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Neighborhood Search

Move  Neighbour

Solution
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Neighborhood Search
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= Problems:

0 Moves
- How do | get from one Solution to another?
0 Exploration strategy (you cannot try all alternatives!)

-  How many neighbors to try out? Move  Neighbour

- Which neighbor to select?
-  What sequence of moves to follow?

0 When to stop?
Solution
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General Nelghborhood Search Strategy

= neighborhood N(x) of a solution x is a set of solutions that can be reached

from x by a simple operation (move).

construct initial solution xg; x"°% = x

repeat
Select new, acceptable solution x' O N(x"°%)
Xnow —_ X

until stopping criterion met
return solution corresponding to the minimum cost function
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Greedy Heuristics
mom o e e ey T

When is a solution acceptable?

construct initial solution xg; x"°% = x

repeat
Select new, acceptable solution x' O N(x"°%)
Y NOW  — yr

until stopping criterion met
return solution corresponding to the minimum cost function
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Greedy Heuristics
mom o e e ey T

When is a solution acceptable?

construct initial solution xg; x"°% = x

repeat
Select new, acceptable solution x' O N(x"°%)
Y NOW  — yr

until stopping criterion met
return solution corresponding to the minimum cost function

s Greedy heuristics always move from the current solution to the best

neighboring solution.
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Greedy Heuristics

2

Local optimum
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Hill Climbing

Local optimum

N

In order to escape local minima you Global optimum

have to allow uphill moves!
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Slmulated Annealing Strategy

= SAis based on neighborhood search

s SA is astrategy which occasionally allows uphill moves.

o Uphill moves in SA are applied in a controlled manner
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The Physical Analogy
mom o e e ey T

= Metropolis - 1953: simulation of cooling of material in a heath bath;

0 A solid material is heated past its melting point and then cooled back

Into a solid state (annealing).
o The final structure depends on how the cooling is performed
- slow cooling — large crystal (low energy)

- fast cooling — imperfections (high energy)
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The Physical Analogy
mom o e e ey T

= Metropolis - 1953: simulation of cooling of material in a heath bath;

0 A solid material is heated past its melting point and then cooled back

Into a solid state (annealing).
o The final structure depends on how the cooling is performed
- slow cooling — large crystal (low energy)

- fast cooling — imperfections (high energy)

= Metropolis’ algorithm simulates the change in energy of the system when

subjected to the cooling process; the system converges to a final “frozen”

state of a certain energy.
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The Physical Analogy

= Metropolis regarded the material as a system of particles.
= His simulation follows the energy of the particles with changing temperature

= According to thermodynamics:

0 at temperature T, the probability of an increase in energy of AE is:

—AE/ kT

pP(AE) = e k is the Boltzmann constant
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The Metropolis Simulation
moom o o w T SRR S

set initial temperature
repeat
for a predetermined number of times do
generate a perturbation
If energy decreased then
accept new state
else
accept new state with probability p(AE)
end if
end for
decrease temperature
until frozen
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Simulated Annealing Algorithm
moom o o w T SRR S

Kirkpatrick - 1983: The Metropolis simulation can be used to explore the
feasible solutions of a problem with the objective of
converging to an optimal solution.

Thermodynamic simulation SA Optimization
System states Feasible solutions
Energy Cost
Change of state Neighboring solution
Temperature Control parameter
Frozen state Solution (close to optimal)
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Simulated Annealing Algorithm

construct initial solution xq; x"°% = xg
set initial temperature T = TI
repeat

fori=1to TL do

generate randomly a neighbouring solution x' O N(x"°%)
compute change of cost AC = C(x') - C(x"°%)
If AC <0then

x"OW = x' (accept new state)

else
Generate g =random(0,1)
if g < 2T then x"OW = x' end if
end if
end for

set new temperature T = f(T)
until stopping criterion

return solution corresponding to the minimum cost function

Heuristic Algorithms for Combinatorial Optimization Problems
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Theoretical Foundation
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= The behaviour of SA can be modeled using Markov chains.

= For agiven temperature, one homogeneous chain
0 transition probability p;; between state i and state j depends only on the

two states.

= But we have a sequence of different temperatures

4 N\

a number of different a single non-
homogeneous chains homogeneous chain
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Theoretical Foundation
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For optimal convergence:

= With homogeneous chains:

- the number of iterations at any temperature has to be at least

guadratic in the size of the solution space.

Solution space is exponential!

