
HD-rules: a hybrid system interfacing Prolog with
DL-reasoners ?

Włodzimierz Drabent1,3, Jakob Henriksson2, and Jan Małuszyński3

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

drabent@ipipan.waw.pl
2 Fakultät für Informatik, Technische Universität Dresden

jakob.henriksson@tu-dresden.de
3 Department of Computer and Information Science,
Linköping University, S 581 83 Linköping, Sweden

janma@ida.liu.se

Abstract. The paper presents a prototype system HD-Rules (Hybrid integration
of Description Logic and Rules) that integrates normal clauses under the well-
founded semantics with ontologies specified in Description Logics. The system
is hybrid: it re-uses XSB Prolog for rule reasoning and existing OWL reason-
ers for ontology reasoning. This makes it possible to use some Prolog built-ins
(like arithmetic) in the rules. The system itself is written in XSB Prolog; its inter-
face to OWL employs Java. The paper outlines the principles of the integration,
illustrates the use of the system on examples, and discusses in detail the main
implementation techniques.

1 Introduction

This paper presents a prototype system integrating Description Logic reasoners com-
patible with the DIG-standard with normal clauses as used in logic programming. The
work is based on the well-founded semantics of logic programs and on the ideas of con-
structive negation in logic programming, as discussed in [6]. The prototype implements
a language of hybrid rules that extends normal clauses. The hybrid rules allow queries
to OWL ontologies in their bodies. Prolog arithmetic and some other Prolog built-ins
can also be used.

Integration of rules and ontologies is presently addressed by many researchers as a
necessary step in extending Semantic Web technology. The Web Ontology Language
OWL, standardized by W3C is supported by several reasoners, while there is yet no
common agreement about the rule level. While the main variant of OWL is based on
DL (Description Logics), hence on FOL (first order logic), it is often claimed that rules
should allow non-monotonic reasoning. Non-monotonic reasoning has been investi-
gated within logic programming. The two main kinds of the semantics proposed are
the Answer Set Semantics (Stable Model Semantics) and the well-founded semantics.
The well-known proposals for integration of rules and ontologies [7, 13] are based on
Answer Set Semantics. The well-founded semantics is used in [8] but in a way different
from our approach (for more detailed discussion see [6]).
? This is a slightly modified (a paragraph on p. 13 and the Acknowledgements) version

of a paper presented at ICLP’07 Workshop on Applications of Logic Programming to
the Web, Semantic Web and Semantic Web Services (ALPSWS2007) and available at
http://www.ceur-ws.org/Vol-287.

Important aspects of the work presented in this paper are

– Our approach is based on the well-founded semantics of normal programs, and is
compatible with FOL: if the non-monotonic negation is not used in the rules, the
answers to queries are logical consequences of the set of FOL axioms consisting of
the rules and of the ontology.

– We allow the use of term constructors and some Prolog built-in predicates (e.g.
arithmetic) in the hybrid rules.

– The approach makes it possible to re-use existing reasoners (for DL, and for Prolog
with the well-founded semantics). This substantially simplifies its implementation.

– We explain in detail the principles of implementation.

This paper extends the short paper [5] in the following ways. The hybrid rule lan-
guage of [5] is extended by allowing term constructors (e.g. Prolog list constructors)
and some Prolog built-in predicates. The main implementation issues are discussed in
more detail. In particular we describe how hybrid rules are compiled into Prolog, and
how the ontology queries in the rules are processed.

A declarative semantics of hybrid programs was defined in our previous work [6]
and is briefly summarized in Section 2. Its main idea is that a Herbrand model of a
hybrid program is constructed for every model of the underlying ontology. This is sim-
ilar to the notion of NM-model in [13]. The latter is however based on on the notion
of stable model, while our construction uses the notion of well-founded model. Our
implementation is based on the operational semantics of [6], which answers queries by
combining a constructive negation approach to SLS-resolution [4] with ontological rea-
soning. The operational semantics is sound wrt. the declarative one and complete for a
restricted class of hybrid programs (see [6] for details).

2 Hybrid Programs

In this section we first introduce the syntax of hybrid programs and provide an example
program. We then briefly discuss the declarative semantics of hybrid programs and its
operational semantics. We conclude with some more examples.

The Syntax. The syntax of hybrid programs is derived from the syntax of the compo-
nent languages. The component languages considered here are the language of normal
logic programs, and some DL-based ontology language. We assume that the alphabets
of predicate letters of logic programs and of the ontology language are disjoint, but both
languages have common variables and constants. (The alphabet of logic programs also
includes function symbols of non zero arity.) Literals, atoms and predicate symbols of
logic programming will be called, respectively rule literals, rule atoms, etc. A standard
logic programming syntax is extended by allowing ontological constraints to appear in
the rule bodies. Thus, a hybrid rule looks as follows:

R0 :− R1, . . . ,Rk,neg(Rk+1), . . . ,neg(Rn),dl(C1), . . . ,dl(Cm).

