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Ne

Problems:

❚ Moves

- How do I get from one Solution to anot

❚ Exploration strategy (you cannot try all al

- How many neighbors to try out?

- Which neighbor to select?

- What sequence of moves to follow?

❚ When to stop?
Solu
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General Neighborho

neighborhood N(x) of a solution x is a set of sol

from x by a simple operation (move).

construct initial solution x0; xnow = x0
repeat

Select new, acceptable solution x′
xnow  = x′

until stopping criterion met
return solution corresponding to the min
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en is a solution acceptable?

construct initial solution x0; xnow = x0
repeat

Select new, acceptable solution x′
xnow  = x′

until stopping criterion met
return solution corresponding to the min
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t solution to the best 
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en is a solution acceptable?

Greedy heuristics always move from the curren

neighboring solution.

construct initial solution x0; xnow = x0
repeat

Select new, acceptable solution x′
xnow  = x′

until stopping criterion met
return solution corresponding to the min
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Local optimum
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Hill Climbing

Global optimum
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❚ In order to escape local minima you 

have to allow uphill moves!

Local optimum
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Simulated 

SA is based on neighborhood search 

SA is a strategy which occasionally allows uphi

❚ Uphill moves in SA are applied in a contro
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oling is performed
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Th

Metropolis - 1953: simulation of cooling of ma

❚ A solid material is heated past its melting

into a solid state (annealing).

❚ The final structure depends on how the co

- slow cooling → large crystal (low ener

- fast cooling → imperfections (high ene
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Th

Metropolis - 1953: simulation of cooling of ma

❚ A solid material is heated past its melting

into a solid state (annealing).

❚ The final structure depends on how the co

- slow cooling → large crystal (low ener

- fast cooling → imperfections (high ene

Metropolis’ algorithm simulates the change in e

subjected to the cooling process; the system co

state of a certain energy.
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 particles. 

s with changing temperature 

ease in energy of ∆E is:

he Boltzmann constant
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Th

Metropolis regarded the material as a system of

His simulation follows the energy of the particle

According to thermodynamics:

❚ at temperature T, the probability of an incr

p ∆E( ) e
∆E– kT⁄

= k is t
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robability p(∆E)
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The Me

set initial temperature
repeat

for a predetermined number of tim
generate a perturbation
if energy decreased then

accept new state
else

accept new state with p
end if

end for
decrease temperature

until frozen
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nnealing Algorithm

be used to explore the 
 with the objective of 
ion.

imization

 solutions

ring solution

parameter

 (close to optimal)
Kir
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Simulated A

kpatrick - 1983: The Metropolis simulation can 
feasible solutions of a problem
converging to an optimal solut

Thermodynamic simulation SA Opt

System states Feasible

Energy Cost

Change of state Neighbo

Temperature Control 

Frozen state Solution
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nnealing Algorithm

g solution x′ ∈  N(xnow)
′) - C(xnow)

)

 end if

 cost function
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Simulated A

construct initial solution x0; xnow = x0
set initial temperature T = TI
repeat

for i = 1 to TL do
generate randomly a neighbourin
compute change of cost ∆C = C(x
if  ∆C  ≤ 0 then

xnow = x′   (accept new state
else

Generate q = random(0,1)

if q < then xnow = x′
end if

end for
set new temperature T = f(T)

until stopping criterion
return solution corresponding to the minimum

e
∆C– T⁄
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The

The behaviour of SA can be modeled using Mar

For a given temperature, one homogeneous cha

❚ transition probability pij between state i an

two states. 

But we have a sequence of different temperatur

a number of different 
homogeneous chains

a single non-
homogeneou
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The

r optimal convergence:

With homogeneous chains:

- the number of iterations at any temper

quadratic in the size of the solution sp

Solution space is exponential!

With non-homogeneous chain: 

- cooling schedule which guarantees as

tk = c/log(1+k) c: depth of the de

Number of iterations exponential!
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The

r optimal convergence:

With homogeneous chains:

- the number of iterations at any temper

quadratic in the size of the solution sp

Solution space is exponential!

With non-homogeneous chain: 

- cooling schedule which guarantees as

tk = c/log(1+k) c: depth of the de

Number of iterations exponential!

