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Abstract—Two well-studied closure operators for relations
are based on primitive positive (p.p.) definitions and quanti-
fier free p.p. definitions. The latter do however have limited
expressiveness and the corresponding lattice of strong partial
clones is uncountable. We consider implementations allowing
polynomially many existentially quantified variables and obtain a
dichotomy for co-clones where such implementations are enough
to implement any relation and prove (1) that all remaining co-
clones contain relations requiring a superpolynomial amount
of quantified variables and (2) that the strong partial clones
corresponding to two of these co-clones are of infinite order
whenever the set of invariant relations can be finitely generated.

I. INTRODUCTION

A finite or infinite set of Boolean relations Γ is known as a
constraint language. Given a constraint language Γ, a natural
question to ask is which other relations R can be expressed
by first order formulas over Γ, or, equivalently, which is
the smallest set of relations closed under such definitions. In
practice one often considers restricted first order formulas, and
two common restrictions are primitive positive (p.p.) defini-
tions, where one is allowed to use existential quantification,
conjunction and equality, and quantifier-free primitive positive
definitions (q.p.p.) where only conjunction and equality is al-
lowed. In other words an n-ary relation R has a p.p. definition
in Γ if R(x1, . . . , xn) ≡ ∃y1, . . . , ym . R1(x1)∧ . . .∧Rk(xk),
where each Ri ∈ Γ ∪ {=} and each xi is a vector over
x1, . . . , xn, y1, . . . , ym, and R has a q.p.p. definition in Γ
if R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧ Rk(xk), where each
Ri ∈ Γ ∪ {=} and each xi is a vector over x1, . . . , xn. In
both cases = denotes the equality relation {(0, 0), (1, 1)}. For
a set of relations Γ we let 〈Γ〉 denote the smallest set of
relations closed under p.p. definability over Γ and 〈Γ〉6∃ denote
the smallest set of relations closed under q.p.p. definability
over Γ. Sets of the form 〈Γ〉 are known as relational clones
(or co-clones) due to their relationship with clones and sets of
the form 〈Γ〉6∃ are known as weak partial relational clones1 due
to their relationship with strong partial clones. Throughout the
article we deal exclusively with Boolean co-clones and hence
often refer to these simply as co-clones. A set of functions
is called a clone if it (1) is closed under composition of
functions and (2) contains all projection functions of the form
eni (x1, . . . , xn) = xi. A set of (partial) functions F is called a
strong partial clone if in addition to (1) and (2) it also contains
all partial subfunctions, i.e. if f ∈ F then F also contains all
partial functions g such that the domain of g is a subset of
the domain of f and such that g agrees with f for all values
for which it is defined. If F is a set of functions we let [F]

1We note that the term weak system has also been used in the literature [7].

([F]s) denote the smallest (strong partial) clone containing F.
In both cases the set F is said to be the base of [F] or [F]s.
We make a similar definition for co-clones and weak partial
co-clones. The order of a clone or co-clone is the cardinality
of the smallest base. In particular we are often interested in
whether this order is finite or infinite.

Clones can equivalently be described as sets of func-
tions preserving a set of relations since any n-ary
Boolean function f can be extended to work over an
m-ary Boolean relation R as follows: f(t1, . . . , tn) =(
f(t1[1], . . . , tn[1]), . . . , f(t1[m], . . . , tn[m])

)
where ti[j] de-

notes the j-th element of the tuple ti ∈ R. If R is closed under
f we say that f preserves R or that f is a polymorphism of
R. We define Pol(Γ) for a set of relations Γ to be the set of
polymorphisms to Γ, and Inv(F) (abbreviated as IF) for a set
of functions F to be the set of all relations preserved by F.
The set pPol(Γ) of all partial polymorphisms of Γ is defined
in the same manner but with the additional stipulation that
a function is allowed to be undefined for some values. With
these notions one can verify that for any set of relations Γ it
holds that 〈Γ〉 = Inv(Pol(Γ)) and 〈Γ〉6∃ = Inv(pPol(Γ)), and
also that [F] = Pol(Inv(F)) and [F′ ]s = pPol(Inv(F′)) for
a set of functions F and a set of partial functions F′ . This
yields the Galois connections between sets of relations and
their preserving functions.

Theorem 1 ([4], [5], [9]): Let Γ and ∆ be two sets of
relations. Then 〈Γ〉 ⊆ 〈∆〉 if and only if Pol(∆) ⊆ Pol(Γ).