= With non-homogeneous chain:
- cooling schedule which guarantees asymptotic convergence:

t, = c/log(1+k) c: depth of the deepest local minimum

Number of iterations exponential!
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Theoretical Foundation
S T T TR Rt e B mimiell B BEnts n B mim m N |

For optimal convergence:
= With homogeneous chains:

- the number of iterations at any temperature has to be at least

guadratic in the size of the solution space.

Solution space is exponential!

= With non-homogeneous chain:
- cooling schedule which guarantees asymptotic convergence:
t, = c/log(1+k) c: depth of the deepest local minimum

Number of iterations exponential!

= These results are of no practical importance.
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SA Parameters
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now — y

construct initial solution Xg; X
set initial temperature T = TI
repeat
fori=1to TL do
generate randomly a neighbouring solution x" I N(X
compute change of cost AC = C(x') - C(x"°%)
If AC <0then
x"OW = x' (accept new state)
else

Generate q =random(0,1)
AT then x"OW = x' end if

now)

ifg< e
end if
end for
set new temperature T = f(T)
until stopping criterion
return solution corresponding to the minimum cost function
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SA Parameters
T T S e el il B Bmte w B mm m B

Two kinds of decisions have to be taken heuristically:

m Generic decisions

o Can be taken without a deep insight into the particular problem.

0 Aretuned experimentally.

= Problem specific decisions

0 Arerelated to the nature of the particular problem.

0 Need a good understanding of the problem
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Generic Decisions
T T T S Rt e " il N Bt omtm = B |

= initial temperature (TI)

= temperature length (TL) cooling schedule

= cooling ratio (function f)

= Stopping criterion
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Problem Specific Decisions
mom o e e ey T

s space of feasible solutions and neighborhood structure
= cost function (C)

= Starting solution
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Initial Temperature

= Tl must be high enough -in order the final solution to Be |naepenaent o!

the starting one.

Are there any rules?
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Initial Temperature

= Tl must be high enough -in order the final solution to Be |n5epenaent o!

the starting one.

Are there any rules?

o If maximal difference in cost between neighboring solutions is known,
Tl can be calculated so that increases of that magnitude are initially

accepted with sufficiently large probability:
-AC, /T
pin - €

0 Before starting the effective algorithm a heating procedure is run:

- thetemperatureisincreased until the proportion of accepted moves

to total number of moves reaches a required value.
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Initial Temperature

= Tl must be high enough -in order the final solution to Be |n5epenaent o!

the starting one.

Are there any rules?

o If maximal difference in cost between neighboring solutions is known,
Tl can be calculated so that increases of that magnitude are initially

accepted with sufficiently large probability:
-AC, /T
pin - €

0 Before starting the effective algorithm a heating procedure is run:

- thetemperatureisincreased until the proportion of accepted moves

to total number of moves reaches a required value.

But, in any case, experimental tuning is needed!
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Temperature Length and Cooling Ratio
moom o o w T SRR S

The rate at which temperature is reduced is governed by:

= Temperature length (TL): number of iterations at a given temperature

= Cooling ratio (f): rate at which temperature is reduced

/ large number of iterations at few temperatures
Alternatives\

small number of iterations at many temperatures
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Temperature Length and Cooling Ratio
moom o o w T SRR S

= In practice, very often:
- f(T) = aT, where a is a constant, 0.8 <a<0.99

(most often closer to 0.99)

'

usually, cooling is slow
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Temperature Length and Cooling Ratio
moom o o w T SRR S

= How long to stay at a temperature?

0 The number of iteration at each temperature depends on:
- size of the neighborhood
- size of the solution space.
0 The number of iterations may vary from temperature to temperature:

- Itis important to spend sufficiently long time at lower temperatures.

'

iIncrease the TL as you go down with T
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Temperature Length and Cooling Ratio
moom o o w T SRR S

0 TL can be also determined using feedback from the SA process:

- Accept a certain number of moves before decreasing temperature.

}

small number of iterations at high temperature
large number of iterations at small temperatures

- Impose a maximum number of iterations at a temperature!
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Temperature Length and Cooling Ratio
moom o o w T SRR S

0 An extreme approach:

- Execute one single (!) iteration at a temperature.

- Reduce temperature extremely slowly:

f(M)=T/L+PB),  with B suitably small.
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Stopping Criterion

In theory temperature decreases to zero.

Practically, at very small temperatures the probability to accept uphill moves

Is almost zero.

Criteria for stopping:

0 A given minimum value of the temperature has been reached.

0 A certain number of iterations (or temperatures) has passed without

acceptance of a new solution.

