
 Heuristic Algorithms for Combinatorial Optimization Problems 1

Petru Eles, 2010

Tabu Search - Examples

Petru Eles

Department of Computer and Information Science (IDA)
Linköpings universitet

http://www.ida.liu.se/~petel/

2

Petru Eles, 2010

u Search Examples
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Tab

Hardware/Software Partitioning

Travelling Salesman

3

Petru Eles, 2010

ftware Partitioning

em:

f there exists a direct

esponding processes

edge:

ability for hardware

rocess.

ommunication between pro-

ardware and software
Inp

■

Ou

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TS Examples: Hardware/So
ut:

The process graph: an abstract model of a syst

❚ Each node corresponds to a process.

❚ An edge connects two nodes if and only i

communication channel between the corr

❚ Weights are associated to each node and

- Node weights reflect the degree of suit

implementation of the corresponding p

- Edge weights measure the amount of c

cesses

tput:

Two subgraphs containing nodes assigned to h

respectively.

4

Petru Eles, 2010

ftware Partitioning

P11

P8

P9

P12

P10

Software

P14
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TS Examples: Hardware/So

P6

P4P1

P7

P5

P3

P2

Hardware

P13

5

Petru Eles, 2010

ftware Partitioning

 measure of the computation

 of operations in process i;

m inside process i;

re implementation;
We

W 2

Ki
C

Ki
U

Ki
P

Ki
SO
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TS Examples: Hardware/So
ight assigned to nodes:

i
N = M CL Ki

CL M U Ki
U M P Ki

P M SO Ki
SO×–×+×+×

L is equal to the RCL of process i, and thus is a
load of that process;

= Nr_o pi

Nr_kind_o pi
------------------------------- ; Ki

U is a measure of the uniformity

= Nr_o pi

L_pathi
------------------ ; Ki

P is a measure of potential parallelis

=
wop j

op j SPi∈
∑
Nr_o pi

----------------------------- ; Ki
SO captures suitability for softwa

6

Petru Eles, 2010

ing: Cost Function

2i
N






ts
Th

Re
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partition

e cost function:

Q1 W 1ij
E

ij() cut∈
∑× Q2

W 2ij
E

ij()∃
∑

W 1i
N

i() Hw∈
∑

N H
---------------------------------------× Q3

W 2i
N

i() Hw∈
∑

N H

W
i() Sw∈
∑

N S
-------------------–






×–+

strictions:

H_costi
i H∈
∑ Max

H≤

S_costi
i H∈
∑ Max

S≤

W i
N Lim1≥ i Hw∈⇒

W i
N Lim1≤ i Sw∈⇒

amount of
Hw-Sw comm.

Ratio com/cmp
of Hw part.

Difference of
average weigh

7

Petru Eles, 2010

ves&Neighborhood

lution xnow is the set of

g a node from its current
■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitioning: Mo

Moves:

❚ The neighborhood N(xnow) of a certain so

solutions which can be obtained by movin

partition to the other one.

Hw/Sw Partitioning: TS Algorithm
• Construct initial configuration xnow= (Hw0, Sw0)
start:
for each solution xk ∈ N(xnow) do

• Compute change of cost function ∆Ck = C(xk) - C(xnow)
end for
for each ∆Ck < 0, in increasing order of ∆Ck do

if not tabu(xk) or tabu_aspirated(xk) then
xnow = xk
goto accept

end if
end for
for each solution xk ∈ N(xnow) do

• Compute ∆C′k = ∆Ck + penalty(xk)
end for
for each ∆C′k in increasing order of ∆C′k do

if not tabu(xk) then
xnow = xk
goto accept

end if
end for
• Generate xnow by performing the least tabu move
accept:
if iterations since previous best solution < Nr_w_b then

goto start
end if
if restarts < Nr_r then

• Generate initial configuration xnow considering frequencies
goto start

end if
return solution corresponding to the minimum cost function
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

8

Petru Eles, 2010

9

Petru Eles, 2010

ning: TS Algorithm

ssible) is tried.

d the best possible non-tabu

u state is executed.
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitio

First attempt:

❚ An improving non-tabu move (the best po

Second attempt:

❚ Frequency based penalties are applied an

move is tried;

Third attempt:

❚ The move which is closest to leave the tab

10

Petru Eles, 2010

ning: The Tabu-List

u-list. Their reverse is tabu.

lem and of the

 with large tabu tenures.

 tabu restriction: stronger

 variable:

olution

iven interval.
■

■

■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitio

The last τ moves performed are stored in the tab

τ = tabu tenure (length of the tabu list)

The tabu tenure depends on the size of the prob

neighborhood: large problem sizes are coupled

The tabu tenure depends on the strength of the

restrictions are coupled with smaller sizes.