Theorem 2 ([4], [5], [15]): Let Γ and ∆ be two sets of
relations. Then 〈Γ〉 6∃ ⊆ 〈∆〉6∃ if and only if pPol(∆) ⊆
pPol(Γ).

The Galois connection forms the fundamental principles of
the algebraic approach to computational problems parameter-
ized by constraint languages such as the constraint satisfaction
problem (CSP(Γ)). In Jeavons [10] it is proved that the
computational complexity of CSP(Γ) up to polynomial-time
reductions for any finite constraint language Γ is determined
by the set of polymorphisms of Γ. A similar classification
in Jonsson et al. [11] shows that the set of partial polymor-
phisms of Γ preserves all languages ∆ such that CSP(∆)
is solvable at least as fast as CSP(Γ), and therefore, in a
sense, preserves the exact complexity of CSP(Γ). Hence for all
problems where a Galois connection is applicable a complexity
classification of the problem is tantamount to understanding
the structure of the clone lattice. For the Boolean domain
the lattice of clones is completely classified and known as
Post’s lattice due to Post’s seminal work [14]. See Figure
I for a visualization of the Boolean co-clone lattice. Un-
fortunately the corresponding lattice of strong partial clones



is of uncountably infinite cardinality even for the Boolean
domain [1]. Given the fact that the lattice of strong partial
clones is extremely complicated it is reasonable to consider
the expressive power of closure operators which lie between
q.p.p. definitions and p.p. definitions. To find implementations
of such intermediate complexity we restrict the number of
existentially quantified variables occurring in the formula and
are therefore interested in which n-ary relations can be imple-
mented with 1, 2, . . . , f(n) existentially quantified variables
for some reasonably slowly growing function f . In the sequel
we assume that f is a polynomial function. If f(n) variables
is sufficient to implement every n-ary relation R in a co-
clone then we say that the co-clone is polynomially closed.
If f(n) ≤ 2 then the resulting set of definable relations over
some language Γ closely corresponds to the frozen partial
co-clone [13] of Γ, with the exception that variables are not
required to be frozen to some constant domain value.

In Section III we give a complete classification of the
polynomially closed co-clones. Our proofs are based on com-
paring the least expressive language in the co-clone with the
most expressive language in the co-clone in order to obtain
an upper bound of f . These languages are known as the
weak base and plain base, respectively, and were introduced
by Schnoor and Schnoor [16], and Creignou et al. [8]. We
then proceed in Section IV by proving that the classification
in Section III is indeed complete in the sense that all other
co-clones either do not have a finite base (in which case the
notion does not apply) or contain relations which for any finite
base requires a superpolynomial amount of variables in any
p.p. definition. We also prove that all strong partial clones
C whose total component consists either only of projection
functions, or a composition of projections and the negation
function f(x) = 1− x, are of infinite order whenever Inv(C)
can be finitely generated. This suggests that describing the
set of partial polymorphisms pPol(Γ) for any finite constraint
languages Γ such that CSP(Γ) is NP-hard (e.g., k-SAT) may
be a difficult task.

A related concept to polynomial closure is whether every
relation in a co-clone can be implemented using only polyno-
mially many constraints from the plain base. If this holds then
we say that the co-clone has a polynomial base. Using results
from Section IV we prove that none of the superpolynomially
closed co-clones admit polynomial bases.

II. PRELIMINARIES AND NOTATION

If Γ is a constraint language we let Γn be defined as
{R | R ∈ Γ, ar(R) ≤ n}, where ar(R) is the arity of R.
We typically represent relations and constraint languages by
their defining Boolean formulas. We define the weak base and
plain base of a co-clone IC to be the bases of the smallest
and largest members of the set I(IC) = {IC′ | IC′ = 〈IC′〉 6∃
and 〈IC′〉 = IC}. Following Schnoor and Schnoor [16] we
typically refer to the set I(IC) as an interval. Plain bases
for all Boolean co-clones are given in Creignou et al. [8].
Weak bases were first introduced in Schnoor and Schnoor [16]
but were in many cases exponentially larger than the plain
bases with respect to arity. Weak bases fulfilling additional
minimality conditions was given in Lagerkvist [12] using
relational descriptions. By construction the weak base of a co-
clone can always be given as a single relation. See Table I for a
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Fig. 1. The lattice of Boolean co-clones. The co-clones which are polyno-
mially closed are coloured in grey. The co-clones which are not polynomially
closed are coloured in dark grey. The remaining co-clones do not have a finite
base.

complete list of weak and plain bases of the Boolean co-clones
of finite order. As seen in the following two theorems the plain
base can be regarded to be the most expressive language in a
co-clone while the weak base is the least expressive.

