Outline

Interval CLP

[Benhamou et al]
humbly presented by
Johan Lübcke and Dan Lawesson

- Preliminaries
\checkmark F-intervals
$\boldsymbol{\checkmark}$ Approximation
- Narrowing
\checkmark Algorithm
\checkmark Example
- Convexity
\checkmark Choice points
- Implementation
\checkmark Newton
\checkmark Box consistency
\checkmark Splitting

F-intervals

$F=E \cup\{-\infty, \infty\}, E \subset \Re, E$ finite
F-interval : $(a, b),\{a, b\} \subseteq F$
\mathcal{F} is the set of all F-intervals

Approximations

If ρ is a subset of \Re^{n} then $a p x(\rho)$ is the smallest F-interval containing ρ.

$$
\operatorname{apx}\left(X^{2}+Y^{2} \leq 1\right)=([-1,1],[-1,1])
$$

Constraint systems

V is a set of variables

- A constraint is an expression $\rho\left(x_{1}, \ldots, x_{n}\right)$, where $\rho \subseteq \Re^{n}$ and every $x_{i} \in V \cup E$
- A system $\Sigma=(i, S)$, where $i: V \cup E \rightarrow \mathcal{F}$ and S is a finite set of constraints
- A solution $\sigma: V \cup E \rightarrow \Re$ of a system Σ satisfies
$-\forall x \in E, \sigma(x)=x$
- $\forall x \in V, \sigma(x) \in i(x)$
$-\forall \rho\left(x_{1}, \ldots, x_{n}\right) \in S,\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right) \in \rho$

Narrowing

For every F-block u, the narrowing function $\vec{\rho}: \mathcal{F}^{n} \rightarrow$ \mathcal{F}^{n} of ρ satisfies $\vec{\rho}(u)=\operatorname{apx}(u \cap \rho)$

$$
\text { (i)-(iv) : } u, \rho, u \cap \rho, \vec{\rho}
$$

Contractance $\vec{\rho}(u) \subseteq u$
Correctness $u \cap \rho=\vec{\rho}(u) \cap \rho$

Monotonicity $u \subseteq v \Rightarrow \vec{\rho}(u) \subseteq \vec{\rho}(v)$
Idempotence $\vec{\rho}(\vec{\rho}(u))=\vec{\rho}(u)$

Narrowing algorithm

Intuition: Calculate narrowing fix point. Whenever an interval (denoted X) becomes narrower, re-evaluate all constraints containing X.

[^0]As defined earlier : $\vec{\rho}(u)=a p x(u \cap \rho)$

c_{0}	$=\{X \in \Re \mid X \geq 0\}$
c_{1}	$=\left\{(X, Y) \in \Re^{2} \mid Y \geq X\right\}$
Σ	$=(i, S)=\left(\{X \mapsto[0, \infty], Y \mapsto[0, \infty]\},\left\{c_{0}(X), c_{1}(X, Y)\right\}\right)$

$\left(\left\{\left(X^{\prime} X\right)^{\text {º }}{ }^{\prime}(X)^{0} \supset\right\}^{\prime}\left\{\left[\infty^{\prime} 0\right] \leftarrow X^{\prime}\left[\infty^{\prime} 0\right] \leftarrow X\right\}\right)=\left(S^{\prime} ?\right)=$

ntroduce $c_{2}=\left\{(X, Y) \in \Re^{2} \mid X^{2}+Y^{2} \leq 1\right\}$

Interval convexity

A constraint ρ is interval convex if for every F-block u and every $i \in\{1, \ldots, n\}, \pi_{i}(\rho \cap u)$ is an F-interval.

$$
a d d=\left\{(x, y, z) \in \Re^{3} \mid x+y=z\right\}
$$

is interval convex, but

$$
\text { mult }=\left\{(x, y, z) \in \Re^{3} \mid x y=z\right\}
$$

is not.
Example: Assume $u=([-2,3],[-4,5],[1,1])$, then mult $\cap u=\left([-2,3],\left[-3,-\frac{1}{2}\right] \cup\left[\frac{1}{3}, 5\right],[1,1]\right)$ and $\operatorname{apx}($ mult $\cap u)=u$.

Choice points

Assume $\rho=\rho_{1} \cup \rho_{2}$, i.e. $c=c_{1} \vee c_{2}$

1. $\vec{\rho}(u)=\operatorname{apx}\left(u \cap \rho_{1}\right) \vee \vec{\rho}(u)=\operatorname{apx}\left(u \cap \rho_{2}\right)$, disjunction implemented by choice point
2. $\vec{\rho}(u)=\operatorname{apx}\left(u \cap\left(\rho_{1} \cup \rho_{2}\right)\right)$, splitting after propagation (similar to labeling) creates choice point.