These results are of no practical importance.
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SA Parameters

 solution x′ ∈  N(xnow)
) - C(xnow)

)

end if

 cost function
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construct initial solution x0; xnow = x0
set initial temperature T = TI
repeat

for i = 1 to TL do
generate randomly a neighbouring
compute change of cost ∆C = C(x′
if  ∆C  ≤ 0 then

xnow = x′   (accept new state
else

Generate q = random(0,1)

if q < then xnow = x′ 
end if

end for
set new temperature T = f(T)

until stopping criterion
return solution corresponding to the minimum

e
∆C– T⁄
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SA Parameters

lly:

he particular problem.

problem.
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o kinds of decisions have to be taken heuristica

Generic decisions

❚ Can be taken without a deep insight into t

❚ Are tuned experimentally.

Problem specific decisions

❚ Are related to the nature of the particular 

❚ Need a good understanding of the problem
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initial temperature (TI) 

temperature length (TL) 

cooling ratio (function f) 

stopping criterion

cooling schedu
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tructure 
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Problem

space of feasible solutions and neighborhood s

cost function (C) 

starting solution
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TI must be high enough - in order the final solut

the starting one.

 there any rules?
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hboring solutions is known,  

hat magnitude are initially 
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TI must be high enough - in order the final solut

the starting one.

 there any rules?

❚ If maximal difference in cost between neig

TI can be calculated so that increases of t

accepted with sufficiently large probabilit

pin e=
∆Cmax– T⁄

❚ Before starting the effective algorithm a h

- the temperature is increased until the p

to total number of moves reaches a req
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Initial Temperature
ion to be independent of 

hboring solutions is known,  

hat magnitude are initially 

y: 

eating procedure is run:

roportion of accepted moves  

uired value.
■
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Bu
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TI must be high enough - in order the final solut

the starting one.

 there any rules?

❚ If maximal difference in cost between neig

TI can be calculated so that increases of t

accepted with sufficiently large probabilit

pin e=
∆Cmax– T⁄

❚ Before starting the effective algorithm a h

- the temperature is increased until the p

to total number of moves reaches a req

t, in any case, experimental tuning is needed!
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 and Cooling Ratio

ed by:

t a given temperature

duced

few temperatures

 many temperatures
Th
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■

Alt
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Temperature Length

e rate at which temperature is reduced is govern

Temperature length (TL): number of iterations a

Cooling ratio (f): rate at which temperature is re

ernatives

large number of iterations at 

small number of iterations at
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 and Cooling Ratio

.8 ≤ a ≤ 0.99 

ser to 0.99)
■
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Temperature Length

In practice, very often:

-  f(T) = aT, where a is a constant, 0

(most often clo

usually, cooling is slow
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 and Cooling Ratio

re depends on:

mperature to temperature:

g time at lower temperatures. 

with T
■
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Temperature Length

How long to stay at a temperature? 

❚ The number of iteration at each temperatu

- size of the neighborhood

- size of the solution space.

❚ The number of iterations may vary from te

- It is important to spend sufficiently lon

increase the TL as you go down 
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 and Cooling Ratio

k from the SA process:

re decreasing temperature.

h temperature 
ll temperatures 

s at a temperature!
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Temperature Length

❚ TL can be also determined using feedbac

- Accept a certain number of moves befo

small number of iterations at hig
large number of iterations at sma

- Impose a maximum number of iteration
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 and Cooling Ratio

perature.

 

tably small.
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Temperature Length

❚ An extreme approach: 

- Execute one single (!) iteration at a tem

- Reduce temperature extremely slowly:

f(T) = T/(1 + β), with β sui
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Stopping Criterion

bility to accept uphill moves 

e has been reached.

tures) has passed without 

e to attempted moves drops 

 been executed
■

■
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In theory temperature decreases to zero.

Practically, at very small temperatures the proba

is almost zero.

Criteria for stopping:

❚ A given minimum value of the temperatur

❚ A certain number of iterations (or tempera

acceptance of a new solution.

❚ The proportion of accepted moves relativ

below a given limit.

❚ A specified number of total iterations has
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 Specific Decisions

he solution space and on the  

 every other.

terations.  :)

ed from one move. :(
■
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Problem

Neighborhood structure 

❚ The neighborhood structure depends on t

selected moves.

- Every solution should be reachable from

- Keep the neighborhood small: 

Can be adequately explored in few i
but
No big improvements can be expect
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 Specific Decisions

crementally.

ther heuristics); 

ld be lower.

 because it’s difficult to 
■
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Problem

Cost function

❚ Should be calculated quickly - possibly in

The starting solution

❚ Generated randomly.

