
 Heuristic Algorithms for Combinatorial Optimization Problems 1

Petru Eles, 2010

Simulated Annealing

Petru Eles

Department of Computer and Information Science (IDA)
Linköpings universitet

http://www.ida.liu.se/~petel/

2

Petru Eles, 2010

Outline

■

■

■

■

■

■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Neighborhood Search

Greedy Heuristics

Simulated Annealing: the Physical Analogy

Simulated Annealing Algorithm

Theoretical Foundation

Simulated Annealing Parameters

Generic and Problem Specific Decisions

Simulated annealing Examples

❚ Traveling Salesman problem

❚ Hardware/Software Partitioning

3

Petru Eles, 2010

ighborhood Search

Move

tion

Neighbour
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Ne

Solu

4

Petru Eles, 2010

ighborhood Search

her?

ternatives!)

Move

tion

Neighbour
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Ne

Problems:

❚ Moves

- How do I get from one Solution to anot

❚ Exploration strategy (you cannot try all al

- How many neighbors to try out?

- Which neighbor to select?

- What sequence of moves to follow?

❚ When to stop?
Solu

5

Petru Eles, 2010

od Search Strategy

utions that can be reached

 ∈ N(xnow)

imum cost function
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

General Neighborho

neighborhood N(x) of a solution x is a set of sol

from x by a simple operation (move).

construct initial solution x0; xnow = x0
repeat

Select new, acceptable solution x′
xnow = x′

until stopping criterion met
return solution corresponding to the min

6

Petru Eles, 2010

Greedy Heuristics

 ∈ N(xnow)

imum cost function
Wh
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

en is a solution acceptable?

construct initial solution x0; xnow = x0
repeat

Select new, acceptable solution x′
xnow = x′

until stopping criterion met
return solution corresponding to the min

7

Petru Eles, 2010

Greedy Heuristics

t solution to the best

 ∈ N(xnow)

imum cost function
Wh

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

en is a solution acceptable?

Greedy heuristics always move from the curren

neighboring solution.

construct initial solution x0; xnow = x0
repeat

Select new, acceptable solution x′
xnow = x′

until stopping criterion met
return solution corresponding to the min

8

Petru Eles, 2010

Greedy Heuristics
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Local optimum

9

Petru Eles, 2010

Hill Climbing

Global optimum
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

❚ In order to escape local minima you

have to allow uphill moves!

Local optimum

10

Petru Eles, 2010

Annealing Strategy

ll moves.

lled manner
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Simulated

SA is based on neighborhood search

SA is a strategy which occasionally allows uphi

❚ Uphill moves in SA are applied in a contro

11

Petru Eles, 2010

e Physical Analogy

terial in a heath bath;

 point and then cooled back

oling is performed

gy)

rgy)
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Th

Metropolis - 1953: simulation of cooling of ma

❚ A solid material is heated past its melting

into a solid state (annealing).

❚ The final structure depends on how the co

- slow cooling → large crystal (low ener

- fast cooling → imperfections (high ene

12

Petru Eles, 2010

e Physical Analogy

terial in a heath bath;

 point and then cooled back

oling is performed

gy)

rgy)

nergy of the system when

nverges to a final “frozen”
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Th

Metropolis - 1953: simulation of cooling of ma

❚ A solid material is heated past its melting

into a solid state (annealing).

❚ The final structure depends on how the co

- slow cooling → large crystal (low ener

- fast cooling → imperfections (high ene

Metropolis’ algorithm simulates the change in e

subjected to the cooling process; the system co

state of a certain energy.