2

where R0,R1, . . . ,Rn are rule literals and C1, . . . ,Cm are constraints. At the moment we
only allow here constraints of the form C(x) or ¬C(x) where C is a concept of the on-
tology and x is a variable or a constant. A hybrid program is a pair (T,P) where T is
an ontology (a finite set of axioms of a DL) and P is a finite set of hybrid rules with
constraints over the alphabet of T . In practice T will be provided by a declaration asso-
ciating a short name (prefix) with the URI of the ontology. This is here done by using
the syntax use ’ontology uri’ as ’pre f ix’. Any predicate symbol p from the ontology
is represented in the hybrid rules as prefix#p.

Example 1. Consider a program consisting of the set of hybrid rules P shown in Listing
1.1, and an ontology

Finland v Europe.

(A T-box of one axiom and an empty A-box).

use ’ h t t p : / / dev . m e t a j u n g l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− move (X,Y) , neg (win (Y)) .

move (e , f) :− d l (g# Europe (f)) .
move (c , f) :− d l (neg (g# F i n l a n d (f))) .

move (b , a) . move (a , b) . move (a , c) . move (c , d) . move (d , e) .

Listing 1.1. An example hybrid program describing a two-person game.

The hybrid program in Listing 1.1 describes a two-person game, where each of the
players, in order, moves a token from a node of a directed graph

d → e
↑ ⇓

b↔ a→ c ⇒ f

over an edge of the graph. The nodes correspond to geographical objects specified in
an ontology (e.g. cities) and are represented by constants. Some edges of a graph (rep-
resented in the example by the move facts) are labelled by constraints (added as con-
straints to the respective facts). The constraints refer to the ontology. A move from a
position x to a position y is enabled if there is an edge from x to y and the constraint
is satisfied. The predicate win/1 characterizes the winning positions of the game, as
described below.

A position is winning if a move is enabled to a position which is not winning (call
it losing). Obviously a position where no moves are enabled is losing. Thus, position
f is losing. The move from e to f is enabled only if f is in Europe. This cannot be
concluded from the ontology. Consequently we cannot conclude that e is a winning
position. Similarly, we cannot conclude that f is not in Finland which is required for
the move from c to f . However, it follows from the ontology that if f is not in Europe
it is also not in Finland. Hence one of the conditions holds for f . Consequently c is a
winning position: if f is in Europe, e is winning, d is losing and c is winning. Otherwise
f is not in Finland and c is winning.

3

The positions a and b cannot be classified as winning or losing, since from a one
can always move to b where the only enabled move is back to a. The third logical value
undefined is assigned to win(a) and win(b). The status of d and e is also not clear, but
for different reasons discussed above. In some, but not all models of the ontology e is
winning and d is losing and in the remaining ones the opposite holds.

The Declarative Semantics. In [6] we define a formal semantics of hybrid programs,
extending the well-founded semantics of normal programs. Here we survey informally
the main ideas. The well-founded semantics of normal programs is three-valued and
gives a fixpoint formalization of the way of reasoning illustrated by the game example,
when the constraints are neglected. It assigns to every element of the Herbrand base one
of the logical values true (e.g. win(c)), false (e.g. win(f)) or undefined (e.g. win(a)).

The constraints added to the rule bodies refer to the ontology. As illustrated by the
example, a ground instance of a constraint may have different truth values in different
models of the ontology. Consider a hybrid program (T,P) (where T is a set of first
order axioms, and P a set of hybrid rules), a model M of T , and the set ground(P) of
all ground instances of the rules in P. Each of the ground constraints is either true or
false in M. Denote by P/M the set obtained from ground(P) by removing each rule
including a constraint false in M and by removing all constraints (which are thus true)
from the remaining rules. As P/M is a normal program it has a standard well-founded
model. A ground literal p (or neg(p)) is said to follow from the program iff p is true
(respectively p is false) in the well-founded model of P/M for every M. The declarative
semantics of P is defined as the set of all ground literals which follow from the program.
Notice that there may be cases where neither p nor neg(p) follows from the program.
This happens if there exist models M1 and M2 of T such that the logical values of p in
the well-founded models of P/M1 and P/M2 are different, or if the logical value of p
in the well-founded model of P/M is undefined for every model M of T .

Notice that the semantics involves two kinds of negation: the monotonic negation of
the ontology (¬) and the non-monotonic negation (neg) of the well-founded semantics.
The former is applicable only to ontology predicates, the latter only to rule predicates.
Thus in our implementation we can denote both by the same symbol (neg).

The Operational Semantics. The implementation discussed below focuses on answer-
ing atomic queries and ground negated literal queries. We now informally sketch the
principles of computing answers underlying our implementation. They are based on the
operational semantics of hybrid programs presented in [6] by abstract notions of two
kinds of derivation trees, called t-tree and tu-tree, which are defined by a mutually re-
cursive definition. These notions extend the well-known concept of SLD-trees to the
case of hybrid programs, to handle negation and constraints. In the presentation below
the term derivation tree (d-tree) is used whenever the statement applies to both kinds of
trees.