❚ Good solution (possibly produced by ano

in this case the starting temperature shou

❚ Starting solution shouldn’t be “too good”

escape from its neighborhood.
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Postprocessing

tion. 

final” solution is reached:  
■
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You keep the best ever result as the “final” solu

Make sure that the local minimum close to the “

run a small, quick greedy optimization.
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Simulated A

Travelling Salesman

Hardware/Software Partitioning
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 Salesman Problem

then return to the initial city; 
 find the tour with minimum 

 graph where the nodes 
nt the distance between 
ered in traversing all cities.
A s
eac
dis

In g

Fin
rep
citi
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SA Examples: Travelling

alesman has to travel to a number of cities and 
h city has to be visited once. The objective is to
tance.

raph theoretical formulation: 

d the shortest Hamiltonian circuit in a complete
resent cities. The weights on the edges represe
es. The cost of the tour is the total distance cov
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TSP: Cost Function

ny tour can be represented 

j. 

 are adjacent cities in the  

 that minimizes: 
■

■

 

■
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If the problem consists of n cities ci, i = 1, .., n, a

as a permutation of numbers 1 to n.

d(ci,cj) = d(cj,ci) is the distance between ci and c

Given a permutation π of the n cities, vi and vi+1

permutation. The permutation π has to be found

d vi vi 1+( , ) d vn v1( , )+

i 1=

n 1–

∑

The size of the solution space is (n-1)!/2
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se tours obtained by 

nt set of k links, in a way that 

fter the k links have been 

 the tour after two links have 
■

 

■

 

■
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TSP: Mo

k-neighborhood of a given tour is defined by tho

removing k links and replacing them by a differe

maintains feasibility.

If k > 2, there are several ways of reconnecting a

removed.

For k = 2, there is only one way of reconnecting

been removed.
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y a sequence of such 
■
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TSP: Mo

With k = 2: 

❚ Size of the neighborhood:  n(n - 1)/2 

❚ Any tour can be obtained from any other b

moves.
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ves&Neighborhood

0
2

4

6
7
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TSP: Mo

5

3

1

Permutation:
[0 2 4 6 7 5 3 1]



42

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7
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TSP: Mo

5

3

1

links (v3,v1), (v4,v6)
are removed
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ves&Neighborhood

0
2

4

6
7
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TSP: Mo

5

3

1

Permutation:
[0 2 4 3 5 7 6 1]
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ves&Neighborhood

 in the permutation):

 by the pair i, j so that i < j.

ly generating i and j.

ed incrementally:
■

 

■

■
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TSP: Mo

vi is the city in position i of the tour (ith position

remove (vi, vi+1) and (vj, vj+1)

connect vi to vj and vi+1 to vj+1

All 2-neighbors of a certain solution are defined

A neighboring solution is generated by random

The change of the cost function can be comput

∆C = d(vi,vj) + d(vi+1,vj+1) - d(vi,vi+1) - d(vj,vj+1)



45

Petru Eles, 2010

meters and Results
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255.
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TSP: Generic Para

100 city problem; optimal solution: C = 21247.

❚ Best solution for TI = 1500, α=0.63: C = 21

- Time = 310 s (Sun4/75)

- Standard deviation over 10 trials: 30.3;

- Average cost: 21372

❚ Best solution for TI = 1500, α=0.90: C = 21

- Time = 1340 s (Sun4/75)

- Standard deviation over 10 trials: 27.5;

- Average cost: 21284
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 of optimum.
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TSP: Generic Para

57 city problem; optimal solution: C = 12955

❚ Optimal solution for 15% of runs.

❚ Time 673 s (Sequent Balance 8000)

❚ All non-optimal results within less than 1%
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f there exists a direct 
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edge:

ability for hardware 

rocess.
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SA Examples: Hardware/So
ut:

The process graph: an abstract model of a syst

❚ Each node corresponds to a process.