13

Petru Eles, 2010

e Physical Analogy

 particles.

s with changing temperature

ease in energy of ∆E is:

he Boltzmann constant
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Th

Metropolis regarded the material as a system of

His simulation follows the energy of the particle

According to thermodynamics:

❚ at temperature T, the probability of an incr

p ∆E() e
∆E– kT⁄

= k is t

14

Petru Eles, 2010

tropolis Simulation

es do

robability p(∆E)
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

The Me

set initial temperature
repeat

for a predetermined number of tim
generate a perturbation
if energy decreased then

accept new state
else

accept new state with p
end if

end for
decrease temperature

until frozen

15

Petru Eles, 2010

nnealing Algorithm

be used to explore the
 with the objective of
ion.

imization

 solutions

ring solution

parameter

 (close to optimal)
Kir
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Simulated A

kpatrick - 1983: The Metropolis simulation can
feasible solutions of a problem
converging to an optimal solut

Thermodynamic simulation SA Opt

System states Feasible

Energy Cost

Change of state Neighbo

Temperature Control

Frozen state Solution

16

Petru Eles, 2010

nnealing Algorithm

g solution x′ ∈ N(xnow)
′) - C(xnow)

)

 end if

 cost function
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Simulated A

construct initial solution x0; xnow = x0
set initial temperature T = TI
repeat

for i = 1 to TL do
generate randomly a neighbourin
compute change of cost ∆C = C(x
if ∆C ≤ 0 then

xnow = x′ (accept new state
else

Generate q = random(0,1)

if q < then xnow = x′
end if

end for
set new temperature T = f(T)

until stopping criterion
return solution corresponding to the minimum

e
∆C– T⁄

17

Petru Eles, 2010

oretical Foundation

kov chains.

in

d state j depends only on the

es

s chain
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

The

The behaviour of SA can be modeled using Mar

For a given temperature, one homogeneous cha

❚ transition probability pij between state i an

two states.

But we have a sequence of different temperatur

a number of different
homogeneous chains

a single non-
homogeneou

18

Petru Eles, 2010

oretical Foundation

ature has to be at least

ace.

ymptotic convergence:

epest local minimum
Fo

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

The

r optimal convergence:

With homogeneous chains:

- the number of iterations at any temper

quadratic in the size of the solution sp

Solution space is exponential!

With non-homogeneous chain:

- cooling schedule which guarantees as

tk = c/log(1+k) c: depth of the de

Number of iterations exponential!

19

Petru Eles, 2010

oretical Foundation

ature has to be at least

ace.

ymptotic convergence:

epest local minimum
Fo

■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

The

r optimal convergence:

With homogeneous chains:

- the number of iterations at any temper

quadratic in the size of the solution sp

Solution space is exponential!

With non-homogeneous chain:

- cooling schedule which guarantees as

tk = c/log(1+k) c: depth of the de

Number of iterations exponential!

These results are of no practical importance.

20

Petru Eles, 2010

SA Parameters

 solution x′ ∈ N(xnow)
) - C(xnow)

)

end if

 cost function
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

construct initial solution x0; xnow = x0
set initial temperature T = TI
repeat

for i = 1 to TL do
generate randomly a neighbouring
compute change of cost ∆C = C(x′
if ∆C ≤ 0 then

xnow = x′ (accept new state
else

Generate q = random(0,1)

if q < then xnow = x′
end if

end for
set new temperature T = f(T)

until stopping criterion
return solution corresponding to the minimum

e
∆C– T⁄

21

Petru Eles, 2010

SA Parameters

lly:

he particular problem.

problem.
Tw

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

o kinds of decisions have to be taken heuristica

Generic decisions

❚ Can be taken without a deep insight into t

❚ Are tuned experimentally.

Problem specific decisions

❚ Are related to the nature of the particular

❚ Need a good understanding of the problem

22

Petru Eles, 2010

Generic Decisions

le
■

■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

initial temperature (TI)

temperature length (TL)

cooling ratio (function f)

stopping criterion

cooling schedu

23

Petru Eles, 2010

 Specific Decisions

tructure
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Problem

space of feasible solutions and neighborhood s

cost function (C)

starting solution

24

Petru Eles, 2010

Initial Temperature
ion to be independent of
■

Are
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TI must be high enough - in order the final solut

the starting one.

 there any rules?