Theorem 3: Let Γ be the plain base from Table I for some
co-clone IC. Then R ∈ 〈Γn〉6∃ for any n-ary R ∈ IC.

Proof: This follows from Creignou et al. [8] and the fact
that the algorithm DescribePI [17] used there only works with
k variables given a k-ary relation.

Theorem 4 ([16]): Let Rw be the weak base of some co-
clone IC. Then Rw ∈ 〈Γ〉6∃ for any finite base Γ of IC.

We often use Eq as the equality relation = and we let ΓSAT

denote the plain base from Table I of BR. By construction
Γk

SAT is then the language corresponding to k-satisfiability. As
is easily verified for every n-ary Boolean relation it holds that
R ∈ 〈Γn

SAT〉 6∃. The full description of the relations involved is
given in Lagerkvist [12].

III. POLYNOMIALLY CLOSED CO-CLONES

In this section we formally introduce the notion of a
polynomially closed co-clone. Intuitively the notion means
that for any finite base a polynomial amount of variables is
sufficient to p.p. implement any relation in the co-clone.

Definition 1: Let IC be a Boolean co-clone of finite order.
We say that IC is polynomially closed if there exists a
polynomial p such that for all finite bases Γ of IC and all
n-ary R ∈ IC it holds that R can be p.p. defined in Γ with at
most p(n) existentially quantified variables.



TABLE I. WEAK AND PLAIN BASES OF ALL BOOLEAN CO-CLONES OF FINITE ORDER.

Co-clone Weak base Plain base
IBF Eq(x1, x2) {Eq(x1, x2)}
IR0 F(c0) {F(c0)}
IR1 T(c1) {T(c1)}
IR2 F(c0) ∧ T(c1) {F(c0),T(c1)}
IM (x1 → x2) {(x1 → x2)}
IM0 (x1 → x2) ∧ F(c0) {(x1 → x2),F(c0)}
IM1 (x1 → x2) ∧ T(c1) {(x1 → x2),T(c1)}
IM2 (x1 → x2) ∧ F(c0) ∧ T(c1) {(x1 → x2),F(c0),T(c1)}
ISn

0 , n ≥ 2 ORn(x1, . . . , xn) ∧ T(c1) {ORn(x1, . . . , xn)}
ISn

02, n ≥ 2 ORn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) {ORn(x1, . . . , xn),F(c0)}
ISn

01, n ≥ 2 ORn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ T(c1) {ORn(x1, . . . , xn), (x1 → x2)}
ISn

00, n ≥ 2 ORn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) {ORn(x1, . . . , xn), (x1 → x2),F(c0)}
ISn

1 , n ≥ 2 NANDn(x1, . . . , xn) ∧ F(c0) {NANDn(x1, . . . , xn)}
ISn

12, n ≥ 2 NANDn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) {NANDn(x1, . . . , xn),T(c1)}
ISn

11, n ≥ 2 NANDn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ F(c0) {NANDn(x1, . . . , xn), (x1 → x2)}
ISn

10, n ≥ 2 NANDn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) {NANDn(x1, . . . , xn), (x1 → x2),T(c1)}
ID (x1 ⊕ x2 = 1) {(x1 ⊕ x2 = 1)}
ID1 (x1 ⊕ x2 = 1) ∧ F(c0) ∧ T(c1) {(x1 ⊕ x2 = 1)} ∪ {F(c0),T(c1)}
ID2 OR2

26=(x1, x2, x3, x4) ∧ F(c0) ∧ T(c1) {F(c0),T(c1), (x1 ∨ x2), (¬x1 ∨ x2), (¬x1 ∨ ¬x2)}
IL EVEN4(x1, x2, x3, x4) {(x1 ⊕ . . .⊕ xk = 0) | k even}
IL0 EVEN3(x1, x2, x3) ∧ F(c0) {(x1 ⊕ . . .⊕ xk = 0) | k ∈ N}
IL1 ODD3(x1, x2, x3) ∧ T(c1) {(x1 ⊕ . . .⊕ xk = c) | k ∈ N, c = k mod 2}
IL2 EVEN3

3 6=(x1, . . . , x6) ∧ F(c0) ∧ T(c1) {(x1 ⊕ . . .⊕ xk = c) | k ∈ N, c ∈ {0, 1}}
IL3 EVEN4