The nodes of d-trees are labelled by goals, consisting of rule literals and constraints.
The conjunction of all constraints of a node will be called the constraint of the node.
The label of the root is called the initial goal of the tree. A leaf of a d-tree is called
successful if it does not include rule literals and if its constraint is satisfiable. The other

4

leaf nodes are called failed leaves. In every node containing rule literals, one of them
is distinguished as the selected literal of the node. As usual, we assume existence of a
selection function that determines the selected literals of the nodes.

In the case when the initial goal g of a d-tree is ground the tree has the following
property. Let C1, . . . ,Ck be the constraints of all successful leaves of a d-tree t. Then:

– If t is a t-tree then (∃(C1∨ . . .∨Ck))→ g. Thus g follows from the program if
∃(C1∨ . . .∨Ck) is a logical consequence of the ontology.

– If t is a tu-tree then (¬∃(C1∨ . . .∨Ck))→¬g. Thus the negation of g follows from
the program if ¬∃(C1 ∨ . . .∨Ck) (or equivalently ¬∃C1 ∧ . . .∧¬∃Ck) is a logical
consequence of the ontology.

Thus to answer a ground query g our prototype constructs a t-tree with g as its
initial goal and checks if the respective disjunctive constraint, existentially quantified, is
a logical consequence of the ontology. If it is then g is true (in the declarative semantics
of the program).

If g is not ground and Ci is (the constraint of) a successful leaf of a t-tree for g then
∃Ci→ gθ follows from the program, where θ is the composition of the mgu’s along the
branch from g to Ci, and the quantification is over those variables that do not occur free
in gθ. Again, if ∃Ci is a logical consequence of the ontology then gθ follows from the
program.

We now explain how d-trees are constructed for a given initial goal g . This is similar
to construction of an SLD-tree. Every step is an attempt to extend a tree which initially
has only one node labelled by g. At every step one node n, not marked as failed, is
considered. Let q be the goal of the node, let s be its selected literal and let C be the
conjunction of its constraints. The following cases are considered separately:

1. s is positive. For each rule of the program, for which there exists a variant h :- B,Q
of the rule such that

– s and h are unifiable with a most general unifier θ, and
– the constraint (C∧Q)θ is satisfiable,

a child is added to n with the label obtained from qθ by replacing s by (B,Q)θ. If
no such rule exists then n is marked as a failed node.

2. s is negative, i.e. of the form neg(l). Two sub-cases are:
(a) If l is non-ground, or recursion through negation has been discovered (see be-

low) then:
– If the d-tree is a t-tree then the node n is marked as a failed node and won’t

be considered in the next steps of the derivation.
– If the d-tree is a tu-tree then a child is added to n with the label obtained

be removing s from q.
(b) Otherwise l is ground; the step is completed after construction of a separate

d-tree t for l. The kind of the separately constructed tree is different from the
kind of the current tree, thus it is a tu-tree if the latter is a t-tree, and t-tree if the
latter is a tu-tree. Let C1, . . . ,Ck be the constraints of the successful leaves of t.
If the constraint C′ = C∧¬∃C1∧ . . .∧¬∃Ck is satisfiable then a child is added
to node n with the label obtained from q by removing s and replacing C by C′.

5

Otherwise the node is marked as failed. In particular, if k = 0 (no successful
leaf) C′ is equivalent to C. On the other hand, if some Ci(1≤ i≤ k) is true, the
constraint C′ is equivalent to false and is not satisfiable.

For more details, see [6]. In general the construction of a d-tree may not termi-
nate for recursive rules. Recursion not involving negative literals may produce infinite
branches of the constructed d-tree. Recursion through negation may require construc-
tion of infinite number of d-trees. In our implementation tabling is used; it allows to cut
the loops in the case when the same goal re-appears in the process.

Example 2. When a goal win(c) is given to the program from Example 1 then a t-tree
for win(c), tu-trees for win(f) and win(d), and a t-tree for win(e) are constructed:

win(c)
|

move(c,Y),neg(win(Y))
/ \

neg(g#Finland(f)),neg(win(f))
|

neg(g#Finland(f))

neg(win(d))
|

g#Europe(f)

win(d)
|

move(d,Y),neg(win(Y))
|

neg(win(e))
|

neg(g#Europe(f))

win(e)
|

move(e,Y),neg(win(Y))
|

g#Europe(f),neg(win(f))
|

g#Europe(f)

win(f)
|

move(f ,Y),neg(win(Y))

Notice that the leaf of the tu-tree for win(f) is failed (and the leaves of the other trees are
successful). The disjunction ¬g#Finland(f)∨g#Europe(f) of the successful leaves of
the t-tree for win(c) is found to be a logical consequence of the ontology. Hence the
answer for win(c) is Yes.

Notice that for the goals above there is no difference between t- and tu-trees, as the
case 2a is not involved.