25

Petru Eles, 2010

Initial Temperature
ion to be independent of

hboring solutions is known,

hat magnitude are initially

y:

eating procedure is run:

roportion of accepted moves

uired value.
■

Are
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TI must be high enough - in order the final solut

the starting one.

 there any rules?

❚ If maximal difference in cost between neig

TI can be calculated so that increases of t

accepted with sufficiently large probabilit

pin e=
∆Cmax– T⁄

❚ Before starting the effective algorithm a h

- the temperature is increased until the p

to total number of moves reaches a req

26

Petru Eles, 2010

Initial Temperature
ion to be independent of

hboring solutions is known,

hat magnitude are initially

y:

eating procedure is run:

roportion of accepted moves

uired value.
■

Are

Bu
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TI must be high enough - in order the final solut

the starting one.

 there any rules?

❚ If maximal difference in cost between neig

TI can be calculated so that increases of t

accepted with sufficiently large probabilit

pin e=
∆Cmax– T⁄

❚ Before starting the effective algorithm a h

- the temperature is increased until the p

to total number of moves reaches a req

t, in any case, experimental tuning is needed!

27

Petru Eles, 2010

 and Cooling Ratio

ed by:

t a given temperature

duced

few temperatures

 many temperatures
Th

■

■

Alt
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Temperature Length

e rate at which temperature is reduced is govern

Temperature length (TL): number of iterations a

Cooling ratio (f): rate at which temperature is re

ernatives

large number of iterations at

small number of iterations at

28

Petru Eles, 2010

 and Cooling Ratio

.8 ≤ a ≤ 0.99

ser to 0.99)
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Temperature Length

In practice, very often:

- f(T) = aT, where a is a constant, 0

(most often clo

usually, cooling is slow

29

Petru Eles, 2010

 and Cooling Ratio

re depends on:

mperature to temperature:

g time at lower temperatures.

with T
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Temperature Length

How long to stay at a temperature?

❚ The number of iteration at each temperatu

- size of the neighborhood

- size of the solution space.

❚ The number of iterations may vary from te

- It is important to spend sufficiently lon

increase the TL as you go down

30

Petru Eles, 2010

 and Cooling Ratio

k from the SA process:

re decreasing temperature.

h temperature
ll temperatures

s at a temperature!
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Temperature Length

❚ TL can be also determined using feedbac

- Accept a certain number of moves befo

small number of iterations at hig
large number of iterations at sma

- Impose a maximum number of iteration

31

Petru Eles, 2010

 and Cooling Ratio

perature.

tably small.

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Temperature Length

❚ An extreme approach:

- Execute one single (!) iteration at a tem

- Reduce temperature extremely slowly:

f(T) = T/(1 + β), with β sui

32

Petru Eles, 2010

Stopping Criterion

bility to accept uphill moves

e has been reached.

tures) has passed without

e to attempted moves drops

 been executed
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

In theory temperature decreases to zero.

Practically, at very small temperatures the proba

is almost zero.

Criteria for stopping:

❚ A given minimum value of the temperatur

❚ A certain number of iterations (or tempera

acceptance of a new solution.

❚ The proportion of accepted moves relativ

below a given limit.

❚ A specified number of total iterations has

33

Petru Eles, 2010

 Specific Decisions

he solution space and on the

 every other.

terations. :)

ed from one move. :(
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Problem

Neighborhood structure

❚ The neighborhood structure depends on t

selected moves.

- Every solution should be reachable from

- Keep the neighborhood small:

Can be adequately explored in few i
but
No big improvements can be expect

34

Petru Eles, 2010

 Specific Decisions

crementally.

ther heuristics);

ld be lower.

 because it’s difficult to
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Problem

Cost function

❚ Should be calculated quickly - possibly in

The starting solution

❚ Generated randomly.