0 The proportion of accepted moves relative to attempted moves drops

below a given limit.

0 A specified number of total iterations has been executed
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Problem Specific Decisions
mom o e e ey T

= Neighborhood structure

0 The neighborhood structure depends on the solution space and on the

selected moves.
- Every solution should be reachable from every other.
- Keep the neighborhood small:

Can be adequately explored in few iterations. :)
but

No big improvements can be expected from one move. :(
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Problem Specific Decisions
mom o e e ey T

s Cost function

0 Should be calculated quickly - possibly incrementally.

= The starting solution

o Generated randomly.

0 Good solution (possibly produced by another heuristics);

In this case the starting temperature should be lower.

o Starting solution shouldn’t be “too good” because it’s difficult to

escape from its neighborhood.
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Postprocessing
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= You keep the best ever result as the “final” solution.

s Make sure that the local minimum close to the “final” solution is reached:

run a small, quick greedy optimization.
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Simulated Annealing Examples
mom o e e ey T

= Travelling Salesman

= Hardware/Software Partitioning
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SA Examples: Travelling Salesman Problem

A salesman has to travel to a number of cities and then return to the initial city;

each city has to be visited once. The objective is to find the tour with minimum
distance.

In graph theoretical formulation:

Find the shortest Hamiltonian circuit in a complete graph where the nodes
represent cities. The weights on the edges represent the distance between
cities. The cost of the tour is the total distance covered in traversing all cities.
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TSP: Cost Function

N T SR L T TR N Bt e~ § |
If the problem consists of n cities ¢, 1 =1, .., n, any tour can be represented

as a permutation of numbers 1to n.

d(cj,c;) = d(cj,c;) Is the distance between c; and c;.

Given a permutation mtof the n cities, v; and v;,; are adjacent cities in the

permutation. The permutation 1thas to be found that minimizes:

n—1

Z dv,v,, ) +dv, v{)

i=1

The size of the solution space is (n-1)!/2
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TSP: Moves&Neighborhood

k-neighborhood of a given tour is defined by those tours obtained by
removing k links and replacing them by a different set of k links, in a way that

maintains feasibility.

If kK > 2, there are several ways of reconnecting after the k links have been

removed.

For k =2, there is only one way of reconnecting the tour after two links have

been removed.
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TSP: Moves&Neighborhood

s With k =2:

o Size of the neighborhood: n(n - 1)/2

0 Any tour can be obtained from any other by a sequence of such

MmOoves.
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TSP: Moves&Neighborhood

Permutation:
[02467531]
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TSP: Moves&Neighborhood

links (v3,v;), (V4,Vg) 4
are removed 3
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TSP: Moves&Neighborhood

Permutation:
[02435761] 3 4
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TSP: Moves&Neighborhood

moom o o w T SRR S
vj is the city in position i of the tour (ith position in the permutation):

remove (vj, Vi+1) and (vj, Vj+1)

}

connect v; to vj and Vi1 10 Vj4q

All 2-neighbors of a certain solution are defined by the pair i, j so thati <j.
A neighboring solution is generated by randomly generating i and j.
The change of the cost function can be computed incrementally:

AC =d(vj,vj) + d(Vit1.Vje1) - d(Vi,Vie) - d(V),Vje1)
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TSP: Generic Parameters and Results
S T T TR Rt e B mimiell B BEnts n B mim m N |

= 100 city problem; optimal solution: C = 21247.

0 Best solution for Tl = 1500, a0=0.63: C = 21331
- Time =310 s (Sun4/75)
- Standard deviation over 10 trials: 30.3;

- Average cost: 21372

0 Best solution for Tl = 1500, a=0.90: C = 21255.
- Time = 1340 s (Sun4/75)
- Standard deviation over 10 trials: 27.5;

- Average cost: 21284
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TSP: Generic Parameters and Results
S T T TR Rt e B mimiell B BEnts n B mim m N |

s 57 city problem; optimal solution: C = 12955

0 Optimal solution for 15% of runs.
o Time 673 s (Sequent Balance 8000)

o All non-optimal results within less than 1% of optimum.
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SA Examples: Hardware/Software Partitioning
nout: moom o o w T SRR S

s The process graph: an abstract model of a system:
0 Each node corresponds to a process.

0 An edge connects two nodes if and only if there exists a direct
communication channel between the corresponding processes

0 Weights are associated to each node and edge:
- Node weights reflect the degree of suitability for hardware
Implementation of the corresponding process.