4 6=(x1, . . . , x8) {(x1 ⊕ . . .⊕ xk = c) | k even, c ∈ {0, 1}}
IV (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ≥ 1}
IV0 (x1 ↔ x2x3) ∧ F(c0) {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ∈ N}
IV1 (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ T(c1) {ORn(x1, . . . , xn) | n ∈ N} ∪ {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ≥ 1})
IV2 (x1 ↔ x2x3) ∧ F(c0) ∧ T(c1) {ORn(x1, . . . , xn) | n ∈ N} ∪ {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ∈ N})
IE (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1}
IE0 (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ F(c0) {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N}
IE1 (x1 ↔ x2x3) ∧ T(c1) {NANDn(x1, . . . , xn) | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1})
IE2 (x1 ↔ x2x3) ∧ F(c0) ∧ T(c1) {NANDn(x1, . . . , xn) | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N})
IN EVEN4(x1, x2, x3, x4) ∧ x1x4 ↔ x2x3 {Complm,n | m,n ≥ 1}
IN2 EVEN4

4 6=(x1, . . . , x8) ∧ x1x4 ↔ x2x3 {Complm,n | m,n ∈ N}
II (x1 ↔ x2x3) ∧ (x4 ↔ x2x3) {(x1 ∨ . . . xm ∨ ¬y1 ∨ . . .¬yn) | m,n ≥ 1}
II0 (x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ F(c0) {(x1 ∨ . . . xm ∨ ¬y1 ∨ . . .¬yn) | m ∈ N, n ≥ 1}
II1 (x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ T(c1) {(x1 ∨ . . . xm ∨ ¬y1 ∨ . . .¬yn) | m ≥ 1, n ∈ N}
BR R

1/3
36= (x1, . . . , x6) ∧ F(c0) ∧ T(c1) {(x1 ∨ . . . xm ∨ ¬y1 ∨ . . .¬yn) | m,n ∈ N}

For co-clones without a finite base this notion is not
relevant. If a co-clone is not polynomially closed then we say
that it is superpolynomially closed. In order to prove that a co-
clone is polynomially closed it is sufficient to prove that there
exists some polynomial p such that the weak base of the co-
clone can implement any n-ary relation with p(n) variables.
This also implies that Definition 1 can be rephrased as the
seemingly weaker condition of for every finite base finding a
polynomial which limits the number of quantifiers. Similarly
we say that a co-clone IC has a polynomial base if there exists
a polynomial p such that every n-ary R ∈ IC has a q.p.p.
implementation Γn, where Γ is the plain base from Table I,
with at most p(n) constraints. Obviously this trivially holds
for all co-clones with a finite plain base. Polynomial bases
and polynomially closed co-clones are related by the following
lemma which states that a polynomial base for a co-clone
implies polynomial closure under some additional conditions.

Lemma 1: Let IC be a co-clone with plain base Γ and
weak base Rw from Table I such that (1) Rw can p.p.
implement Γn with p(n) variables for some polynomial p and
(2) IC has a polynomial base for some polynomial g. Then
IC is polynomially closed.

Proof: Let R ∈ IC be an n-ary relation. By Theorem 3
and the original assumption it follows that Γn can q.p.p.
implement R using at most g(n) constraints. Let φ denote
the q.p.p. implementation of R in Γn. For every constraint
Ci in φ we then replace Ci with its p.p. implementation
in {Rw,=}. Let the resulting formula be φ′. Since φ had

g(n) constraints and each constraint in φ′ introduced at most
p(n) new existentially quantified variables, the total number of
variables in φ′ is g(n) · p(n), clearly polynomial with respect
to n. Hence IC is polynomially closed.

The rest of the article is devoted to proving a complete
dichotomy theorem between polynomially closed and super-
polynomially closed co-clones. The proof consists of two cases
depending on whether the co-clone in question has a plain base
of finite or infinite cardinality.

Lemma 2: If IC has a finite plain base then IC is polyno-
mially closed.

Proof: Assume that IC has a plain base Γ of finite
cardinality and let Rw denote a weak base of IC. Since Γ
is finite there exists a polynomial p such that Rw can p.p.
implement Γn for every n ≥ 1 with p(n) variables. To see this
simply take the number of existentially quantified variables of
the relation requiring the largest number of quantified variables
in the p.p. definition in Γ. Such a relation must exist since Γ
is finite. The result then follows from Lemma 1 since IC has
a polynomial base whenever the plain base Γ is finite.

Lemma 2 is however not applicable for IL, IL0, IL1, IL3
and IL2 since their plain bases are infinite. It is however easy
to prove that all these co-clones admit polynomial bases since
the included relations can be viewed as linear equations over
the field GF(2).