❚ Good solution (possibly produced by ano

in this case the starting temperature shou

❚ Starting solution shouldn’t be “too good”

escape from its neighborhood.

35

Petru Eles, 2010

Postprocessing

tion.

final” solution is reached:
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

You keep the best ever result as the “final” solu

Make sure that the local minimum close to the “

run a small, quick greedy optimization.

36

Petru Eles, 2010

nnealing Examples
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Simulated A

Travelling Salesman

Hardware/Software Partitioning

37

Petru Eles, 2010

 Salesman Problem

then return to the initial city;
 find the tour with minimum

 graph where the nodes
nt the distance between
ered in traversing all cities.
A s
eac
dis

In g

Fin
rep
citi
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

SA Examples: Travelling

alesman has to travel to a number of cities and
h city has to be visited once. The objective is to
tance.

raph theoretical formulation:

d the shortest Hamiltonian circuit in a complete
resent cities. The weights on the edges represe
es. The cost of the tour is the total distance cov

38

Petru Eles, 2010

TSP: Cost Function

ny tour can be represented

j.

 are adjacent cities in the

 that minimizes:
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

If the problem consists of n cities ci, i = 1, .., n, a

as a permutation of numbers 1 to n.

d(ci,cj) = d(cj,ci) is the distance between ci and c

Given a permutation π of the n cities, vi and vi+1

permutation. The permutation π has to be found

d vi vi 1+(,) d vn v1(,)+

i 1=

n 1–

∑

The size of the solution space is (n-1)!/2

39

Petru Eles, 2010

ves&Neighborhood

se tours obtained by

nt set of k links, in a way that

fter the k links have been

 the tour after two links have
■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Mo

k-neighborhood of a given tour is defined by tho

removing k links and replacing them by a differe

maintains feasibility.

If k > 2, there are several ways of reconnecting a

removed.

For k = 2, there is only one way of reconnecting

been removed.

40

Petru Eles, 2010

ves&Neighborhood

y a sequence of such
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Mo

With k = 2:

❚ Size of the neighborhood: n(n - 1)/2

❚ Any tour can be obtained from any other b

moves.

41

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Mo

5

3

1

Permutation:
[0 2 4 6 7 5 3 1]

42

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Mo

5

3

1

links (v3,v1), (v4,v6)
are removed

43

Petru Eles, 2010

ves&Neighborhood

0
2

4

6
7

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Mo

5

3

1

Permutation:
[0 2 4 3 5 7 6 1]

44

Petru Eles, 2010

ves&Neighborhood

 in the permutation):

 by the pair i, j so that i < j.

ly generating i and j.

ed incrementally:
■

■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Mo

vi is the city in position i of the tour (ith position

remove (vi, vi+1) and (vj, vj+1)

connect vi to vj and vi+1 to vj+1

All 2-neighbors of a certain solution are defined

A neighboring solution is generated by random

The change of the cost function can be comput

∆C = d(vi,vj) + d(vi+1,vj+1) - d(vi,vi+1) - d(vj,vj+1)

45

Petru Eles, 2010

meters and Results

331

255.
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Generic Para

100 city problem; optimal solution: C = 21247.

❚ Best solution for TI = 1500, α=0.63: C = 21

- Time = 310 s (Sun4/75)

- Standard deviation over 10 trials: 30.3;

- Average cost: 21372

❚ Best solution for TI = 1500, α=0.90: C = 21

- Time = 1340 s (Sun4/75)

- Standard deviation over 10 trials: 27.5;

- Average cost: 21284

46

Petru Eles, 2010

meters and Results

 of optimum.
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

TSP: Generic Para

57 city problem; optimal solution: C = 12955

❚ Optimal solution for 15% of runs.

❚ Time 673 s (Sequent Balance 8000)

❚ All non-optimal results within less than 1%

47

Petru Eles, 2010

ftware Partitioning

em:

f there exists a direct

esponding processes

edge:

ability for hardware

rocess.

ommunication between pro-

ardware and software
Inp

■

Ou

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

SA Examples: Hardware/So
ut:

The process graph: an abstract model of a syst

❚ Each node corresponds to a process.