Let us now consider a t-tree for win(X). The root win(X) has one child
move(X ,Y),neg(win(Y)), which in turn has 7 children, one per each clause for move.
Three of the children are failed leaves: neg(win(a)), neg(win(b)), neg(win(c)); the
corresponding substitutions bind X to b,a,a respectively. The first two nodes are
failed due to infinite recursion through negation; neg(win(c)) is failed as the constraint
¬¬g#Finland(f)∧¬g#Europe(f) obtained from a tu-tree for win(c) is unsatisfiable.

The remaining four children lead to success leaves. (The corresponding subtrees
occur in the trees above.) The leaves and the corresponding substitutions for X are:

g#Europe(f) ¬g#Finland(f) g#Europe(f) neg(g#Europe(f))
{X/e} {X/c} {X/c} {X/d}

6

The answers for query win(X) are: X = e provided that g#Europe(f) (obtained from
the first leaf), X = d provided that ¬g#Europe(f) (obtained from the last leaf), and
X = c (as the disjunction of the leaves with substitution {X/c} is a logical consequence
of the ontology).

In our presentation above, we imposed certain restrictions on the operational se-
mantics from [6]. 1) We deal only with ground negated goals; for non ground ones
only a crude, but sound, approximation is used (case 2a). This is to avoid (in)equational
constraints in the goals of d-trees; dealing with such constraints would be rather com-
plicated. 2) We construct all the successful leaves of a tu-tree, while in general the con-
straints of any cross-section of the tree could be taken instead. Choosing the successful
leaves as the selected cross-section produces a most general result. (Formally, the con-
straint C′ from case 2b is the most general among those that could be obtained from the
given tu-tree for l.) On the other hand, this approach fails if the set of the leaves is infi-
nite. (More precisely, if the set of the constraints of the leaves, up to variable renaming,
is infinite.) In such a case, choosing some finite cross-section can provide useful results.
In the current work we prefer the simplicity of the restricted solution to the power of
the general one. 3) A simplification of the operational semantics from [6] is that when
a literal neg(l) is selected in a goal q (case 2b above), the root for a new d-tree is l.
(The constraint of q is not passed to the new tree.) This usually results in smaller con-
straints of the goals in d-trees, and in simpler and more powerful tabulation of infinite
sequences of d-trees.

In practice it may be too expensive to check satisfiability of the constraint of each
goal. Thus the trees constructed by an actual implementation may contain more nodes
and have some additional success leaves, however with unsatisfiable constraints. Clearly
this does not violate the soundness of the operational semantics.

Further examples.

Example 3 (A non Datalog program). Here an additional requirement to the game from
the previous example is added. Each node can be visited at most once. The list of for-
bidden nodes is kept in the second argument of predicate win/2.

use ’ h t t p : / / dev . m e t a j u n g l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− win (X , []) .

win (X, H i s t o r y) :− move (X, Y, H i s t o r y) , neg (win (Y , [X | H i s t o r y])) .

move (A, B , H i s t o r y) :− edge (A, B) , neg (member (B , H i s t o r y)) .

edge (e , f) :− d l (g# Europe (f)) .
edge (c , f) :− d l (neg (g# F i n l a n d (f))) .
edge (b , a) . edge (a , b) . edge (a , c) .
edge (c , d) . edge (d , e) .

member (X , [X |T]) .
member (X , [H |T]) :− member (X, T) .

Prolog built-in predicates can be used in hybrid rules. In principle, any built-in pred-
icates without side-effects (like modifying the program itself, referring to files, etc) can

7

be used. The semantics of built-in predicates is the same as in Prolog. In particular, in-
vocations of arithmetic predicates have to satisfy the relevant groundness requirements.
As the implementation employs the Prolog selection rule, the programmer’s reasoning
about the form of predicate invocation arguments is the same as for Prolog programs.

As many built-ins, like var/1 do not have any declarative semantics, we suggest that
only such built-in predicates are used, for which if an atom A fails (succeeds instantiated
to Aθ) then each instance of A fails (respectively succeeds instantiated to an instance of
Aθ).

Example 4 (Using Prolog built-ins). Here the additional condition is changed, so that
for each node a number of allowed visits is given. An atom membern(X ,L,N) is true iff
element X occurs N times in list L. Prolog arithmetic is used to deal with integers (built-
in predicates is/2 and </2). Also the built-in \=/2 (non-unifiability check) is employed
to check disequality of nodes. (This could be done without built-ins, by replacing E\=G
with neg(eq(E,G)), and defining eq/2 by eq(X ,X).)

use ’ h t t p : / / dev . m e t a j u n g l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− win (X , []) .

win (X, H i s t o r y) :− move (X, Y, H i s t o r y) , neg (win (Y , [X | H i s t o r y])) .

move (A, B , H i s t o r y) :− edge (A, B) , r e s t r i c t i o n (B , R) , membern (B , H i s t o r y ,N) , N<R .

edge (e , f) :− d l (g# Europe (f)) .
edge (c , f) :− d l (neg (g# F i n l a n d (f))) .
edge (b , a) . edge (a , b) . edge (a , c) .
edge (c , d) . edge (d , e) .

r e s t r i c t i o n (a , 7) . r e s t r i c t i o n (b , 6) . r e s t r i c t i o n (c , 1) .
r e s t r i c t i o n (d , 1) . r e s t r i c t i o n (e , 1) . r e s t r i c t i o n (f , 1) .

membern (E , [] , 0) .
membern (E , [E |L] , N1) :− membern (E , L ,N) , N1 i s N+1.
membern (E , [G |L] ,N) :− E\=G, membern (E , L ,N) .