- Edge weights measure the amount of communication between pro-
cesses

Output:

= Two subgraphs containing nodes assigned to hardware and software
respectively.
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SA Examples: Hardware/Software Partitioning

Hardware @ @ @

Software




SA Examples: Hardware/Software Partitioning

: : moom o o w T SRR S
Weight assigned to nodes:

woN = MCLx KCL+ MU x KU+ MP x KP — MSO x K50

ket 1s equal to the RCL (relative computation load) of process i, and thus is a
measure of the computation load of that process;

_ Nr_op;

K = g K IS a measure of the uniformity of operations in process i;
P = Z;ZZZ . kr 1S a measure of potential parallelism inside process i;
% WOPJ‘ . - . .
S T captures suitability for software implementation;
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Hw/Sw Partitioning: Cost Function
moom o o w T SRR S

The cost function:

g w2k
N

4 N w2
le W]lE-'Fsz(l) Hw ! _Q3x|]l) Hw _ (@O LSw ]
(ij) Ucut ’ NH E NH NS E
amount of Ratiocom/cmp Difference of
Hw-Sw comm. of Hw part. average weights

Restrictions:

H
;{H_costi < Max
i

S
%L[S_costi < Max
i

wN>Liml O i O Hw

WN<Liml O iOSw
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Hw/Sw Partltlomng Moves&Nelghborhood

= Simple moves:

0 A nodeis randomly selected for being moved to the other partition.

= Improved move:

0 Together with the randomly selected node also some of its direct
neighbors are moved; a direct neighbor is moved together with the se-

lected node if its movement improves the cost function and does not

violate any constraint.

Heuristic Algorithms for Combinatorial Optimization Problems
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Hw/Sw Partltlomng Moves&Nelghborhood

= A negative side effect of the improved move (revealed by experiences):
0 repeated move of the same or similar node groups from one partition

to the other O areduction of the spectrum of visited solutions.

'

0 Movement of node groups is combined with that of individual nodes:

Nodes are moved in groups with a certain probability p;

experimentally: p = 0.75.
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Hw/Sw Partitioning:

Generic Parameters and Results
B e R Bhnts B B nimtal N Bt n B ontm n N

Cooling schedules

number of Tl TL a
nodes SM | IM | SM | IM | SM | IM
20 400 | 400 | 90 | 75 | 0.96 | 0.95
40 500 | 450 | 200 | 150 | 0.98 | 0.97
100 500 | 450 | 500 | 200 | 0.98 | 0.97
400 1400 | 1200 | 7500 | 2750 | 0.998 | 0.995

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

53
Petru Eles, 2010



Hw/Sw Partitioning: Generic Parameters and Results
moom o o w T SRR S

Partitioning time with SA
(on SPARCstation 10)

CPU time (s)
number of nodes speedup
SM M
20 0.28 0.23 22%
40 1.57 1.27 24%
100 7.88 2.33 238%
400 4036 769 425%
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Hw/Sw Partitioning: Generic Parameters and Results
moom o o w T SRR S
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Hw/Sw Partitioning: Generic Parameters and Results

= Variation of cost function during SA with sian|e moves !or 100 noaes

75000

70000t optimum at iteration 3071
65000t

Cost function value
N () W N
¥, (an) i o
() [a) o o
() [a) o o
() [an) o o

40000~
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Number of iterations
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Hw/Sw Partitioning: Generic Parameters and Results

= Variation of cost function during SA with im'provea moves !or 100 noaes
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Conclusions
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SA is based on neighborhood search and allows uphill moves.

It has a strong analogy to the simulation of cooling of material.

Uphill moves are allowed with a temperature dependent probability.

Generic and problem-specific decisions have to be taken at implementation.

Experimental tuning is very important!
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	- size of the neighborhood
	- size of the solution space.
	The number of iterations may vary from temperature to temperature:

	- It is important to spend sufficiently long time at lower temperatures. increase the TL as you go down with T


	Temperature Length and Cooling Ratio
	TL can be also determined using feedback from the SA process:
	- Accept a certain number of moves before decreasing temperature.
	- Impose a maximum number of iterations at a temperature!