❚ An edge connects two nodes if and only i

communication channel between the corr

❚ Weights are associated to each node and

- Node weights reflect the degree of suit

implementation of the corresponding p

- Edge weights measure the amount of c

cesses

tput:

Two subgraphs containing nodes assigned to h

respectively.

48

Petru Eles, 2010

ftware Partitioning

P11

P8

P9

P12

P10

Software

P14
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

SA Examples: Hardware/So

P6

P4P1

P7

P5

P3

P2

Hardware

P13

49

Petru Eles, 2010

ftware Partitioning

) of process i, and thus is a
ess;

 of operations in process i;

m inside process i;

re implementation;
We

W 2

Ki
C

Ki
U

Ki
P

Ki
SO
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

SA Examples: Hardware/So
ight assigned to nodes:

i
N = M CL Ki

CL M U Ki
U M P Ki

P M SO Ki
SO×–×+×+×

L is equal to the RCL (relative computation load
measure of the computation load of that proc

= Nr_o pi

Nr_kind_o pi
------------------------------- ; Ki

U is a measure of the uniformity

= Nr_o pi

L_pathi
------------------ ; Ki

P is a measure of potential parallelis

=
wop j

op j SPi∈
∑
Nr_o pi

----------------------------- ; Ki
SO captures suitability for softwa

50

Petru Eles, 2010

ing: Cost Function

2i
N






ts
Th

Re
Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Hw/Sw Partition

e cost function:

Q1 W 1ij
E

ij() cut∈
∑× Q2

W 2ij
E

ij()∃
∑

W 1i
N

i() Hw∈
∑

N H
---------------------------------------× Q3

W 2i
N

i() Hw∈
∑

N H

W
i() Sw∈
∑

N S
-------------------–






×–+

strictions:

H_costi
i H∈
∑ Max

H≤

S_costi
i H∈
∑ Max

S≤

W i
N Lim1≥ i Hw∈⇒

W i
N Lim1≤ i Sw∈⇒

amount of
Hw-Sw comm.

Ratio com/cmp
of Hw part.

Difference of
average weigh

51

Petru Eles, 2010

ves&Neighborhood

ved to the other partition.

 also some of its direct

 moved together with the se-

 cost function and does not
■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Hw/Sw Partitioning: Mo

Simple moves:

❚ A node is randomly selected for being mo

Improved move:

❚ Together with the randomly selected node

neighbors are moved; a direct neighbor is

lected node if its movement improves the

violate any constraint.

52

Petru Eles, 2010

ves&Neighborhood

vealed by experiences):

e groups from one partition

 of visited solutions.

ith that of individual nodes:

 probability p;
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

Hw/Sw Partitioning: Mo

A negative side effect of the improved move (re

❚ repeated move of the same or similar nod

to the other ⇒ a reduction of the spectrum

❚ Movement of node groups is combined w

Nodes are moved in groups with a certain

experimentally: p = 0.75.

53

Petru Eles, 2010

meters and Results

s

a

IM SM IM

75 0.96 0.95

150 0.98 0.97

200 0.98 0.97

2750 0.998 0.995
H

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

w/Sw Partitioning: Generic Para

Cooling schedule

number of
nodes

TI TL

SM IM SM

20 400 400 90

40 500 450 200

100 500 450 500

400 1400 1200 7500

54

Petru Eles, 2010

meters and Results

A

speedup

22%

24%

238%

425%
H

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

w/Sw Partitioning: Generic Para

Partitioning time with S
(on SPARCstation 10)

number of nodes
CPU time (s)