❚ An edge connects two nodes if and only i

communication channel between the corr

❚ Weights are associated to each node and 

- Node weights reflect the degree of suit

implementation of the corresponding p

- Edge weights measure the amount of c

cesses

tput:

Two subgraphs containing nodes assigned to h

respectively.
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P11

P8

P9

P12

P10

Software

P14
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SA Examples: Hardware/So

P6

P4P1

P7

P5

P3

P2

Hardware

P13
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) of process i, and thus is a 
ess;

 of operations in process i;

m inside process i;

re implementation;
We

W 2

Ki
C

Ki
U

Ki
P

Ki
SO
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

SA Examples: Hardware/So
ight assigned to nodes:

i
N = M CL Ki

CL M U Ki
U M P Ki

P M SO Ki
SO×–×+×+×  

L is equal to the RCL (relative computation load
measure of the computation load of that proc

= Nr_o pi

Nr_kind_o pi
-------------------------------  ; Ki

U is a measure of the uniformity

= Nr_o pi

L_pathi
------------------ ; Ki

P is a measure of potential parallelis

=
wop j

op j SPi∈
∑
Nr_o pi

----------------------------- ; Ki
SO captures suitability for softwa
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ing: Cost Function 

2i
N

----------





ts
Th

Re
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Hw/Sw Partition

e cost function:

Q1 W 1ij
E

ij( ) cut∈
∑× Q2

W 2ij
E

ij( )∃
∑

W 1i
N

----------------------
i( ) Hw∈
∑

N H
---------------------------------------× Q3

W 2i
N

i( ) Hw∈
∑

N H
------------------------------

W
i( ) Sw∈
∑

N S
-------------------–






×–+

strictions:

H_costi
i H∈
∑ Max

H≤

S_costi
i H∈
∑ Max

S≤

W i
N Lim1≥ i Hw∈⇒

W i
N Lim1≤ i Sw∈⇒

amount of 
Hw-Sw comm.

Ratio com/cmp 
of Hw part.

Difference of 
average weigh



51

Petru Eles, 2010

ves&Neighborhood 

ved to the other partition.

 also some of its direct 

 moved together with the se-

 cost function and does not 
■
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Hw/Sw Partitioning: Mo

Simple moves:

❚ A node is randomly selected for being mo

Improved move:

❚ Together with the randomly selected node

neighbors are moved; a direct neighbor is

lected node if its movement improves the

violate any constraint.
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ves&Neighborhood 

vealed by experiences):

e groups from one partition 

 of visited solutions.

ith that of individual nodes: 

 probability p;
■
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Hw/Sw Partitioning: Mo

A negative side effect of the improved move (re

❚ repeated move of the same or similar nod

to the other ⇒  a reduction of the spectrum

❚ Movement of node groups is combined w

Nodes are moved in groups with a certain

experimentally: p = 0.75.
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s

a

IM SM IM

75 0.96 0.95

150 0.98 0.97

200 0.98 0.97

2750 0.998 0.995
H
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w/Sw Partitioning: Generic Para

Cooling schedule

number of 
nodes

TI TL

SM IM SM

20 400 400 90

40 500 450 200

100 500 450 500

400 1400 1200 7500
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A

speedup

22%

24%

238%

425%
H
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w/Sw Partitioning: Generic Para

Partitioning time with S
(on SPARCstation 10)

number of nodes
CPU time (s)

SM IM

20 0.28 0.23

40 1.57 1.27

100 7.88 2.33

400 4036 769
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w/Sw Partitioning: Generic Para
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 at iteration 3071
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w/Sw Partitioning: Generic Para
Variation of cost function during SA with simple
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Conclusions

s uphill moves. 

ling of material. 

pendent probability. 

 be taken at implementation. 
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SA is based on neighborhood search and allow

It has a strong analogy to the simulation of coo

Uphill moves are allowed with a temperature de

Generic and problem-specific decisions have to

Experimental tuning is very important!
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	- Which neighbor to select?
	- What sequence of moves to follow?
	When to stop?



	General Neighborhood Search Strategy
	neighborhood N(x) of a solution x is a set of solutions that can be reached from x by a simple operation (move).

	Greedy Heuristics
	Greedy Heuristics
	Greedy heuristics always move from the current solution to the best neighboring solution.

	Greedy Heuristics
	Hill Climbing
	In order to escape local minima you have to allow uphill moves!