Notice that, in contrary to Example 1, infinite games are impossible in the last
two examples. Hence each position is either winning, or losing (i.e. the value of
win(X ,History) is either true or false, for any node X and list History).

3 The prototype

This section presents a concrete prototype implementing the operational semantics pre-
sented in Section 2. We present a general architecture of the system, describe compila-
tion of hybrid programs and queries into Prolog, explain the usage of tabulation to prune
infinite computations, and present how description logic constraints are dealt with.

Figure 1 shows the user interface of the prototype. The user has entered the program
from Example 1 and a query into the respective fields. Pressing the “Query” button
compiles the program and the query, and then produces an answer to the query. The
“Compile” button displays the compiled program. The prototype is under construction,
its current version is available at http://www.ida.liu.se/hswrl/.

8

Figure 1. The web-interface of the hybrid reasoner answering a query with a constrained answer.

Run-time system

XSB

DL reasoner

Hybrid program P

Ontology query system

Answer

Prolog
program P’

System
Interface

Query Q

Compilation phase Querying phase

Query Q’

Jena/DIG

InterProlog Pellet

Compiler

Figure 2. Prototype architecture overview.

9

General architecture. An overview of the main components of the reasoning system
is shown in Figure 2. The systems is comprised of three main components:

1. Compiler. In order to reuse a Prolog engine for handling the rule part of a hybrid
knowledge base, we compile hybrid rules (and queries) to plain Prolog.

2. Run-time system. When querying a hybrid program, the reasoner queries the com-
piled program (using a compiled query). The run-time system is implemented in
Prolog. It is responsible for constructing derivation trees and for proper handling of
constraints, as they appear in the underlying hybrid program.

3. Ontology query system. The run-time system interactively communicates with an
ontology query system, responsible for checking ontological constraints.

Both the run-time and ontology query systems treat the underlying Prolog and DL en-
gines as black boxes. No modifications of the engines are needed; in principle any Pro-
log implementation supporting communication with Java, and any DL reasoner with a
DIG interface may be used. It is desirable that the Prolog engine provides tabulation,
which discovers (some) infinite branches of search trees. Otherwise a rather poor ap-
proximation of the well-founded semantics is obtained. In our prototype we use XSB
Prolog system [14] and Pellet [12].

Before discussing the main system components in detail, we motivate the use of
protocols and API’s that we depend upon for the realization of the system.

InterProlog [11] is a Prolog-Java interface, enabling communication and data shar-
ing between Prolog and Java programs. Communication can be handled both ways, that
is, passing Java objects to Prolog and sending Prolog terms to Java programs. There
is no standard interface between Prolog systems and DL-reasoners. However, there
are API’s for handling communication with DL reasoners from Java programs (e.g.
Jena [10]). Thus, communicating with Java programs from Prolog enables access to
DL-reasoners from Prolog.

Two Prolog predicates are provided by InterProlog to aid in communication with
a Java program. First, in order to prepare for the passing of data between Java and
Prolog, InterProlog provides the predicate buildTermModel/2. This predicate encodes
Prolog terms, such that they might be sent to a Java program and be properly under-
stood using the Java API provided by InterProlog. E.g. buildTermModel([1,2,3],P)
succeeds with the variable P unified with the encoding of the list [1,2,3]. Second, the
predicate javaMessage/3 is provided to invoke a specific Java method and thereby
enabling the passing of prepared Prolog terms as arguments. E.g. the Prolog goal
javaMessage(’Class’-obj,R,method(P)) produces a result R of calling the Java
method Class.obj.method(P).

A protocol for communication with DL-reasoners is provided by DIG and is emerg-
ing as a standard [3]. The implementation does not directly use DIG, but the DL-
reasoner interface provided by Jena [10] employs DIG. Thus, as long as a DL-reasoner
is DIG-compliant, it may be plugged into our system.

Compiling HD rules into XSB Prolog. The hybrid rules include DL constraints and
cannot be directly used in Prolog computations. Each negative literal encountered in a

10

Prolog computation initiates construction of an underlying derivation tree, where DL-
constraints also have be handled. To address these issues a given HD-Program is first
compiled into a Prolog program. We here explain the idea of the compilation and discuss
the details.