SM IM

20 0.28 0.23

40 1.57 1.27

100 7.88 2.33

400 4036 769

55

Petru Eles, 2010

meters and Results

1000400

IM
SM

thmic)
H

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

w/Sw Partitioning: Generic Para

0.1

1

10

100

1000

10000

10 100

E
xe

cu
ti

on
 t

im
e

(s
)

(l
og

ar
it

hm
ic

)

20 40

Number of graph nodes (logari

56

Petru Eles, 2010

meters and Results
 moves for 100 nodes

5000 6000 7000

 at iteration 3071
H
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

w/Sw Partitioning: Generic Para
Variation of cost function during SA with simple

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 1000 2000 3000 4000

Number of iterations

C
os

t
fu

nc
ti

on
 v

al
ue

optimum

57

Petru Eles, 2010

meters and Results
ed moves for 100 nodes

1000 1200 1400

um at iteration 1006
H
■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

w/Sw Partitioning: Generic Para
Variation of cost function during SA with improv

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 200 400 600 800

Number of iterations

C
os

t
fu

nc
ti

on
 v

al
ue

optim

58

Petru Eles, 2010

Conclusions

s uphill moves.

ling of material.

pendent probability.

 be taken at implementation.
■

■

■

■

■

Heuristic Algorithms for Combinatorial Optimization Problems

Simulated Annealing

SA is based on neighborhood search and allow

It has a strong analogy to the simulation of coo

Uphill moves are allowed with a temperature de

Generic and problem-specific decisions have to

Experimental tuning is very important!

	Simulated Annealing
	Petru Eles
	Department of Computer and Information Science (IDA) Linköpings universitet http://www.ida.liu.se/~petel/

	Outline
	Neighborhood Search
	Greedy Heuristics
	Simulated Annealing: the Physical Analogy
	Simulated Annealing Algorithm
	Theoretical Foundation
	Simulated Annealing Parameters
	Generic and Problem Specific Decisions
	Simulated annealing Examples
	Traveling Salesman problem
	Hardware/Software Partitioning

	Neighborhood Search
	Neighborhood Search
	Problems:
	Moves
	- How do I get from one Solution to another?
	Exploration strategy (you cannot try all alternatives!)

	- How many neighbors to try out?
	- Which neighbor to select?
	- What sequence of moves to follow?
	When to stop?

	General Neighborhood Search Strategy
	neighborhood N(x) of a solution x is a set of solutions that can be reached from x by a simple operation (move).

	Greedy Heuristics
	Greedy Heuristics
	Greedy heuristics always move from the current solution to the best neighboring solution.

	Greedy Heuristics
	Hill Climbing
	In order to escape local minima you have to allow uphill moves!

	Simulated Annealing Strategy
	SA is based on neighborhood search
	SA is a strategy which occasionally allows uphill moves.
	Uphill moves in SA are applied in a controlled manner

	The Physical Analogy
	Metropolis - 1953: simulation of cooling of material in a heath bath;
	A solid material is heated past its melting point and then cooled back into a solid state (annealing).
	The final structure depends on how the cooling is performed
	- slow cooling Æ large crystal (low energy)
	- fast cooling Æ imperfections (high energy)

	The Physical Analogy
	Metropolis - 1953: simulation of cooling of material in a heath bath;
	A solid material is heated past its melting point and then cooled back into a solid state (annealing).
	The final structure depends on how the cooling is performed
	- slow cooling Æ large crystal (low energy)
	- fast cooling Æ imperfections (high energy)

	Metropolis’ algorithm simulates the change in energy of the system when subjected to the cooling process; the system converges to a final “frozen” state of a certain energy.

	The Physical Analogy
	Metropolis regarded the material as a system of particles.
	His simulation follows the energy of the particles with changing temperature
	According to thermodynamics:
	at temperature T, the probability of an increase in energy of DE is:

	The Metropolis Simulation
	Simulated Annealing Algorithm
	Simulated Annealing Algorithm
	Theoretical Foundation
	The behaviour of SA can be modeled using Markov chains.
	For a given temperature, one homogeneous chain
	transition probability pij between state i and state j depends only on the two states.