	Temperature Length and Cooling Ratio
	An extreme approach:
	- Execute one single (!) iteration at a temperature.
	- Reduce temperature extremely slowly:

	Stopping Criterion
	In theory temperature decreases to zero.
	Practically, at very small temperatures the probability to accept uphill moves is almost zero.
	Criteria for stopping:
	A given minimum value of the temperature has been reached.
	A certain number of iterations (or temperatures) has passed without acceptance of a new solution.
	The proportion of accepted moves relative to attempted moves drops below a given limit.
	A specified number of total iterations has been executed


	Problem Specific Decisions
	Neighborhood structure
	The neighborhood structure depends on the solution space and on the selected moves.
	- Every solution should be reachable from every other.
	- Keep the neighborhood small:


	Problem Specific Decisions
	Cost function
	Should be calculated quickly - possibly incrementally.

	The starting solution
	Generated randomly.
	Good solution (possibly produced by another heuristics); in this case the starting temperature should be lower.
	Starting solution shouldn’t be “too good” because it’s difficult to escape from its neighborhood.


	Postprocessing
	You keep the best ever result as the “final” solution.
	Make sure that the local minimum close to the “final” solution is reached: run a small, quick greedy optimization.

	Simulated Annealing Examples
	Travelling Salesman
	Hardware/Software Partitioning

	SA Examples: Travelling Salesman Problem
	TSP: Cost Function
	If the problem consists of n cities ci, i = 1, .., n, any tour can be represented as a permutation of numbers 1 to n.
	Given a permutation p of the n cities, vi and vi+1 are adjacent cities in the permutation. The permutation p has to be found that minimizes:
	The size of the solution space is (n-1)!/2

	TSP: Moves&Neighborhood
	k-neighborhood of a given tour is defined by those tours obtained by removing k links and replacing them by a different set of k links, in a way that maintains feasibility.
	If k > 2, there are several ways of reconnecting after the k links have been removed.
	For k = 2, there is only one way of reconnecting the tour after two links have been removed.

	TSP: Moves&Neighborhood
	With k = 2:
	Size of the neighborhood: n(n - 1)/2
	Any tour can be obtained from any other by a sequence of such moves.


	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	vi is the city in position i of the tour (ith position in the permutation):
	All 2-neighbors of a certain solution are defined by the pair i, j so that i < j.
	A neighboring solution is generated by randomly generating i and j.
	The change of the cost function can be computed incrementally:

	TSP: Generic Parameters and Results
	100 city problem; optimal solution: C = 21247.
	Best solution for TI = 1500, a=0.63: C = 21331
	- Time = 310 s (Sun4/75)
	- Standard deviation over 10 trials: 30.3;
	- Average cost: 21372
	Best solution for TI = 1500, a=0.90: C = 21255.

	- Time = 1340 s (Sun4/75)
	- Standard deviation over 10 trials: 27.5;
	- Average cost: 21284


	TSP: Generic Parameters and Results
	57 city problem; optimal solution: C = 12955
	Optimal solution for 15% of runs.
	Time 673 s (Sequent Balance 8000)
	All non-optimal results within less than 1% of optimum.


	SA Examples: Hardware/Software Partitioning
	The process graph: an abstract model of a system:
	Each node corresponds to a process.
	An edge connects two nodes if and only if there exists a direct communication channel between the corresponding processes
	Weights are associated to each node and edge:
	- Node weights reflect the degree of suitability for hardware implementation of the corresponding process.
	- Edge weights measure the amount of communication between processes

	Two subgraphs containing nodes assigned to hardware and software respectively.

	SA Examples: Hardware/Software Partitioning
	SA Examples: Hardware/Software Partitioning
	Hw/Sw Partitioning: Cost Function
	Hw/Sw Partitioning: Moves&Neighborhood
	Simple moves:
	A node is randomly selected for being moved to the other partition.

	Improved move:
	Together with the randomly selected node also some of its direct neighbors are moved; a direct neighbor is moved together with the selected node if its movement improves the cost function and does not violate any constraint.


	Hw/Sw Partitioning: Moves&Neighborhood
	A negative side effect of the improved move (revealed by experiences):
	repeated move of the same or similar node groups from one partition to the other ﬁ a reduction of the spectrum of visited solutions.
	Movement of node groups is combined with that of individual nodes:


	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Variation of cost function during SA with simple moves for 100 nodes

	Hw/Sw Partitioning: Generic Parameters and Results
	Variation of cost function during SA with improved moves for 100 nodes

	Conclusions
	SA is based on neighborhood search and allows uphill moves.
	It has a strong analogy to the simulation of cooling of material.
	Uphill moves are allowed with a temperature dependent probability.
	Generic and problem-specific decisions have to be taken at implementation.
	Experimental tuning is very important!


