
xnow = xk
goto accept

end if
end for
• Generate xnow by performing the least tabu move
accept:
if iterations since previous best solution < Nr_w_b then

goto start
end if
if restarts < Nr_r then

• Generate initial configuration xnow considering frequencies
goto start

end if
return solution corresponding to the minimum cost function
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The last τ moves performed are stored in the tab

τ = tabu tenure (length of the tabu list)

The tabu tenure depends on the size of the prob

neighborhood: large problem sizes are coupled

The tabu tenure depends on the strength of the

restrictions are coupled with smaller sizes.

Tabu tenures are tuned experimentally or can be

❚ too small tenures ⇒  cycling

❚ too large tenures ⇒  deterioration of the s

❚ Recommended values: 7 ÷ 25 

Tabu tenures can be selected randomly from a g
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Long term memory stores the number of iteratio

the hardware partition. This information is used

1. Application of a penalty to the cost functi
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 ∈  Sw

Coefficients experimentally 
set to:

❚ CH=0.4

❚ CS=0.15.
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∆C'k ∆Ck

∆Ci
i

∑
Nr_of_nodes
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pen k( )
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N iter
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CS 1
Node_in_Hwk

N iter
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
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
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
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=

❚ Node_in_Hwk : number of iterations node

❚ Niter : total number of iterations;

❚ Nr_of_nodes : total number of nodes;

if nodek

if nodek
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w/Sw Partitioning: Thresholds 

A move is forbidden (tabu) if the frequency of o

current partition is smaller than the threshold:

Node_in_Hwk

N iter
---------------------------------- T H>

1
Node_in_Hwk

N iter
----------------------------------– 

  T S>

The thresholds have been experimentally set to

❚ TH=0.2

❚ TS=0.4.

if nodek ∈  Hw

if nodek ∈  Sw
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CPU time (s)
(time with SA)

0.008
(0.23)

0.04
(1.27)

0.19
(2.33)

30.5
(769)
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Parameters and CPU times for Tabu Se
(SPARCstation 10)

numbers of 
nodes

τ Nr_w_b Nr_r

20 7 30 0

40 7 50 0

100 7 50 0

400 18 850 2



Variation of cost function for TS partitioning with 400 nodes
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If the problem consists of n cities ci, i = 1, .., n, a

as a permutation of numbers 1 to n.

d(ci,cj) = d(cj,ci) is the distance between ci and c

Given a permutation π of the n cities, vi and vi+1

permutation. The permutation π has to be found

d vi vi 1+( , ) d vn v1( , )+

i 1=

n 1–

∑

The size of the solution space is (n-1)!/2
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TSP: Mo

k-neighborhood of a given tour is defined by tho

removing k links and replacing them by a differe

maintains feasibility. 

For k = 2, there is only one way of reconnecting

been removed.

❚ Size of the neighborhood:  n(n - 1) / 2

❚ As opposed to SA, all alternatives are est

appropriate move.

❚ Any tour can be obtained from any other b

moves.
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vi is the city in position i of the tour (ith position

remove (vi, vi+1) and (vj, vj+1)

connect vi to vj and vi+1 to vj+1

All 2-neighbors of a certain solution are defined

The change of the cost function can be comput

∆C = d(vi,vj) + d(vi+1,vj+1) - d(vi,vi+1) - d(vj,vj+1)
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TSP: Move Attributes for 

We have performed a move as result of which s

swapped their position in the tour:

❚ Cities x and y are such a pair;  

position(x) and position(y): positions in th

position(x) < position(y).

estions:

1. What information do we store (move attrib

2. Using this information, which moves are b
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ur with city x and city y 
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ur with city x occupying 
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TSP: Move Attributes for 

1. Vector(x, y, position(x), position(y)) 

❚ To prevent any swap from resulting in a to

occupying position(x) and position(y) res

2. Vector(x, y, position(x), position(y)) 

❚ To prevent any swap from resulting in a to

position(x) or city y occupying position(y)

3. Vector(x, position(x)) 

❚ To prevent city x from returning to positio
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TSP: Move Attributes for 

4. City x 

❚ To prevent city x from moving LEFT.