	But we have a sequence of different temperatures

	Theoretical Foundation
	With homogeneous chains:
	- the number of iterations at any temperature has to be at least quadratic in the size of the solution space.

	With non-homogeneous chain:
	- cooling schedule which guarantees asymptotic convergence: tk = c/log(1+k) c: depth of the deepest local minimum Number of iterations exponential!

	Theoretical Foundation
	With homogeneous chains:
	- the number of iterations at any temperature has to be at least quadratic in the size of the solution space.

	With non-homogeneous chain:
	- cooling schedule which guarantees asymptotic convergence: tk = c/log(1+k) c: depth of the deepest local minimum Number of iterations exponential!

	These results are of no practical importance.

	SA Parameters
	SA Parameters
	Generic decisions
	Can be taken without a deep insight into the particular problem.
	Are tuned experimentally.

	Problem specific decisions
	Are related to the nature of the particular problem.
	Need a good understanding of the problem

	Generic Decisions
	initial temperature (TI)
	temperature length (TL)
	cooling ratio (function f)
	stopping criterion

	Problem Specific Decisions
	space of feasible solutions and neighborhood structure
	cost function (C)
	starting solution

	Initial Temperature
	TI must be high enough - in order the final solution to be independent of the starting one.

	Initial Temperature
	TI must be high enough - in order the final solution to be independent of the starting one.
	If maximal difference in cost between neighboring solutions is known, TI can be calculated so that increases of that magnitude are initially accepted with sufficiently large probability:
	Before starting the effective algorithm a heating procedure is run:
	- the temperature is increased until the proportion of accepted moves to total number of moves reaches a required value.

	Initial Temperature
	TI must be high enough - in order the final solution to be independent of the starting one.
	If maximal difference in cost between neighboring solutions is known, TI can be calculated so that increases of that magnitude are initially accepted with sufficiently large probability:
	Before starting the effective algorithm a heating procedure is run:
	- the temperature is increased until the proportion of accepted moves to total number of moves reaches a required value.

	Temperature Length and Cooling Ratio
	Temperature length (TL): number of iterations at a given temperature
	Cooling ratio (f): rate at which temperature is reduced

	Temperature Length and Cooling Ratio
	In practice, very often:
	- f(T) = aT, where a is a constant, 0.8 £ a £ 0.99 (most often closer to 0.99)

	Temperature Length and Cooling Ratio
	How long to stay at a temperature?
	The number of iteration at each temperature depends on:
	- size of the neighborhood
	- size of the solution space.
	The number of iterations may vary from temperature to temperature:

	- It is important to spend sufficiently long time at lower temperatures. increase the TL as you go down with T

	Temperature Length and Cooling Ratio
	TL can be also determined using feedback from the SA process:
	- Accept a certain number of moves before decreasing temperature.
	- Impose a maximum number of iterations at a temperature!

	Temperature Length and Cooling Ratio
	An extreme approach:
	- Execute one single (!) iteration at a temperature.
	- Reduce temperature extremely slowly:

	Stopping Criterion
	In theory temperature decreases to zero.
	Practically, at very small temperatures the probability to accept uphill moves is almost zero.
	Criteria for stopping:
	A given minimum value of the temperature has been reached.
	A certain number of iterations (or temperatures) has passed without acceptance of a new solution.
	The proportion of accepted moves relative to attempted moves drops below a given limit.
	A specified number of total iterations has been executed

	Problem Specific Decisions
	Neighborhood structure
	The neighborhood structure depends on the solution space and on the selected moves.
	- Every solution should be reachable from every other.
	- Keep the neighborhood small:

	Problem Specific Decisions
	Cost function
	Should be calculated quickly - possibly incrementally.

	The starting solution
	Generated randomly.
	Good solution (possibly produced by another heuristics); in this case the starting temperature should be lower.
	Starting solution shouldn’t be “too good” because it’s difficult to escape from its neighborhood.