Tabu tenures are tuned experimentally or can be

❚ too small tenures ⇒ cycling

❚ too large tenures ⇒ deterioration of the s

❚ Recommended values: 7 ÷ 25

Tabu tenures can be selected randomly from a g

11

Petru Eles, 2010

ng: Tabu Aspiration

ion produced is better than
■
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitioni

The tabu status of a move is ignored if the solut

the best obtained so far.

12

Petru Eles, 2010

Long Term Memory

ns each node has spent in

 for diversification:

on, which favors the transfer
eir current partition.

y of occurrences of the node
rtain threshold.

e started from an initial
e encountered previously.

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitioning:

Long term memory stores the number of iteratio

the hardware partition. This information is used

1. Application of a penalty to the cost functi
of nodes that have spent a long time in th

2. A move is forbidden (tabu) if the frequenc
in its current partition is smaller than a ce

3. If the system is frozen a new search can b
configuration which is different from thos

13

Petru Eles, 2010

artitioning: Penalty

 k spent in the Hw partition.

 ∈ Hw

 ∈ Sw

Coefficients experimentally
set to:

❚ CH=0.4

❚ CS=0.15.
Th
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw P
e penalized cost function:

∆C'k ∆Ck

∆Ci
i

∑
Nr_of_nodes
------------------------------- pen k()×+=

where

pen k()

CH

Node_in_Hwk

N iter
----------------------------------×–

CS 1
Node_in_Hwk

N iter
----------------------------------– 

 ×–








=

❚ Node_in_Hwk : number of iterations node

❚ Niter : total number of iterations;

❚ Nr_of_nodes : total number of nodes;

if nodek

if nodek

14

Petru Eles, 2010

for Node Movement

ccurrences of the node in its

:

H

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

w/Sw Partitioning: Thresholds

A move is forbidden (tabu) if the frequency of o

current partition is smaller than the threshold:

Node_in_Hwk

N iter
---------------------------------- T H>

1
Node_in_Hwk

N iter
----------------------------------– 

  T S>

The thresholds have been experimentally set to

❚ TH=0.2

❚ TS=0.4.

if nodek ∈ Hw

if nodek ∈ Sw

15

Petru Eles, 2010

perimental Results

arch partitioning

CPU time (s)
(time with SA)

0.008
(0.23)

0.04
(1.27)

0.19
(2.33)

30.5
(769)
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitioning: Some Ex

Parameters and CPU times for Tabu Se
(SPARCstation 10)

numbers of
nodes

τ Nr_w_b Nr_r

20 7 30 0

40 7 50 0

100 7 50 0

400 18 850 2

Variation of cost function for TS partitioning with 400 nodes

1.95e+06

2e+06

2.05e+06

2.1e+06

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06
2.45e+06

0 500 1000 1500 2000 2500 3000

1.99e+06

1.992e+06

1.994e+06

1.996e+06

1.998e+06

2e+06

2.002e+06

2.004e+06

0 500 1000 1500 2500 3000

1.99e+06

1.992e+06

1.994e+06

1.996e+06

1.998e+06

2e+06

1920 1925 1930 1935 1940 1945 1950

2000
Number of iterations

C
os

t
fu

nc
ti

on
 v

al
ue

Number of iterations

Number of iterations

C
os

t
fu

nc
ti

on
 v

al
ue

C
os

t
fu

nc
ti

on
 v

al
ue

optimum at iteration 1941

optimum at iteration 1941

optimum at iteration 1941
Embedded Systems for Real-Time Applications: Analysis and Synthesis

Tabu Search

16

September 2010

17

Petru Eles, 2010

perimental Results

h 100 nodes

100 120 140

timum at iteration 76
■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitioning: Some Ex