The underlying idea of the compilation technique is to prevent the constraints to
be selected by the Prolog selection function during rule execution. However, since
constraints may share variables with rule predicates, such constraint variables need to
be processed and unified when the corresponding variables in the rule predicates are.
Achieving this is possible by moving the constraint predicates into arguments of other
predicates (which are selected by the selection function). In general, each n-ary non-
constraint predicate is extended with three additional arguments during compilation
(where −→ represents the compilation step):

p(ū) −→ p(ū,Table,Constraint,Mode)

The first extra argument (Table) is used to prevent infinite recursion through negation
(further explained below). The second argument (Constraint) will represent the con-
straints accumulated during resolving the sub-goal p(ū). The third argument (Mode)
will obtain a value t or tu, depending on which kind of derivation tree is currently
being constructed. While compiling a clause, the Constraint argument for each literal
is a unique variable. On the other hand, the Table and the Mode argument are each the
same variable for all the rule literals of the clause (including the head literal).

When a negative literal neg(p(ū)) is encountered, a new derivation tree is to be
constructed for the positive version p(ū) of the literal, and the constraints accumulated
along the branches of the tree are to be treated as described in Section 2. This is done
by a predicate negation/4. Thus negative rule literals are compiled into appropriate
invocations of this predicate:

neg(p(ū)) −→ negation(p(ū),Table,Constraint,Mode)

Let t(R) denote a rule literal R translated as described above. A hybrid rule

R0 :− R1, . . . ,Rn,dl(C1), . . . ,dl(Cm)

is compiled into

t(R0) :− t(R1), . . . , t(Rn),
andAppend(Constraint1, . . . ,Constraintn,C1, . . . ,Cm,Constraint0)

where Constrainti is the second additional argument of t(Ri) (for i = 0, . . . ,n). The
predicate andAppend unifies Constraint0 with the conjunction of the constraints of the
rule and the constraints accumulated by the invocations of t(R1), . . . , t(Rn). In practice
this is not a single atom, but n− 1 atoms with a predicate andAppend/3; they include
a term which represents the conjunction of C1, . . . ,Cm. (The constraints are represented
as conjunctions, more precisely as lists built with symbols and/2 and true/0; predi-
cate andAppend/3 joins two such lists.) If n < 2 then andAppend is not used. Instead,
Constraints0 in the head is replaced by a term representing the conjunction of C1, . . . ,
Cm when n = 0 (or the conjunction of C1, . . . ,Cm and Constraint1 when n = 1).

11

Predicate negation/4 is a main predicate of the run-time system. It constructs a d-
tree for its first argument, employing findall/3 of Prolog. The tree is a tu-tree if the
Mode argument is t, and a t-tree otherwise. Moreover, negation/4 collects the con-
straints C1, . . . ,Ck of the success leaves of the tree, and returns in its third argument
the formula ¬∃C1 ∧ . . .∧¬∃Ck. (If some Ci is true then negation/4 fails, as in such
case ¬∃C1∧ . . .∧¬∃Ck is unsatisfiable.) If the tu-tree cannot be constructed (due to non
ground root or infinite recursion through negation) then negation/4 returns true or fails,
according to case 2a of the description of the operational semantics.

Hybrid rules may contain Prolog built-ins. Literals with built-in predicates are passed
unchanged to the compiled program, without adding the three extra arguments. If such
literal is negative then, in the current version of the system, the negation is converted
into Prolog negation as failure.

Compiling queries. Queries to hybrid programs must also be compiled before queried
wrt. the compiled hybrid program. Queries consisting of a single literal are compiled in
the following way:

p(ū) −→ p(ū, [],Constraint, t)
neg(p(ū)) −→ negation(p(ū), [],Constraint, t)

That is, the tabling table is initially empty (the empty list), the constraints will be col-
lected in a variable (here Constraint), and the top level d-tree to be constructed is a
t-tree. (For a negative literal this tree consists of two or three nodes only.)

Each answer for a compiled query provides a constraint Constraintθ, and an in-
stance ūθ of the variables of the original query. If the constraint is unsatisfiable w.r.t.
the ontology, the answer is discarded. If the constraint is a logical consequence of
the ontology, then p(ūθ) follows from the hybrid program.4 Otherwise, implication
Constraintθ→ p(ūθ) follows from the program.

If there are many answers Constraintθ1, . . . ,Constraintθk and p(ū) is ground then
Constraintθ1∨·· ·∨Constraintθk implies p(ū), and the constraint Constraintθ1∨·· ·∨
Constraintθk is checked w.r.t. the ontology. For a non ground query we can deal sim-
ilarly with such answers Constraintθ1, . . . ,Constraintθk for which the corresponding
instances of the goal are the same: ūθ1 = · · ·= ūθk.

Queries that are conjunctions of literals can be compiled similarly to the bodies of
hybrid rules; the difference is that [] is used instead of the variable Table and t instead
of Mode.