	Postprocessing
	You keep the best ever result as the “final” solution.
	Make sure that the local minimum close to the “final” solution is reached: run a small, quick greedy optimization.

	Simulated Annealing Examples
	Travelling Salesman
	Hardware/Software Partitioning

	SA Examples: Travelling Salesman Problem
	TSP: Cost Function
	If the problem consists of n cities ci, i = 1, .., n, any tour can be represented as a permutation of numbers 1 to n.
	Given a permutation p of the n cities, vi and vi+1 are adjacent cities in the permutation. The permutation p has to be found that minimizes:
	The size of the solution space is (n-1)!/2

	TSP: Moves&Neighborhood
	k-neighborhood of a given tour is defined by those tours obtained by removing k links and replacing them by a different set of k links, in a way that maintains feasibility.
	If k > 2, there are several ways of reconnecting after the k links have been removed.
	For k = 2, there is only one way of reconnecting the tour after two links have been removed.

	TSP: Moves&Neighborhood
	With k = 2:
	Size of the neighborhood: n(n - 1)/2
	Any tour can be obtained from any other by a sequence of such moves.

	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	TSP: Moves&Neighborhood
	vi is the city in position i of the tour (ith position in the permutation):
	All 2-neighbors of a certain solution are defined by the pair i, j so that i < j.
	A neighboring solution is generated by randomly generating i and j.
	The change of the cost function can be computed incrementally:

	TSP: Generic Parameters and Results
	100 city problem; optimal solution: C = 21247.
	Best solution for TI = 1500, a=0.63: C = 21331
	- Time = 310 s (Sun4/75)
	- Standard deviation over 10 trials: 30.3;
	- Average cost: 21372
	Best solution for TI = 1500, a=0.90: C = 21255.

	- Time = 1340 s (Sun4/75)
	- Standard deviation over 10 trials: 27.5;
	- Average cost: 21284

	TSP: Generic Parameters and Results
	57 city problem; optimal solution: C = 12955
	Optimal solution for 15% of runs.
	Time 673 s (Sequent Balance 8000)
	All non-optimal results within less than 1% of optimum.

	SA Examples: Hardware/Software Partitioning
	The process graph: an abstract model of a system:
	Each node corresponds to a process.
	An edge connects two nodes if and only if there exists a direct communication channel between the corresponding processes
	Weights are associated to each node and edge:
	- Node weights reflect the degree of suitability for hardware implementation of the corresponding process.
	- Edge weights measure the amount of communication between processes

	Two subgraphs containing nodes assigned to hardware and software respectively.

	SA Examples: Hardware/Software Partitioning
	SA Examples: Hardware/Software Partitioning
	Hw/Sw Partitioning: Cost Function
	Hw/Sw Partitioning: Moves&Neighborhood
	Simple moves:
	A node is randomly selected for being moved to the other partition.

	Improved move:
	Together with the randomly selected node also some of its direct neighbors are moved; a direct neighbor is moved together with the selected node if its movement improves the cost function and does not violate any constraint.

	Hw/Sw Partitioning: Moves&Neighborhood
	A negative side effect of the improved move (revealed by experiences):
	repeated move of the same or similar node groups from one partition to the other ﬁ a reduction of the spectrum of visited solutions.
	Movement of node groups is combined with that of individual nodes:

	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Hw/Sw Partitioning: Generic Parameters and Results
	Variation of cost function during SA with simple moves for 100 nodes

	Hw/Sw Partitioning: Generic Parameters and Results
	Variation of cost function during SA with improved moves for 100 nodes

	Conclusions
	SA is based on neighborhood search and allows uphill moves.
	It has a strong analogy to the simulation of cooling of material.
	Uphill moves are allowed with a temperature dependent probability.
	Generic and problem-specific decisions have to be taken at implementation.
	Experimental tuning is very important!