Variation of cost function for TS partitioning wit

38000

40000

42000

44000

46000

48000

50000

52000

54000

56000

0 20 40 60 80

Number of iterations

C
os

t
fu

nc
ti

on
 v

al
ue

op

18

Petru Eles, 2010

perimental Results

1000400

SA

TS

KL

ithmic)
■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Hw/Sw Partitioning: Some Ex

Partitioning times with SA, TS, and KL

0.001

0.01

0.1

1

10

100

1000

10 10020 40

Number of graph nodes (logar

E
xe

cu
ti

on
 t

im
e

(s
)

(l
og

ar
it

hm
ic

)

19

Petru Eles, 2010

 Salesman Problem

then return to the initial city;
 find the tour with minimum

 graph where the nodes
nt the distance between
ered in traversing all cities.
A s
eac
dis

In g

Fin
rep
citi
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TS Examples: Travelling

alesman has to travel to a number of cities and
h city has to be visited once. The objective is to
tance.

raph theoretical formulation:

d the shortest Hamiltonian circuit in a complete
resent cities. The weights on the edges represe
es. The cost of the tour is the total distance cov

20

Petru Eles, 2010

TSP: Cost Function

ny tour can be represented

j.

 are adjacent cities in the

 that minimizes:
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

If the problem consists of n cities ci, i = 1, .., n, a

as a permutation of numbers 1 to n.

d(ci,cj) = d(cj,ci) is the distance between ci and c

Given a permutation π of the n cities, vi and vi+1

permutation. The permutation π has to be found

d vi vi 1+(,) d vn v1(,)+

i 1=

n 1–

∑

The size of the solution space is (n-1)!/2

21

Petru Eles, 2010

ves&Neighborhood

se tours obtained by

nt set of k links, in a way that

 the tour after two links have

imated in order to select the

y a sequence of such
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Mo

k-neighborhood of a given tour is defined by tho

removing k links and replacing them by a differe

maintains feasibility.

For k = 2, there is only one way of reconnecting

been removed.

❚ Size of the neighborhood: n(n - 1) / 2

❚ As opposed to SA, all alternatives are est

appropriate move.

❚ Any tour can be obtained from any other b

moves.

22

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Mo

5

3

1

Permutation:
[0 2 4 6 7 5 3 1]

23

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Mo

5

3

1

links (v3,v1), (v4,v6)
are removed

24

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Mo

5

3

1

Permutation:
[0 2 4 3 5 7 6 1]

25

Petru Eles, 2010

ves&Neighborhood

 in the permutation):

 by the pair i, j so that i < j.

ed incrementally:
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Mo

vi is the city in position i of the tour (ith position

remove (vi, vi+1) and (vj, vj+1)

connect vi to vj and vi+1 to vj+1

All 2-neighbors of a certain solution are defined

The change of the cost function can be comput

∆C = d(vi,vj) + d(vi+1,vj+1) - d(vi,vi+1) - d(vj,vj+1)

26

Petru Eles, 2010

Tabu-Classification

everal pairs of cities have

e tour before the swap.

utes)?

ecoming tabu?
■

Qu
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for

We have performed a move as result of which s

swapped their position in the tour:

❚ Cities x and y are such a pair;

position(x) and position(y): positions in th

position(x) < position(y).

estions:

1. What information do we store (move attrib

2. Using this information, which moves are b

27

Petru Eles, 2010

Tabu-Classification

ur with city x and city y

pectively.

ur with city x occupying

.

n(x).
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for

1. Vector(x, y, position(x), position(y))

❚ To prevent any swap from resulting in a to

occupying position(x) and position(y) res

2. Vector(x, y, position(x), position(y))

❚ To prevent any swap from resulting in a to

position(x) or city y occupying position(y)

3. Vector(x, position(x))

❚ To prevent city x from returning to positio

28

Petru Eles, 2010

Tabu-Classification

n(y).
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for

4. City x

❚ To prevent city x from moving LEFT.

5. City x

❚ To prevent city x from moving.

6. Vector(y, position(y))

❚ To prevent city y from returning to positio

29

Petru Eles, 2010

Tabu-Classification
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for

7. City y

❚ To prevent city y from moving RIGHT.

8. City y

❚ To prevent city y from moving.

9. City x and y

❚ To prevent both cities from moving.

30

Petru Eles, 2010

Tabu-Classification

ts the smallest amount of

ts a large amount of moves).

iveness.
Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Move Attributes for

❚ Condition 1 is the least restrictive (preven

moves).