Example 5. The rule

move(A,B,History):−edge(A,B),restriction(B,R),membern(E,History,N),N <R.

from Example 4 is compiled into
move (A, B , H i s t o r y , Tbl , Cnst , M) :−

edge (A, B , Tbl , Cnst1 , M) , andAppend (Cnst1 , Cnst23 , Cns t) ,
r e s t r i c t i o n (B , R , Tbl , Cnst2 , M) , andAppend (Cnst2 , Cnst3 , Cns t23) ,
membern (E , H i s t o r y , N, Tbl , Cnst3 , M) ,
N < R .

4 More generally, it is sufficient that ∃Constraintθ is a logical consequence, where the quantifi-
cation is over those free variables of Constraintθ that do not occur in p(ūθ).

12

Keeping the related compiler predicate simple resulted in a maybe not natural way of
placing andAppend/3 atoms in the compiled clauses.

The set of hybrid rules of Example 1 is compiled into:

win (X, Tbl , Cnst , M) :− move (X, Y, Tbl , Cnst1 , M) ,
andAppend (Cnst1 , Cnst2 , Cns t) ,
n e g a t i o n (win (Y) , Tbl , Cnst2 , M) .

move (e , f , Tbl , and (’ g# Europe ’ (f) , t rue) , M) .
move (c , f , Tbl , and (neg (’ g# F i n l a n d ’ (f)) , t rue) , M) .

move (b , a , Tbl , true , M) . move (a , b , Tbl , true , M) .
move (a , c , Tbl , true , M) . move (c , d , Tbl , true , M) .
move (d , e , Tbl , true , M) .

A query win(e) is compiled into win(e, [],Cnst, t). Executing the latter goal results
in calling negation(win(f), [],Cnst2, t), and construction of a tu-tree for win(f) without
successful leaves (see Ex. 2). We obtain Cnst2 = true and the initial goal succeeds once,
with Cnst bound to and(g#Europe(f), true) (which is equivalent to g#Europe(f)).
This constraint is found to be satisfiable but not a logical consequence of the ontol-
ogy. Thus the user is informed that the answer is Yes, under condition g#Europe(f).

A query neg(win(d)) is compiled into negation(win(d), [],Cnst, t), this query re-
sults in constructing a tu-tree for win(d), a t-tree for win(e), and a tu-tree for
win(f). The latter steps are already described above. The (only) leaf of the tu-
tree for win(d) is (equivalent to) neg(g#Europe(f)), and the (only) answer ob-
tained for negation(win(d), [],Cnst, t) is (equivalent to) g#Europe(f). The answer for
neg(win(d)) given for the user is the same as that for win(e) in the previous case.

A (compiled) query win(c, [],Cnst, t) results in two answers (equivalent to)
g#Europe(f) and neg(g#Finland(f)). Their disjunction is found a logical consequence
of the ontology. Hence the answer returned for a query win(c) is Yes.

Tabulation. The operational semantics described in Section 2 may result in d-trees
with infinite branches. Also constructing an infinite set of d-trees is possible (due to
recursion through negation). We use tabulation of XSB Prolog to discover infinite trees.
The way in which it prunes infinite branches is sound w.r.t. our operational semantics,
as the resulting tree has the same set of success leaves.

Unfortunately, the native XSB tabulation cannot be used to discover that an infinite
set of d-trees is being constructed. This is because occurrences of the same negated
literal have to be treated differently (according to cases 2a or 2b of the description
of the operational semantics in Section 2). Thus we tabulate p(ū) whenever a d-tree
for p(ū) is built; the table is passed in an extra argument of the compiled predicates.
Then infinite negation through recursion is discovered whenever predicate negation/4
is invoked with the first argument p(ū) found in the table being the second argument.
Accordingly, a next d-tree for p(ū) is not constructed and case 2a is applied instead.

For Datalog normal programs, tabulation of XSB Prolog guarantees finiteness of
computation. As the Herbrand base is finite, each infinite branch of a tree and each
infinite sequence of trees can be discovered and pruned. This is not the case for Datalog
hybrid programs (i.e. hybrid programs over a finite Herbrand universe). The reason is
that the set of constraints over a finite Herbrand universe is not finite. Hence tabulation

13

is not able to discover some infinite branches of a d-tree (and some infinite sequences
of d-trees). Some additional safeness conditions [6] imply that the constraints of the
leaves of a d-tree are ground. Then the tabulation approach described above results in
finite computations only. Under these conditions our implementation is complete for
non floundering Datalog hybrid programs. (For a given program and goal, floundering
means selecting a non ground negative rule literal.)

Handling DL constraints. DL-reasoners normally implement satisfiability verifica-
tion of a knowledge base as the main reasoning service. All other services are reduced
to the problem of checking satisfiability of the knowledge base [2]. A commonly of-
fered service is to check if an individual (a) belongs to some concept (C). This service
is reduced to satisfiability by extending the knowledge base with the axiom {a :¬C}.
The query C(a) is then a logical consequence of the knowledge base if its extension is
unsatisfiable.