Lemma 3: IL, IL0, IL1, IL3 and IL2 have polynomial
bases.



Proof: We only consider IL2 since the other cases follow
through similar arguments. Every n-ary relation R ∈ IL2 can
according to Theorem 3 be expressed by a Γn formula φ with
m constraints, where Γ is the plain base in Table I. Thus every
constraint Ci in φ is of the form (xi1 ⊕ . . .⊕xin) = ci, where
ci ∈ {0, 1}. Create an m × (n + 1)-matrix M such that each
entry ri,j , 1 ≤ j ≤ n, is equal to 1 if the variable xj is included
in the constraint Ci, and 0 otherwise. The entry ri,n+1 is equal
to the constant ci in Ci. Then it is not hard to verify that if
the row ri+1 is linearly dependent on r1, . . . , ri then C1, . . . Ci

entails Ci+1 in any satisfying assignment. Hence we only need
to keep the rows that are linearly independent which gives the
bound min(n+ 1,m) on the number of constraints.

Lemma 4: IL, IL0, IL1, IL3 and IL2 are polynomially
closed.

Proof: We only present the proof of IL2 since the other
co-clones follow through entirely analogous arguments. Let
Γ and Rw be the plain and weak base of IL2 from Table I,
respectively. Since IL2 has a polynomial base by Lemma 3
all we need to prove is that Rw can p.p. define Γn with
poly(n) variables. We first and most crucially show that Γn

can implement Γn+1 with only one extra variable, for every
n ≥ 3, with the implementation (x1 ⊕ . . . ⊕ xn+1 = c) ≡
∃x.(x1 ⊕ . . . ⊕ xn−1 ⊕ x = c) ∧ (xn ⊕ xn+1 ⊕ x = 0).
In addition to one quantified variable this requires one extra
Γ3-constraint. Hence if 3 ≤ n ≤ n′ then Γn can implement
every relation in Γn′ with O(n′ − n) variables and n′ − n
additional Γ3-constraints. By this it first follows that Γ3 can
p.p. define any relation in Γn with at most n−3 variables and
n− 2 constraints. The weak base Rw can then p.p. implement
Γ3 with a fixed number of variables since the arity of each
relation is bounded, for example we have that (x1⊕x2⊕x3 =
0) ≡ ∃y1, y2, y3, c0, c1.Rw(x1, x2, x3, y1, y2, y3, c0, c1) and
(x1⊕x2⊕x3 = 1) ≡ ∃ y1, y2, y3, c0, c1 . Rw(y1, y2, y3, x1, x2,
x3, c0, c1). Put together this implies that Rw can p.p. define
any Γn with O(n) existentially quantified variables, and by
Lemma 1 that IL2 is polynomially closed.

Theorem 5: If IC ⊆ IX for some IX ∈ {IL2, ID2} ∪
{ISn

00, IS
n
10 | n ≥ 2} then IC is polynomially closed.

IV. SUPERPOLYNOMIALLY CLOSED CO-CLONES

From Theorem 5 we now have a classification of the
polynomially closed co-clones. In this section we strengthen
this further and prove that the classification is also complete in
the sense that all other co-clones of finite order are superpoly-
nomially closed. The heart of the proof is based on counting
the number of n-ary relations in the co-clone. If this number is
sufficiently large we can prove that there exists relations which
for any finite base cannot be expressed with a polynomial
amount of existentially quantified variables.

Lemma 5: Let IC be a co-clone of finite order. If IC is
polynomially closed, then the number of n-ary relations in IC
is at most 2p(n) for some polynomial p.

Proof: Let Γ be a finite base of IC and let R be
the relation with the highest arity k in Γ. We make a few
observations before the proof: first, 〈Γ〉 6∃ ⊆ 〈Γk

SAT〉 6∃; second,
if some R′ /∈ 〈Γk

SAT〉6∃ then R′ /∈ Γ. This also implies that if Γ
can p.p. define some n-ary relation R with p(n) existentially

quantified then the same is true for Γk
SAT. By contraposition this

also implies that if Γk
SAT cannot p.p. define some n-ary relation

R with p(n) variables then neither can Γ. Now let n > 0.
The number of k-SAT formulas over n variables is bounded
by 22knk

, which is also the number of q.p.p. implementations
with Γk

SAT over n variables since Eq ∈ 〈Γk
SAT〉 6∃. Hence the

maximum amount of relations q.p.p. definable with Γk
SAT is at

most 22k·nk

. Since IC is polynomially closed we are allowed
to introduce at most p(n) existentially quantified variables to
implement any n-ary relation, hence the number of definable
relations is at most 22kp(n)k .