❚ Condition 9 is the most restrictive (preven

❚ Conditions 3, 4, 5 have increasing restrict

31

Petru Eles, 2010

TSP: Tabu List Size

n be relatively small.

to be larger.

 possibly good vicinity.
■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

τ has to be experimentally tuned.

❚ For highly restrictive tabu conditions τ ca

❚ For less restrictive tabu conditions τ has

❚ τ too small ⇒ cycling

❚ τ too large ⇒ exploration driven away from

32

Petru Eles, 2010

TSP: Tabu List Size

ies/3
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

Tabu list size:

❚ for conditions 4 and 7: nr_cities/4 ÷ nr_cit

❚ for conditions 5, 8, 9: nr_cities/5

❚ for conditions 1, 2, 3, 6: ≈nr_cities

Best results for conditions 4 and 7

33

Petru Eles, 2010

Long Term Memory

es an edge is visited.

ng tour is generated

frequently.
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP:

Long term memory maintains the number of tim

After a certain number of iterations a new starti

consisting of edges that have been visited less

34

Petru Eles, 2010

perimental Results
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Tabu Search

TSP: Some Ex

100 city problem; optimal solution: C = 21247.

❚ Best solution C = 21352 (21255 for SA)

❚ Time = 210 s (Sun4/75) - (1340 s for SA)

❚ Standard deviation over 10 trials: 30.3;

(randomly generated starting tour!)

❚ Average cost: 21372

57 city problem; optimal solution: C = 12955

❚ Optimal solution in 109 s (673 s for SA).

(Sequent Balance 8000)

	Tabu Search - Examples
	Petru Eles
	Department of Computer and Information Science (IDA) Linköpings universitet http://www.ida.liu.se/~petel/
	CH=0.4
	CS=0.15.

	Tabu Search Examples
	Hardware/Software Partitioning
	Travelling Salesman

	TS Examples: Hardware/Software Partitioning
	The process graph: an abstract model of a system:
	Each node corresponds to a process.
	An edge connects two nodes if and only if there exists a direct communication channel between the corresponding processes
	Weights are associated to each node and edge:
	- Node weights reflect the degree of suitability for hardware implementation of the corresponding process.
	- Edge weights measure the amount of communication between processes

	Two subgraphs containing nodes assigned to hardware and software respectively.

	TS Examples: Hardware/Software Partitioning
	TS Examples: Hardware/Software Partitioning
	Hw/Sw Partitioning: Cost Function
	Hw/Sw Partitioning: Moves&Neighborhood
	Moves:
	The neighborhood N(xnow) of a certain solution xnow is the set of solutions which can be obtained by moving a node from its current partition to the other one.

	Hw/Sw Partitioning: TS Algorithm
	Hw/Sw Partitioning: TS Algorithm
	First attempt:
	An improving non-tabu move (the best possible) is tried.

	Second attempt:
	Frequency based penalties are applied and the best possible non-tabu move is tried;

	Third attempt:
	The move which is closest to leave the tabu state is executed.

	Hw/Sw Partitioning: The Tabu-List
	The last t moves performed are stored in the tabu-list. Their reverse is tabu.
	The tabu tenure depends on the size of the problem and of the neighborhood: large problem sizes are coupled with large tabu tenures.
	The tabu tenure depends on the strength of the tabu restriction: stronger restrictions are coupled with smaller sizes.
	Tabu tenures are tuned experimentally or can be variable:
	too small tenures ﬁ cycling
	too large tenures ﬁ deterioration of the solution
	Recommended values: 7 ¸ 25

	Tabu tenures can be selected randomly from a given interval.

	Hw/Sw Partitioning: Tabu Aspiration
	The tabu status of a move is ignored if the solution produced is better than the best obtained so far.

	Hw/Sw Partitioning: Long Term Memory
	Long term memory stores the number of iterations each node has spent in the hardware partition. This information is used for diversification:
	1. Application of a penalty to the cost function, which favors the transfer of nodes that have spent a long time in their current partition.
	2. A move is forbidden (tabu) if the frequency of occurrences of the node in its current partition is smaller than a certain threshold.
	3. If the system is frozen a new search can be started from an initial configuration which is different from those encountered previously.