	Simulated Annealing Strategy
	SA is based on neighborhood search
	SA is a strategy which occasionally allows uphill moves.
	Uphill moves in SA are applied in a controlled manner


	The Physical Analogy
	Metropolis - 1953: simulation of cooling of material in a heath bath;
	A solid material is heated past its melting point and then cooled back into a solid state (annealing).
	The final structure depends on how the cooling is performed
	- slow cooling Æ large crystal (low energy)
	- fast cooling Æ imperfections (high energy)


	The Physical Analogy
	Metropolis - 1953: simulation of cooling of material in a heath bath;
	A solid material is heated past its melting point and then cooled back into a solid state (annealing).
	The final structure depends on how the cooling is performed
	- slow cooling Æ large crystal (low energy)
	- fast cooling Æ imperfections (high energy)

	Metropolis’ algorithm simulates the change in energy of the system when subjected to the cooling process; the system converges to a final “frozen” state of a certain energy.

	The Physical Analogy
	Metropolis regarded the material as a system of particles.
	His simulation follows the energy of the particles with changing temperature
	According to thermodynamics:
	at temperature T, the probability of an increase in energy of DE is:


	The Metropolis Simulation
	Simulated Annealing Algorithm
	Simulated Annealing Algorithm
	Theoretical Foundation
	The behaviour of SA can be modeled using Markov chains.
	For a given temperature, one homogeneous chain
	transition probability pij between state i and state j depends only on the two states.

	But we have a sequence of different temperatures

	Theoretical Foundation
	With homogeneous chains:
	- the number of iterations at any temperature has to be at least quadratic in the size of the solution space.

	With non-homogeneous chain:
	- cooling schedule which guarantees asymptotic convergence: tk = c/log(1+k) c: depth of the deepest local minimum Number of iterations exponential!


	Theoretical Foundation
	With homogeneous chains:
	- the number of iterations at any temperature has to be at least quadratic in the size of the solution space.

	With non-homogeneous chain:
	- cooling schedule which guarantees asymptotic convergence: tk = c/log(1+k) c: depth of the deepest local minimum Number of iterations exponential!

	These results are of no practical importance.

	SA Parameters
	SA Parameters
	Generic decisions
	Can be taken without a deep insight into the particular problem.
	Are tuned experimentally.

	Problem specific decisions
	Are related to the nature of the particular problem.
	Need a good understanding of the problem


	Generic Decisions
	initial temperature (TI)
	temperature length (TL)
	cooling ratio (function f)
	stopping criterion

	Problem Specific Decisions
	space of feasible solutions and neighborhood structure
	cost function (C)
	starting solution

	Initial Temperature
	TI must be high enough - in order the final solution to be independent of the starting one.

	Initial Temperature
	TI must be high enough - in order the final solution to be independent of the starting one.
	If maximal difference in cost between neighboring solutions is known, TI can be calculated so that increases of that magnitude are initially accepted with sufficiently large probability:
	Before starting the effective algorithm a heating procedure is run:
	- the temperature is increased until the proportion of accepted moves to total number of moves reaches a required value.


	Initial Temperature
	TI must be high enough - in order the final solution to be independent of the starting one.
	If maximal difference in cost between neighboring solutions is known, TI can be calculated so that increases of that magnitude are initially accepted with sufficiently large probability:
	Before starting the effective algorithm a heating procedure is run:
	- the temperature is increased until the proportion of accepted moves to total number of moves reaches a required value.


	Temperature Length and Cooling Ratio
	Temperature length (TL): number of iterations at a given temperature
	Cooling ratio (f): rate at which temperature is reduced

	Temperature Length and Cooling Ratio
	In practice, very often:
	- f(T) = aT, where a is a constant, 0.8 £ a £ 0.99 (most often closer to 0.99)


	Temperature Length and Cooling Ratio
	How long to stay at a temperature?
	The number of iteration at each temperature depends on:
	- size of the neighborhood
	- size of the solution space.
	The number of iterations may vary from temperature to temperature:

	- It is important to spend sufficiently long time at lower temperatures. increase the TL as you go down with T


	Temperature Length and Cooling Ratio
	TL can be also determined using feedback from the SA process:
	- Accept a certain number of moves before decreasing temperature.
	- Impose a maximum number of iterations at a temperature!