Since the number of n-ary Boolean relations is 22n

it
immediately follows that BR is superpolynomially closed. To
handle the other cases in the co-clone lattice where it is not
directly obvious how to count the number of relations we
provide mappings from BR to prove the requisite lower bound.

We say that a relation R is downward closed (respectively
upward closed) if for every tuple t ∈ R it holds that t′ ∈ R
whenever t′ ≤ t (respectively t′ ≥ t), where t′ ≤ t is applied
componentwise.

Lemma 6: If R is downward closed (respectively upward
closed) then R ∈ IS1 (respectively IS0).

Proof: First note that S1 can be generated by the 1-
separating Boolean function f(x, y) = x ∧ ¬y [6]. Assume
that R is an n-ary downward closed relation. We prove that
it is then closed under f from which it follows that R ∈ IS1.
Let t1 = (x1, . . . , xn), t2 = (y1, . . . , yn) ∈ R. Then the tuple
(f(x1, y1), . . . , f(xn, yn)) ∈ R since for every i we have that
f(xi, yi) = xi ∧ ¬yi ≤ xi. The proof for upward closed
relations is similar.

For the following proof we slightly abuse notation and let
ISn

1 (and respectively for ISn
0 ) denote the finite set {R | R ∈

IS1, ar(R) ≤ n}, and not as in Table I, the co-clone generated
by NANDn.

Lemma 7: For every n there exists an injective map from
BRn to IS2n

1 (respectively IS2n
0 ).

Proof: Let R be an n-ary Boolean relation. We define the
2n-ary Boolean relation R′ such that:

• (x1, y1, . . . , xn, yn) ∈ R′ if xi +yi ≤ 1 for all i ∈ [n]
with xi = yi = 0 for at least one i ∈ [n], and

• if xi+yi = 1 for all i ∈ [n] then (x1, y1, . . . , xn, yn) ∈
R′ if and only if (x1, . . . , xn) ∈ R.

We first prove that R′ ∈ IS1 by showing that it is
downward closed. Let t = (x1, y1, . . . , xn, yn) ∈ R′ and let
t′ = (x′1, y

′
1, . . . , x

′
n, y
′
n) be any tuple such that t′ < t. Then

we first see that the property x′i + y′i ≤ 1 still holds. Second
assume that (x1, . . . , xn) ∈ R. This means that for all i it
holds that xi +yi = 1. Since t′ < t there is at least one i such
that xi + yi = 0 which means that t′ ∈ R′.

Injectivity follows from the fact that any two relations
results in two distinct relations in IS1. The proof for IS0 is
similar but using xi + yi ≥ 1 and upward closure instead.

In the previous proof we map every n-ary relation to a
2n-ary relation. The number of n-ary relations in IS1 and IS0

is therefore 22Θ(n)

since it is at least 22
n
2 if n is even and



22
n−1

2 if n is odd (it is easy to create an (n+ 1)-ary relation
from an n-ary relation by adding a new variable not occurring
elsewhere). The mapping from IS0 to IV is similar but based
on a translation from a positive clause (x1∨ . . .∨xn) to a dual
Horn clause of the form (x1 ∨ . . . ∨ xn ∨ ¬y).

Lemma 8: For every n there exists an injective map from
ISn

0 (respectively ISn
1 ) to IVn+1 (respectively IEn+1).

Proof: Let R be an n-ary relation in IS0. We define the
(n+ 1)-ary relation R′ such that:

• R′ contain all tuples (x1, . . . , xn, y) where y = 0, and

• if y = 1 then (x1, . . . , xn, y) ∈ R′ if and only if
(x1, . . . , xn) ∈ R.

Due to the second condition the mapping is injective. The
difficulty lies in proving that R′ is indeed included in IV. The
clone V can be generated by the binary or function x1 ∨ x2

and the constant functions c0(x) = 0 and c1(x) = 1 [6]. Since
c1 ∈ S0 all we have to do is to verify that R′ is closed under
c0 and disjunction. That R′ is closed under c0 follows from
the first condition which ensures that R′ will be 0-valid. Let
(x1, . . . , xn, x) and (y1, . . . , yn, y) be any two tuples in R′ and
let (z1, . . . , zn, z) = (x1 ∨ y1, . . . , xn ∨ yn, x ∨ y). If z = 0
then (z1, . . . , zn, z) ∈ R′ so instead assume that z = 1. This
means that x + y ≥ 1 and hence that (x1, . . . , xn) ∈ R or
(y1, . . . , yn) ∈ R. Then for every i we have both that zi ≥ xi
and zi ≥ yi, which means that (z1, . . . , zn) is larger than both
(x1, . . . , xn) and (y1, . . . , yn), and since at least one of these
tuples are included in R it follows that (z1, . . . , zn) ∈ R and
(z1, . . . , zn, z) ∈ R′ since R is closed upwards.