Disjunctive queries are usually not offered as an explicit service by DL-reasoners.
However, a disjunctive query C(a)∨D(b) can be reduced to checking unsatisfiabil-
ity of the knowledge base extended with {a :¬C, b : ¬D} [1]. General disjunctive DL
queries cannot in a straight-forward manner be solved in this way. Most DL logics do
not consider negated roles (properties) to be valid expressions. Hence, using the same
approach for roles is not feasible. This is why our prototype only allows concept literals
(not properties) as constraints in programs.

In the general case, it may be necessary to delay constraint checking until the last
step of query answering. If several nested derivation trees have been constructed dur-
ing rule reasoning, a nested constraint is produced. That is, the constraint possibly is a
conjunction of negated constraints, which in turn are (possibly existentially quantified)
conjunctions and so on. However, nested constraints can be normalized into a conjunc-
tive normal form (CNF) of concept literals. That is, a conjunction where each conjunct
is a disjunction of concept literals (non-nested).

A conjunctive DL query C1 ∧ . . .∧Cn where the conjuncts are disjunctions of con-
cept literals can be answered in the following manner [9]. Each conjunct can be solved
as described above. If each conjunct is a logical consequence of the underlying knowl-
edge base, then so is the original conjunctive query (and vice versa).

It is a design decision when the obtained constraints are checked for satisfiability.
In principle, such check should be performed for each constructed constraint. This is
however too expensive. (On the other hand, this prunes d-tree branches as early as
possible.) Currently the check is performed at completion of the main t-tree, this means
once per goal. Alternative strategies are being considered, for instance performing the
check at completion of each d-tree.

4 Conclusion

This paper describes a way of implementing HD-rules, an approach of combining non
monotonic rules of Logic Programming (LP) with monotonic first order theories of De-
scription Logic (DL). The approach has been introduced in [6]. Its declarative semantics
combines the well-founded semantics of LP with the standard first order semantics of

14

DL. An operational semantics is provided. Its main advantage is that an existing DL rea-
soner and existing Prolog engine can be re-used; hence the effort to construct an imple-
mentation is low. Here we implement a somehow simplified version of that operational
semantics. Hybrid rule programs are compiled into XSB Prolog. A run-time system ex-
ecutes the compiled programs and interfaces a DL reasoner. The interface itself is pro-
grammed in Java, using Jena (and indirectly DIG). The compiler is written in XSB Pro-
log. The prototype is under development, and available at http://www.ida.liu.se/hswrl/.

Acknowledgement. This research has been partially funded by the European Commis-
sion and by the Swiss Federal Office for Education and Science within the 6th Frame-
work Programme project REWERSE number 506779 (cf. http://rewerse.net). We
thank David S. Warren for a discussion about tabulation in XSB.

References

1. F. Baader, H.-J. Bürckert, B. Hollunder, W. Nutt, and J. H. Siekmann. Concept logics. Tech-
nical Report RR-90-10, 1990.

2. F. Baader, D. Calvanese, and D. McGuiness(et.al.), editors. The Description Logic Hand-
book. Cambridge University Press, 2003.

3. DIG. WWW Page. URL: http://dig.sourceforge.net/. Accessed 7 February 2007.
4. W. Drabent. What is failure? An approach to constructive negation. Acta Informatica,

32(1):27–59, Feb. 1995.
5. W. Drabent, J. Henriksson, and J. Maluszynski. Hybrid reasoning with rules and constraints

under well-founded semantics. In Web Reasoning and Rule Systems, Proceedings RR 2007,
volume 4524 of Lecture Notes in Computer Science, pages 348–357. Springer-Verlag, 2007.

6. W. Drabent and J. Maluszynski. Well-founded semantics for hybrid rules. In Web Reason-
ing and Rule Systems, Proceedings RR 2007, volume 4524 of Lecture Notes in Computer
Science, pages 1–15. Springer-Verlag, 2007.

7. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules
with external evaluations for semantic-web reasoning. In Proc. of European Semantic Web
Conference, pages 273–287, 2006.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for de-
scription logic programs in the semantic web. In RuleML, pages 81–97, 2004.

9. I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, pages 399–404. AAAI Press
/ The MIT Press, 2000.

10. Jena Semantic Web Framework. WWW Page, 18 August 2005. Available at http://jena.
sourceforge.net/. Accessed 7 February 2007.

11. Miguel Calejo. InterProlog - a Prolog-Java interface. WWW page, September 2006. Avail-
able at http://www.declarativa.com/interprolog/. Accessed 7 February 2007.

12. Pellet OWL Reasoner. WWW Page, 14 March 2006. Available at http://www.mindswap.
org/2003/pellet/index.shtml.

13. R. Rosati. DL+log: Tight integration of Description Logics and disjunctive Datalog. In KR,
pages 68–78, 2006.

14. XSB. WWW Page. URL: http://xsb.sourceforge.net/. Accessed 7 February 2007.

15