	Temperature Length and Cooling Ratio
	An extreme approach:
	- Execute one single (!) iteration at a temperature.
	- Reduce temperature extremely slowly:

	Stopping Criterion
	In theory temperature decreases to zero.
	Practically, at very small temperatures the probability to accept uphill moves is almost zero.
	Criteria for stopping:
	A given minimum value of the temperature has been reached.
	A certain number of iterations (or temperatures) has passed without acceptance of a new solution.
	The proportion of accepted moves relative to attempted moves drops below a given limit.
	A specified number of total iterations has been executed


	Problem Specific Decisions
	Neighborhood structure
	The neighborhood structure depends on the solution space and on the selected moves.
	- Every solution should be reachable from every other.
	- Keep the neighborhood small:


	Problem Specific Decisions
	Cost function
	Should be calculated quickly - possibly incrementally.

	The starting solution
	Generated randomly.
	Good solution (possibly produced by another heuristics); in this case the starting temperature should be lower.
	Starting solution shouldn’t be “too good” because it’s difficult to escape from its neighborhood.


	Postprocessing
	You keep the best ever result as the “final” solution.
	Make sure that the local minimum close to the “final” solution is reached: run a small, quick greedy optimization.

	Simulated Annealing Examples
	Travelling Salesman
	Hardware/Software Partitioning

	SA Examples: Travelling Salesman Problem
	TSP: Cost Function
	If the problem consists of n cities ci, i = 1, .., n, any tour can be represented as a permutation of numbers 1 to n.
	Given a permutation p of the n cities, vi and vi+1 are adjacent cities in the permutation. The permutation p has to be found that minimizes:
	The size of the solution space is (n-1)!/2

	TSP: Moves&Neighborhood
	k-neighborhood of a given tour is defined by those tours obtained by removing k links and replacing them by a different set of k links, in a way that maintains feasibility.
	If k > 2, there are several ways of reconnecting after the k links have been removed.
	For k = 2, there is only one way of reconnecting the tour after two links have been removed.

	TSP: Moves&Neighborhood
	With k = 2:
	Size of the neighborhood: n(n - 1)/2
	Any tour can be obtained from any other by a sequence of such moves.


	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	vi is the city in position i of the tour (ith position in the permutation):
	All 2-neighbors of a certain solution are defined by the pair i, j so that i < j.
	A neighboring solution is generated by randomly generating i and j.
	The change of the cost function can be computed incrementally:

	TSP: Generic Parameters and Results
	100 city problem; optimal solution: C = 21247.
	Best solution for TI = 1500, a=0.63: C = 21331
	- Time = 310 s (Sun4/75)
	- Standard deviation over 10 trials: 30.3;
	- Average cost: 21372
	Best solution for TI = 1500, a=0.90: C = 21255.

	- Time = 1340 s (Sun4/75)
	- Standard deviation over 10 trials: 27.5;
	- Average cost: 21284


	TSP: Generic Parameters and Results
	57 city problem; optimal solution: C = 12955
	Optimal solution for 15% of runs.
	Time 673 s (Sequent Balance 8000)
	All non-optimal results within less than 1% of optimum.


	SA Examples: Hardware/Software Partitioning
	The process graph: an abstract model of a system:
	Each node corresponds to a process.
	An edge connects two nodes if and only if there exists a direct communication channel between the corresponding processes
	Weights are associated to each node and edge:
	- Node weights reflect the degree of suitability for hardware implementation of the corresponding process.
	- Edge weights measure the amount of communication between processes

	Two subgraphs containing nodes assigned to hardware and software respectively.

	SA Examples: Hardware/Software Partitioning
	SA Examples: Hardware/Software Partitioning
	Hw/Sw Partitioning: Cost Function
	Hw/Sw Partitioning: Moves&Neighborhood
	Simple moves:
	A node is randomly selected for being moved to the other partition.

	Improved move:
	Together with the randomly selected node also some of its direct neighbors are moved; a direct neighbor is moved together with the selected node if its movement improves the cost function and does not violate any constraint.


	Hw/Sw Partitioning: Moves&Neighborhood
	A negative side effect of the improved move (revealed by experiences):
	repeated move of the same or similar node groups from one partition to the other ﬁ a reduction of the spectrum of visited solutions.
	Movement of node groups is combined with that of individual nodes:


	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Variation of cost function during SA with simple moves for 100 nodes

	Hw/Sw Partitioning: Generic Parameters and Results
	Variation of cost function during SA with improved moves for 100 nodes

	Conclusions
	SA is based on neighborhood search and allows uphill moves.
	It has a strong analogy to the simulation of cooling of material.
	Uphill moves are allowed with a temperature dependent probability.
	Generic and problem-specific decisions have to be taken at implementation.
	Experimental tuning is very important!