The mapping from IS1 to IE is defined dually.

Theorem 6: If IC ⊇ IX for some IX ∈ {IV, IE, IN} then
IC is superpolynomially closed.

Proof: Due to the mappings from BR in Lemma 7 and
8 we get the bound 22Θ(n)

for IV and IE, and hence also for
IE0, IE1, IE2, IV0 IV1, IV2, II, II0 and II1. The remaining
two cases IN and IN2 are handled by the bound for IN which
is 22Θ(n)

since there are 22n−1

n-ary relations closed under
complement and 22n−1−1 n-ary 0- and 1-valid relations which
are closed under complement.

There is a close connection between polynomially closed
co-clones and a certain class of algebras [3]. If Γ is a constraint
language the algebra AΓ = ({0, 1},Pol(Γ)) is said to have few
subpowers if the base 2 logarithm of the cardinality of the set
of all subuniverses of An

Γ, where An
Γ is the n-ary direct power

of AΓ, can be bounded by some polynomial. This furthermore
holds if and only if the number of n-ary relations in 〈Γ〉 is
bounded by 2p(n) for some polynomial p, if and only if Pol(Γ)
contains a certain edge polymorphism [3]. These facts together
with Lemma 5 can be used as a less direct proof of Theorem 6.

We now show that the strong partial clones corresponding
to I(BR) and I(IN2) have a highly complex structure and
are of infinite order whenever the set of invariant relations can
be finitely generated. We need the following construction of a
universal hash family, due to Alon et al. [2].

Theorem 7 (Section 4 of [2]): For any k and n, there is
a family H of 2O(k) log n functions hi : {1, . . . , n} 7→

{1, . . . , k} such that for every S ⊂ {1, . . . , n} of size k there
is a function in H that is injective on S.

Note that the bound O(k) has no hidden dependency on
n. Hence, if k is a constant, then 2O(k) log n ∈ O(log(n)).

Lemma 9: Let Γ be a constraint language with 〈Γ〉 ∈
{BR, IN2}. If pPol(Γ) has finite order, then Γ can p.p.
implement all n-ary relations R ∈ 〈Γ〉 with at most O(n)
existentially quantified variables.

Proof: Let R(x1, . . . , xn) be an n-ary relation in IN2 or
BR, and let m ≤ 2n be the number of tuples in R. Let S be a
finite basis of pPol(Γ), let r be the largest arity of any function
in S, and let H be the r-universal hash family from [m] to
[r] of Theorem 7. We will create a relation R′ on variable
set {x1, . . . , xn} ∪ {y1, . . . , yp} where p = 2r|H|, such
that R(x1, . . . , xn) ≡ ∃y1, . . . , yp.R

′(x1, . . . , xn, y1, . . . , yp),
and such that R′ is closed under pPol(Γ). Since |H| =
2O(r) logm = 2O(r)O(n), and since r is a constant, we have
that the number of existentially quantified variables introduced
is 2O(r)O(n) = O(n). The relation R′ is defined as follows.
Write R down in matrix form, with each column representing
a variable and each row representing a tuple of R. Let M be
this matrix. For each hash function hi ∈ H and each mapping
gj : [r] → {0, 1}, we add a new column yi,j to M , which
in row t takes value gj(hi(t)), t ∈ [m]. In other words, for
each hash function hi : [m] → [r] we get a block of 2r

variables yi,j , corresponding to composing hi with each of
the 2r possible maps gj . We split into cases depending on
〈Γ〉.

If 〈Γ〉 = BR, then we use M as described. Let R′ be the
relation whose tuple set is enumerated by M . We claim that for
every q-tuple T = (t1, . . . , tq) of distinct rows from M , with
q ≤ r, and for every (b1, . . . , bq) ∈ {0, 1}q , there is at least
one column yi,j from M such that (t1[yi,j ], . . . , tq[yi,j ]) =
(b1, . . . , bq). Let P = (p1, . . . , pq) ∈ [m]q be the row indices
of T , i.e., ti = M [pi, ·] for each i ∈ [q]. Since H is a universal
hash family, there is some h ∈ H which is injective on P ,
hence (by the extra mappings g`) the columns yi,j , restricted
to the rows P , enumerate all 2q vectors. Thus there is a value
j such that the claim holds.