5. City x 

❚ To prevent city x from moving.

6. Vector(y, position(y)) 

❚ To prevent city y from returning to positio



29

Petru Eles, 2010

Tabu-Classification
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for 

7. City y 

❚ To prevent city y from moving RIGHT.

8. City y 

❚ To prevent city y from moving.

9. City x and y 

❚ To prevent both cities from moving.
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TSP: Move Attributes for 

❚ Condition 1 is the least restrictive (preven

moves).

❚ Condition 9 is the most restrictive (preven

❚ Conditions 3, 4, 5 have increasing restrict
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n be relatively small.

to be larger.

 possibly good vicinity.
■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

τ has to be experimentally tuned.

❚ For highly restrictive tabu conditions τ ca

❚ For less restrictive tabu conditions τ has 

❚ τ too small ⇒  cycling

❚ τ too large ⇒  exploration driven away from
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Tabu list size:

❚ for conditions 4 and 7: nr_cities/4 ÷ nr_cit

❚ for conditions 5, 8, 9: nr_cities/5

❚ for conditions 1, 2, 3, 6: ≈nr_cities

Best results for conditions 4 and 7
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TSP: 

Long term memory maintains the number of tim

After a certain number of iterations a new starti

consisting of edges that have been visited less 
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TSP: Some Ex

100 city problem; optimal solution: C = 21247.

❚ Best solution C = 21352 (21255 for SA)

❚ Time = 210 s (Sun4/75) - (1340 s for SA)

❚ Standard deviation over 10 trials: 30.3; 

(randomly generated starting tour!)

❚ Average cost: 21372

57 city problem; optimal solution: C = 12955

❚ Optimal solution in 109 s (673 s for SA). 

(Sequent Balance 8000)
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	The size of the solution space is (n-1)!/2
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	All 2-neighbors of a certain solution are defined by the pair i, j so that i < j.
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	TSP: Move Attributes for Tabu-Classification
	We have performed a move as result of which several pairs of cities have swapped their position in the tour:
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	1. What information do we store (move attributes)?
	2. Using this information, which moves are becoming tabu?
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	1. Vector(x, y, position(x), position(y))
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	7. City y
	To prevent city y from moving RIGHT.

	8. City y
	To prevent city y from moving.

	9. City x and y
	To prevent both cities from moving.


	TSP: Move Attributes for Tabu-Classification
	Condition 1 is the least restrictive (prevents the smallest amount of moves).
	Condition 9 is the most restrictive (prevents a large amount of moves).
	Conditions 3, 4, 5 have increasing restrictiveness.

	TSP: Tabu List Size
	t has to be experimentally tuned.
	For highly restrictive tabu conditions t can be relatively small.
	For less restrictive tabu conditions t has to be larger.
	t too small ﬁ cycling
	t too large ﬁ exploration driven away from possibly good vicinity.
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	Tabu list size:
	for conditions 4 and 7: nr_cities/4 ¸ nr_cities/3
	for conditions 5, 8, 9: nr_cities/5
	for conditions 1, 2, 3, 6: ªnr_cities

	Best results for conditions 4 and 7

	TSP: Long Term Memory
	Long term memory maintains the number of times an edge is visited.
	After a certain number of iterations a new starting tour is generated consisting of edges that have been visited less frequently.
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	100 city problem; optimal solution: C = 21247.
	Best solution C = 21352 (21255 for SA)
	Time = 210 s (Sun4/75) - (1340 s for SA)
	Standard deviation over 10 trials: 30.3; (randomly generated starting tour!)
	Average cost: 21372

	57 city problem; optimal solution: C = 12955
	Optimal solution in 109 s (673 s for SA). (Sequent Balance 8000)