	Hw/Sw Partitioning: Penalty
	Node_in_Hwk : number of iterations node k spent in the Hw partition.
	Niter : total number of iterations;
	Nr_of_nodes : total number of nodes;

	Hw/Sw Partitioning: Thresholds for Node Movement
	A move is forbidden (tabu) if the frequency of occurrences of the node in its current partition is smaller than the threshold:
	The thresholds have been experimentally set to:
	TH=0.2
	TS=0.4.

	Hw/Sw Partitioning: Some Experimental Results
	Hw/Sw Partitioning: Some Experimental Results
	Variation of cost function for TS partitioning with 100 nodes

	Hw/Sw Partitioning: Some Experimental Results
	Partitioning times with SA, TS, and KL

	TS Examples: Travelling Salesman Problem
	TSP: Cost Function
	If the problem consists of n cities ci, i = 1, .., n, any tour can be represented as a permutation of numbers 1 to n.
	Given a permutation p of the n cities, vi and vi+1 are adjacent cities in the permutation. The permutation p has to be found that minimizes:
	The size of the solution space is (n-1)!/2

	TSP: Moves&Neighborhood
	k-neighborhood of a given tour is defined by those tours obtained by removing k links and replacing them by a different set of k links, in a way that maintains feasibility.
	For k = 2, there is only one way of reconnecting the tour after two links have been removed.
	Size of the neighborhood: n(n - 1) / 2
	As opposed to SA, all alternatives are estimated in order to select the appropriate move.
	Any tour can be obtained from any other by a sequence of such moves.

	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	vi is the city in position i of the tour (ith position in the permutation):
	All 2-neighbors of a certain solution are defined by the pair i, j so that i < j.
	The change of the cost function can be computed incrementally:

	TSP: Move Attributes for Tabu-Classification
	We have performed a move as result of which several pairs of cities have swapped their position in the tour:
	Cities x and y are such a pair; position(x) and position(y): positions in the tour before the swap. position(x) < position(y).

	1. What information do we store (move attributes)?
	2. Using this information, which moves are becoming tabu?

	TSP: Move Attributes for Tabu-Classification
	1. Vector(x, y, position(x), position(y))
	To prevent any swap from resulting in a tour with city x and city y occupying position(x) and position(y) respectively.

	2. Vector(x, y, position(x), position(y))
	To prevent any swap from resulting in a tour with city x occupying position(x) or city y occupying position(y).

	3. Vector(x, position(x))
	To prevent city x from returning to position(x).

	TSP: Move Attributes for Tabu-Classification
	4. City x
	To prevent city x from moving LEFT.

	5. City x
	To prevent city x from moving.

	6. Vector(y, position(y))
	To prevent city y from returning to position(y).

	TSP: Move Attributes for Tabu-Classification
	7. City y
	To prevent city y from moving RIGHT.

	8. City y
	To prevent city y from moving.

	9. City x and y
	To prevent both cities from moving.

	TSP: Move Attributes for Tabu-Classification
	Condition 1 is the least restrictive (prevents the smallest amount of moves).
	Condition 9 is the most restrictive (prevents a large amount of moves).
	Conditions 3, 4, 5 have increasing restrictiveness.

	TSP: Tabu List Size
	t has to be experimentally tuned.
	For highly restrictive tabu conditions t can be relatively small.
	For less restrictive tabu conditions t has to be larger.
	t too small ﬁ cycling
	t too large ﬁ exploration driven away from possibly good vicinity.

	TSP: Tabu List Size
	Tabu list size:
	for conditions 4 and 7: nr_cities/4 ¸ nr_cities/3
	for conditions 5, 8, 9: nr_cities/5
	for conditions 1, 2, 3, 6: ªnr_cities

	Best results for conditions 4 and 7

	TSP: Long Term Memory
	Long term memory maintains the number of times an edge is visited.
	After a certain number of iterations a new starting tour is generated consisting of edges that have been visited less frequently.

	TSP: Some Experimental Results
	100 city problem; optimal solution: C = 21247.
	Best solution C = 21352 (21255 for SA)
	Time = 210 s (Sun4/75) - (1340 s for SA)
	Standard deviation over 10 trials: 30.3; (randomly generated starting tour!)
	Average cost: 21372

	57 city problem; optimal solution: C = 12955
	Optimal solution in 109 s (673 s for SA). (Sequent Balance 8000)