If 〈Γ〉 = IN2, we proceed as follows. First, we add one
further column z to M , making it the all-zero column. Next
we close M under complement by adding the complement of
every row of M to M . Let R′ be the relation corresponding
to the new matrix M , and let m′ = 2m be the number or
rows. Note that for a tuple t ∈ R′, t(z) = 0 if t is one of
the “original” rows, while t(z) = 1 if t was added in the
closure step. Let T = (t1, . . . , tq) where t1, . . . , tq are distinct
rows from M , with q ≤ r, and let P = (p1, . . . , pq) ∈ [m′]q

be the row indices of T , i.e., ti = M [pi, ·] for each i ∈ [q].
Define a new tuple (c1, . . . , cq) where ci = bi ⊕ ti(z), and
let yi,j be the column which takes values (c1, . . . , cq) on the
original tuples corresponding to T . This column exists by the
proof of the previous paragraph. Then clearly, yi,j takes values
(b1, . . . , bq) evaluated on the rows P .

We find that in both cases, restricted to any q-tuple of
distinct rows, the variables yi,j enumerate all 2q bit vectors.
It follows that R′ is closed under pPol(Γ): Consider an appli-
cation f(t1, . . . , tq) of some f ∈ pPol(Γ). We may assume



that all t1, . . . , tq come from different rows, as otherwise
the application of f is equivalent to the application of some
q′-ary partial polymorphism f ′ on distinct rows, where q′

is the number of distinct rows represented in (t1, . . . , tq).
If f is partial (i.e., has at least one undefined value), then
by the above there is some column yi,j which blocks its
application; otherwise we must have 〈Γ〉 = IN2 and f must
be a combination of projection and complement, and R′ is
already closed under both. Thus Γ can q.p.p. implement R′,
and we are done.

Theorem 8: Let IC ∈ {BR, IN2}. Then, if Γ is a finite
base of IC, pPol(Γ) is of infinite order.

Proof: First assume that pPol(Γ) can be finitely gener-
ated. By Lemma 9 we then have that Γ can p.p. implement
all n-ary relations in IC with O(n) existentially quantified
variables which contradicts Theorem 6.

Note that the proof does not work for the other super-
polynomially closed co-clones since in general there is no
guarantee that the extended relation has the same set of
total polymorphisms as the original relation. However, the co-
clones BR and IN2 are interesting for practical considerations
since these are the only cases when the CSP problem is
NP-hard. Theorem 8 then says that describing the set of
partial polymorphisms (which strongly correlates to worst-
case running times [11]) even for very simple languages such
as R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} is complicated since
these are always of infinite order.

V. POLYNOMIAL BASES FOR CO-CLONES

A further strengthening of Theorem 6 involves proving that
all superpolynomially closed co-clones lack polynomial bases.
This can be shown by a simple counting argument, using the
bounds from the previous section on the number of n-ary
relations in each of these co-clones.

Theorem 9: If IC ⊇ IX for some IX ∈ {IV, IE, IN} then
IC does not admit a polynomial base.

Proof: We show the theorem with a counting argument,
using the results of Section IV. We make two quick obser-
vations: first, recall from Section IV that every co-clone IC

as specified above contains 22Θ(n)

n-ary relations; second, if
Γ is the plain base for IC from Table I, then |Γn| = p(n)
for some polynomial p(n) (the proof will however go through
with any plain base satisfying |Γn| ≤ 2p(n)). For each R ∈ Γn,
there are at most nn different possible constraints one can
form with R; thus the number of different possible constraints
overall is bounded by |Γn| · nn. The number of possible
formulas with at most c(n) constraints is then bounded by
(|Γn| · nn)c(n) ≤ 2q(n) for a polynomial q(n). The theorem
follows.

Thus a co-clone of finite order has a polynomial base if and
only if it is polynomially closed. In conjunction the results of
Sections III, IV and V therefore imply the following corollary.

Corollary 1: Let 〈Γ〉 be a Boolean co-clone of finite order.
Then the following statements are equivalent.

• 〈Γ〉 is polynomially closed.

• 〈Γ〉 has a polynomial base.
• The algebra ({0, 1},Pol(Γ)) has few subpowers.

• There exists a polynomial p such that the number of
n-ary relations in 〈Γ〉 is not larger than 2p(n).
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