Example: mult $=$ mult $^{+} \cup$ mult $^{-}$, where

$$
m^{\prime} u l t^{+}=\left\{(x, y, z) \in \Re^{3} \mid x \geq 0, x y=z\right\}
$$

and

$$
\text { mult }{ }^{-}=\left\{(x, y, z) \in \Re^{3} \mid x<0, x y=z\right\}
$$

Both are interval convex

Newton

Extending Prolog, Newton combines constraints over reals, integers and booleans.

Newton uses a relaxed implementation of narrowing called box consistency.

9

Restricted intervals
Integers If $u=[a, b]$ then $\overrightarrow{\operatorname{int}}(u)=[[a\rceil,\lfloor b\rfloor]$,

[^1]|| || || ล

 $(\overrightarrow{i n t}(u)))$ $\overrightarrow{i n t}(\bar{n}$ 2]) \begin{tabular}{c}

-

-

-

\hline
\end{tabular} $([-0.3,2.4],[1.5,2.5])$ ॥

$$
\text { Interval extension }
$$

$f^{\prime}: \mathcal{F}^{n} \rightarrow \mathcal{F}$ is an interval extension of $f: \Re^{n} \rightarrow \Re$ iff
$\forall F_{1}, \ldots, F_{n} \in \mathcal{F}: x_{1} \in F_{1}, \ldots, x_{n} \in F_{n} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right) \in f^{\prime}\left(F_{1}, \ldots, F_{n}\right)$
Example: $f^{\prime}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\left\lfloor x_{1}+y_{1}\right\rfloor,\left\lceil x_{2}+y_{2}\right]\right]$ is an interval extension
of $f(x, y)=x+y$.
Another example would be $f^{\prime}(X, Y)=[-\infty, \infty] \ldots$

Box consistency

Box consistency is a relaxed version of arc consistency that is less expensive to calculate. An interval constraint $\rho^{\prime}=C\left(F_{1}, \ldots, F_{n}\right)$ is box consistent wrt $\left(F_{1}, \ldots, F_{n}\right)$ and an integer i iff

$$
\begin{gathered}
C\left(F_{1}, \ldots, F_{i-1},\left[l, l^{+}\right], F_{i+1}, \ldots, F_{n}\right) \\
\wedge \\
C\left(F_{1}, \ldots, F_{i-1},\left[u^{-}, u\right], F_{i+1}, \ldots, F_{n}\right)
\end{gathered}
$$

where $l=\operatorname{left}\left(F_{i}\right)$ and $u=\operatorname{right}\left(F_{i}\right)$.
This is equivalent to

$$
\begin{aligned}
F_{i}= & \operatorname{apx}\left(\left\{r_{i} \in F_{i} \mid C\left(F_{1}, \ldots, F_{i-1},\right.\right.\right. \\
& \left.\left.\left.\operatorname{apx}\left(\left\{r_{i}\right\}\right), F_{i+1}, \ldots, F_{n}\right)\right\}\right)
\end{aligned}
$$

Box consistency differs from arc consistency when ρ^{\prime} contains multiple instances of the same variable.

Arc consistency revisited

A constraint c is arc-consistent wrt $\left(D_{1}, \ldots, D_{n}\right)$ and an integer $i, 1 \leq i \leq n$ iff

$$
\begin{aligned}
D_{i} \subseteq & \left\{r_{i} \mid \exists r_{1} \in D_{1}, \ldots, r_{i-1} \in D_{i-1}\right. \\
& \left.r_{i+1} \in D_{r+1}, \ldots, r_{n} \in D_{n}: c(\bar{r})\right\}
\end{aligned}
$$

Arc consistency for systems is defined in the natural way.
Generalized to intervals, a constraint ρ is arc consistent wrt $\left(F_{1}, \ldots, F_{n}\right)$ and an integer $i, 1 \leq i \leq n$ iff

$$
\begin{aligned}
F_{i}= & a p x\left(F _ { i } \cap \left\{r_{i} \mid \exists r_{1} \in F_{1}, \ldots, r_{i-1} \in F_{i-1},\right.\right. \\
& \left.\left.r_{i+1} \in F_{r+1}, \ldots, r_{n} \in F_{n}: \bar{r} \in \rho\right\}\right)
\end{aligned}
$$

This is the fix point criteria for narrowing, i.e.

$$
u=\vec{\rho}(u)=a p x(u \cap \rho)
$$

Summary

Interval constraints allows for a coherent handling of multiple simultaneous variable
domain types.
Result: $\exists b \in \operatorname{Benchmarks}\left(\exists S \in \operatorname{OtherSolvers}\left(\right.\right.$ better $\left.\left._{b}(N e w t o n, S)\right)\right)$

[^0]: Terminating!

[^1]: Booleans is a special case of integers
 (using int for two variables)
 Booleans is a special case of integers
 Example:

