Introduction: Overview

• Goals of the course.

• What is logic programming?

• Why logic programming?
Goals of the course

• Logic as a specification AND programming language;

• Theoretical foundation of logic programming;

• Practice of Prolog and constraint programming;

• Relations to other areas:
 - Databases
 - Formal/natural languages
 - Combinatorial problems

• To program DEclaratively.
Declarative vs imperative languages

<table>
<thead>
<tr>
<th></th>
<th>Imperative</th>
<th>Declarative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paradigm</td>
<td>Describe HOW TO solve the problem</td>
<td>Describe WHAT the problem is</td>
</tr>
<tr>
<td>Program</td>
<td>A sequence of commands</td>
<td>A set of statements</td>
</tr>
<tr>
<td>Examples</td>
<td>C, Fortran, Ada, Java</td>
<td>Prolog, Pure Lisp, Haskell, ML</td>
</tr>
<tr>
<td>Advantages</td>
<td>Fast, specialized programs</td>
<td>General, readable, correct(?) programs.</td>
</tr>
</tbody>
</table>
Declarative description A grandchild to x is a child of one of x’s children.

Imperative description I To find a grandchild of x, first find a child of x. Then find a child of that child.

Imperative description II To find a grandchild of x, first find a parent-child pair and then check if the parent is a child of x.

Imperative description III To find a grandchild of x, compute the factorial of 123, then find a child of x. Then find a child of that child.
Compare . . .

read(person);
for i := 1 to maxparent do
 if parent[i;1] = person then
 for j := 1 to maxparent do
 if parent[j;1] = parent[i;2] then
 write(parent[j;2]);
 fi
 od
 fi
od

with . . .

gc(X,Z) :- c(X,Y), c(Y,Z).
Logic: Overview

- Syntax and semantics
- Vocabulary, terms and formulas
- Interpretations and models
- Logical consequence and equivalence
- Proofs/derivations
- Soundness and completeness
Predicate logic vocabulary

- Constants (17, george, tEX, ...)
- Functors (cons/2, +/2, father/1, ...)
- Predicate symbols (member/2, </2, father/1, ...)
- Variables (X, X11, _, _123, TeX, ...)
- Logical connectives (∧, ∨, ⊃, ⊼, ↔)
- Quantifiers (∀, ∃)
- Auxiliary symbols (., (.), ...)

7
Example

\[A = \{\text{volvo}; \text{owner}/1; \text{owns}/2, \text{happy}/1\} \]
Terms

Let A be a vocabulary.

The set of all terms over A is the least set such that

- every constant in A is a term;

- every variable is a term;

- if f/n is a functor in A and t_1, \ldots, t_n are terms over A then $f(t_1, \ldots, t_n)$ is a term.
Ground terms

A term that contains no variables is called a ground term.
(Well-formed) formulas

Let A be a vocabulary.

The set of all *formulas* over A is the least set such that:

- if p/n is a predicate symbol in A and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$ is a formula;

- if F and G are formulas, then $(F \land G), (F \lor G), (F \supset G), (F \leftrightarrow G)$ and $\neg F$ are formulas;

- if F is a formula and X a variable, then $\forall X \ F$ and $\exists X \ F$ are formulas.
Atoms

A formula of the form $p(t_1, \ldots, t_n)$ is called an \textit{atomic formula} (atom).

Free occurrences of variables

An occurrence of X in a formula is said to be \textit{free} iff the occurrence does not follow immediately after a quantifier, or in a formula immediately after $\forall X$ or $\exists X$.

Closed formulas

A formula that does not contain any free occurrences of variables is said to be \textit{closed}.
Universal closure

Assume that \(\{X_1, \ldots, X_n\} \) are the only free occurrences of variables in a formula \(F \). The universal closure \(\forall F \) of \(F \) is the closed formula \(\forall X_1 \ldots \forall X_n F \).

The existential closure \(\exists F \) is defined similarly.
Interpretations

Let A be a vocabulary.

An interpretation \mathfrak{S} of A consists of (1) a non-empty set D (often written $|\mathfrak{S}|$) of objects (the domain of \mathfrak{S}) and (2) a function that maps:

- every constant c in A on an element $c_{\mathfrak{S}}$ in D;

- every functor f/n in A on a function $f_{\mathfrak{S}} : D^n \rightarrow D$;

- every predicate symbol p/n in A on a relation $p_{\mathfrak{S}} \subseteq D^n$.

14
Example

The vocabulary:

\[A = \{ \text{volvo}; \text{owner}/1; \text{owns}/2, \text{happy}/1 \} \]

Consider \(\mathcal{S} \) where \(|\mathcal{S}| = \{0, 1, 2, \ldots \} \) and were:

- \(\text{volvo}_\mathcal{S} = 0 \)
- \(\text{owner}_\mathcal{S}(x) = x + 1 \)
- \(\text{owns}_\mathcal{S} = \text{greater-than} \)
- \(\text{happy}_\mathcal{S} = \text{nonzero-property} \)
NOTE!

An interpretation defines how to interpret constants, functors and predicate symbols but it does not say what a variable denotes.

Valuation

A *valuation* is a function from variables to objects in the domain of an interpretation.
The interpretation of terms

Let \mathcal{S} be an interpretation of a vocabulary A. Let σ be a valuation.

The interpretation $\sigma_{\mathcal{S}}(t)$ of the term t is an object in \mathcal{S}’s domain:

- if t is a constant c then $\sigma_{\mathcal{S}}(t) = c_{\mathcal{S}}$;

- if t is a variable X then $\sigma_{\mathcal{S}}(t) = \sigma(X)$;

- if t is a term $f(t_1,\ldots,t_n)$ then $\sigma_{\mathcal{S}}(t) = f_{\mathcal{S}}(\sigma_{\mathcal{S}}(t_1),\ldots,\sigma_{\mathcal{S}}(t_n))$.
Example

Consider \mathbb{S} where $|\mathbb{S}| = \{0, 1, 2, \ldots\}$ and were:

- $\text{volvo}_\mathbb{S} = 0$

- $\text{owner}_\mathbb{S}(x) = x + 1$

Then:

\[
\begin{align*}
\text{owner}_\mathbb{S}(\text{owner}_\mathbb{S}(\text{volvo})) &= \text{owner}_\mathbb{S}(\text{owner}(\text{volvo})) \\
&= (\text{owner}_\mathbb{S}(\text{volvo}))+1 \\
&= (\text{owner}(\text{volvo}))+1 \\
&= ((\text{volvo})+1)+1 \\
&= (0+1)+1 \\
&= 2
\end{align*}
\]
Example

Consider also $\sigma(x) = 3$. Then:

$$\sigma_3(\text{owner}(X))$$
$$= \text{owner}_3(\sigma_3(X))$$
$$= (\sigma_3(X)) + 1$$
$$= (\sigma(X)) + 1$$
$$= 3 + 1$$
$$= 4$$
The interpretation of formulas

The meaning of a formula is a truth-value—“true” or “false”. Given an interpretation \mathcal{I} and a valuation σ we write

$\mathcal{I} \models_\sigma F$ when F is true wrt \mathcal{I} and σ.

$\mathcal{I} \not\models_\sigma F$ when F is false wrt \mathcal{I} and σ.

- $\mathcal{I} \models_\sigma p(t_1, \ldots, t_n)$ iff $(\sigma_{\mathcal{I}}(t_1), \ldots, \sigma_{\mathcal{I}}(t_n)) \in p_{\mathcal{I}}$;

- $\mathcal{I} \models_\sigma \neg F$ iff $\mathcal{I} \not\models_\sigma F$;

- $\mathcal{I} \models_\sigma F \land G$ iff $\mathcal{I} \models_\sigma F$ and $\mathcal{I} \models_\sigma G$;

- $\mathcal{I} \models_\sigma F \lor G$ iff $\mathcal{I} \models_\sigma F$ and/or $\mathcal{I} \models_\sigma G$;
The interpretation of formulas (cont’d.)

- $\mathcal{S} \models_{\sigma} F \supset G$ iff $\mathcal{S} \not\models_{\sigma} F$ and/or $\mathcal{S} \models_{\sigma} G$;

- $\mathcal{S} \models_{\sigma} F \leftrightarrow G$ iff $\mathcal{S} \models_{\sigma} F$ exactly when $\mathcal{S} \models_{\sigma} G$;

- $\mathcal{S} \models_{\sigma} \forall X F$ iff $\mathcal{S} \models_{\sigma[\cdot \mapsto t]} F$ for every $t \in |\mathcal{S}|$;

- $\mathcal{S} \models_{\sigma} \exists X F$ iff $\mathcal{S} \models_{\sigma[\cdot \mapsto t]} F$ for some $t \in |\mathcal{S}|$.
Example

Consider \mathbb{S} as before.

Then:

$$\mathbb{S} \models \text{owns(volvo, volvo)} \supset \text{happy(volvo)}$$

iff

$$\mathbb{S} \not\models \text{owns(volvo, volvo)}$$

or

$$\mathbb{S} \models \text{happy(volvo)}$$

iff

$$\langle \sigma_\mathbb{S}(\text{volvo}), \sigma_\mathbb{S}(\text{volvo}) \rangle \not\in \text{owns}_\mathbb{S}$$

or

$$\sigma_\mathbb{S}(\text{volvo}) \in \text{happy}_\mathbb{S}$$

iff

$$\langle 0, 0 \rangle \not\in \text{owns}_\mathbb{S} \text{ or } 0 \in \text{happy}_\mathbb{S}$$

iff

$$0 \not> 0 \text{ or } 0 \neq 0$$

iff

true
Models

Let F be a closed formula.
Let P be a set of closed formulas.

An interpretation \mathcal{I} is a model of F iff $\mathcal{I} \models F$.

An interpretation \mathcal{I} is a model of P iff \mathcal{I} is a model of every formula in P.

Satisfiability

F (resp. P) is satisfiable iff F (resp. P) have at least one model. (Otherwise F/P is unsatisfiable.)
Example

\(\emptyset\) (defined as before) is a model of:

\[
owns(\text{owner(\text{volvo}), \text{volvo})}
\]

and:

\[
\forall X(\owns(X, \text{volvo}) \supset \text{happy}(X))
\]
Logical consequence

F is a logical consequence of P ($P \models F$) iff F is true in all of P’s models ($\text{Mod}(P) \subseteq \text{Mod}(F)$).

Theorem

$P \models F$ iff $P \cup \{\neg F\}$ is unsatisfiable.
Logical equivalence

Let $F, G, \forall X H(X)$ be formulas.

F and G are logically equivalent ($F \equiv G$) iff
\[\mathcal{G} \models_{\sigma} F \text{ exactly when } \mathcal{G} \models_{\sigma} G. \]

\[
\begin{align*}
F \supset G & \equiv \neg F \lor G \\
F \supset G & \equiv \neg G \supset \neg F \\
F \leftrightarrow G & \equiv (F \supset G) \land (G \supset F) \\
\neg (F \land G) & \equiv \neg F \lor \neg G \\
\neg (F \lor G) & \equiv \neg F \land \neg G \\
\neg \forall X H(X) & \equiv \exists X \neg H(X) \\
\neg \exists X H(X) & \equiv \forall X \neg H(X)
\end{align*}
\]

In addition, if X does not occur free in F.

\[
\forall X (F \lor H(X)) \equiv F \lor \forall X H(X)
\]
Proofs (derivations)

A proof (derivation) is a sequence of formulas where each formula in the sequence is either a so-called premise or is obtained from previous formulas in the sequence by means of a collection of derivation rules.

Natural deductions

\[
\begin{align*}
&\frac{F}{G} & & \frac{F \supset G}{G} \\
&\frac{\forall X F(X)}{F(t)} & & \frac{F}{F \land G} & & \frac{G}{F \land G}
\end{align*}
\]
Example

1. owns(owner(volvo), volvo) \[\text{P} \]
2. \(\forall X (\text{owns}(X, \text{volvo}) \supset \text{happy}(X)) \) \[\text{P} \]
3. owns(owner(volvo), volvo) \supset happy(owner(volvo)))
4. happy(owner(volvo))
Proofs

Let P be a set of closed formulas (premises).
Let F be a closed formula.

We write $P \vdash F$ when there is a derivation of F from the premises P.

Soundness and completeness

If $P \vdash F$ then $P \models F$. (soundness)

If $P \models F$ then $P \vdash F$. (completeness)
Definite Programs: Overview

- Definite programs:
 - Rules;
 - Facts;
 - Goals.

- Herbrand-interpretations;

- Herbrand-models;

- Fixpoint-semantics.
Clauses

A clause is a formula:

$$\forall (A_1 \lor \ldots \lor A_m \lor \neg A_{m+1} \lor \ldots \lor \neg A_{m+n})$$

where $A_1, \ldots, A_m, A_{m+1}, \ldots, A_{m+n}$ are atoms and $m, n \geq 0$.

$$\equiv$$

$$\forall ((A_1 \lor \ldots \lor A_m) \lor \neg (A_{m+1} \land \ldots \land A_{m+n}))$$

$$\equiv$$

$$\forall ((A_1 \lor \ldots \lor A_m) \leftarrow (A_{m+1} \land \ldots \land A_{m+n}))$$
Definite clauses

A definite clause is a clause where \(m \leq 1 \):

Rules

A rule is a clause where \(m = 1 \) and \(n > 0 \):

\[
\forall (A_1 \leftarrow A_2 \wedge \ldots \wedge A_{m+n})
\]

Facts

A fact is a clause where \(m = 1 \) and \(n = 0 \):

\[
\forall (A_1)
\]
(Definite) goals

A goal is a clause where $m = 0$ and $n \geq 0$:

$$\forall(\neg(A_1 \land \ldots \land A_{m+n}))$$

A goal where $m = n = 0$ is called the empty goal.

Notation

Rules: $A_1 \leftarrow A_2, \ldots, A_{n+1}$. $n > 0$

Facts: A_1.

Goals: $\leftarrow A_1, \ldots, A_n$. $n > 0$

\square $n = 0$
Logic Programming Anatomy

head neck body

\[A_0 \leftarrow A_1, \ldots, A_n \]
Logic programs

A definite program is a finite set of rules and facts.

A definite program P is used to answer “existential questions” (queries) such as:

“are there any odd integers?”

The query can be answered “yes” if e.g:

$$P \models \exists X \ odd(X)$$

This is equivalent to proving that:

$$P \cup \{\neg \exists X \ odd(X)\}$$

is unsatisfiable (has no models).
Resolution

Note that $\neg \exists (A_1 \land \ldots \land A_n)$ is equivalent to $\forall \neg (A_1 \land \ldots \land A_n)$. That is, a goal.

Resolution is used to prove that a set of clauses is unsatisfiable. As a side-effect resolution produces “witnesses” (variable bindings). See chapter 3.
Herbrand interpretations

Let P be a logic program based on the vocabulary A

Herbrand universe

The Herbrand universe of P (A really) is the set of all ground terms that can be built using constants and functors in $P (A)$. Denoted $U_P (U_A)$.

Herbrand base

The Herbrand base of $P (A)$ is the set of all ground atoms that can be built using U_P and the predicate symbols of $P (A)$. Denoted $B_P (B_A)$.
Example

Vocabulary:

\[A = \{\text{volvo}; \text{owner}/1; \text{owns}/2, \text{happy}/1\} \]

Herbrand universe:

\[U_A = \{\text{volvo}, \text{owner(volvo)}, \text{owner(owner(volvo))}, \ldots\} \]

Herbrand base:

\[B_A = \{\text{happy}(s) \mid s \in U_A\} \cup \{\text{owns}(s,t) \mid s,t \in U_A\} \]
Herbrand interpretations

A Herbrand interpretation of P is an interpretation \mathcal{I} where $|\mathcal{I}| = U_P$ and where:

- $c_\mathcal{I} = c$ for every constant c;
- $f_\mathcal{I}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$ for every functor f/n;
- $p_\mathcal{I}$ is a subset of $U_P \times \cdots \times U_P$ for every predicate symbol p/n.

That is, the interpretation of a ground term is the term itself!
Observation I

Since all ground terms are interpreted as themselves, it is sufficient to specify the interpretation of the predicate symbols when describing a Herbrand interpretation; in other words, to specify a Herbrand interpretation \(\Im \) it is sufficient to specify, for each predicate symbol, the set:

\[
\{ \langle t_1, \ldots, t_n \rangle \in U_P^m \mid p(t_1, \ldots, t_n) \text{ is true in } \Im \}\]

Observation II

Instead of describing a Herbrand interpretation \(\Im \) as a family of sets we usually describe \(\Im \) as a single set of all ground atoms that are true in \(\Im \).

\[
\Im = \{ p(t_1, \ldots, t_n) \mid p(t_1, \ldots, t_n) \text{ is true in } \Im \}\]
Example

Alternative I

\[
\begin{align*}
\text{owns}_\mathcal{S} &= \{\langle \text{owner(volvo), volvo} \rangle, \ldots \} \\
\text{happy}_\mathcal{S} &= \{\langle \text{owner(volvo)} \rangle, \ldots \}
\end{align*}
\]

Alternative II

\[
\mathcal{S} = \{\text{owns(owner(volvo), volvo)}, \ldots, \\
\text{happy(owner(volvo))}, \ldots \}
\]
Ground instances of P

Let C' be a definite clause of the form

$$A_0 \leftarrow A_1, \ldots, A_n \quad (n \geq 0)$$

(C' is considered to be a fact if $n = 0$.)

By a ground instance of C we mean the same clause with all variables replaced by ground terms (several occurrences of the same variable are replaced by the same term):

By $ground(C)$ we mean the set of all ground instances of C.

If P is a definite program then

$$ground(P) = \{C' \mid \exists C \in P \text{ s.t. } C' \in ground(C')\}$$
Why Herbrand Interpretations?

For an arbitrary interpretation \mathcal{S}:

$$\mathcal{S} \models_{\sigma} \forall X (\text{happy}(X) \leftarrow \text{owns}(X, \text{volvo}))$$

iff

$$\mathcal{S} \models_{\sigma[X \mapsto a]} \text{happy}(X) \leftarrow \text{owns}(X, \text{volvo})$$

for all $a \in |\mathcal{S}|$

For a Herbrand interpretation \mathcal{S}:

$$\mathcal{S} \models_{\sigma} \forall X (\text{happy}(X) \leftarrow \text{owns}(X, \text{volvo}))$$

iff

$$\mathcal{S} \models_{\sigma} \text{happy}(t) \leftarrow \text{owns}(t, \text{volvo})$$

for any $t \in U_P$

No need to worry about valuations!!!
Herbrand models

A Herbrand model of F (resp. P) is a Herbrand interpretation which is a model of F (resp. all formulas in P).

Observation

A ground atom A is true in a Herbrand interpretation \mathcal{I} iff $A \in \mathcal{I}$.

Theorem

Let P be a set of definite clauses (facts/rules/goals) and M be an arbitrary model of P. Then:

$\mathcal{S} := \{ A \in B_P | M \models A \}$

is a Herbrand model of P.
Theorem

Let \(\{M_1, M_2, \ldots \} \) be a non-empty set of Herbrand models of \(P \). Then also
\[\mathcal{S} := \bigcap \{M_1, M_2, \ldots \} \]
is a Herbrand model of \(P \).

The Least Herbrand model

The intersection of all Herbrand models of \(P \) is called the least Herbrand model of \(P \) and is denoted \(M_P \).

Theorem

\[M_P = \{ A \in \mathcal{B}_P \mid P \models A \} \]
“Construction” of M_P

Observation

In order for \mathcal{S} to be a model of P it is required that:

- If A is a ground instance of a fact then $A \in \mathcal{S}$, and

- If $A \leftarrow A_1, \ldots, A_n$ is a ground instance of a clause in P and $\{A_1, \ldots, A_n\} \subseteq \mathcal{S}$ then $A \in \mathcal{S}$.

Immediate consequence operator

$$T_P(x) := \{A \in B_P \mid A \leftarrow A_1, \ldots, A_n \in \text{ground}(P) \text{ and } \{A_1, \ldots, A_n\} \subseteq x\}$$
Theorem

\[M_P = T^*_P(\emptyset) \quad \text{when} \quad n \to \infty \]
Example

gp(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- f(X,Y).
p(X,Y) :- m(X,Y).

f(adam,bill).
f(adam,carol).
f(bill,eve).
m(carol,david).
Example

• $\emptyset_0 = \emptyset$

• $\emptyset_1 = T_P(\emptyset) = \{f(a, b), f(a, c), f(b, e), m(c, d)\}$
 [$f(a, b) \in \emptyset_1$ since $(f(a, b) \leftarrow) \in \text{ground}(P)$ and $\emptyset \subseteq \emptyset$.]

• $\emptyset_2 = T_P(\emptyset_1) = T^2_P(\emptyset) =$
 $\{p(a, b), p(a, c), p(b, e), p(c, d)\} \cup \emptyset_1$
 [$p(a, b) \in \emptyset_2$ since $(p(a, b) \leftarrow f(a, b)) \in \text{ground}(P)$ and $\{f(a, b)\} \subseteq \emptyset_1$.]

• $\emptyset_3 = T_P(\emptyset_2) = T^3_P(\emptyset) = \{gp(a, d), gp(a, e)\} \cup \emptyset_2$
 [$gp(a, d) \in \emptyset_3$ since
 $(gp(a, d) \leftarrow p(a, c), p(c, d)) \in \text{ground}(P)$ and $\{p(a, c), p(c, d)\} \subseteq \emptyset_2$.]

• $\emptyset_4 = T_P(\emptyset_3) = T^4_P(\emptyset) = \emptyset_3$
SLD-Resolution: Overview

- Substitutions;
- Unification;
- SLD-derivations;
- Soundness and completeness.
Substitutions

A substitution is a finite set \(\{ X_1/t_1, \ldots, X_n/t_n \} \) where:

- every \(t_i \) is a term;
- every \(X_i \) is a variable distinct from \(t_i \);
- if \(i \neq j \) then \(X_i \neq X_j \).

The empty substitution \(\{ \} \) is denoted \(\epsilon \).
Let θ be a substitution $\{X_1/t_1, \ldots, X_n/t_n\}$.

Domain and Range

The domain $Dom(\theta)$ of θ is $\{X_1, \ldots, X_n\}$ and the range $Range(\theta)$ is the set of all variables occurring in t_1, \ldots, t_n.

Application

Let E be a term or formula. The application $E\theta$ of θ to E is the term/formula obtained from E by simultaneously replacing all occurrences of X_i by t_i.

$E\theta$ is called an *instance* of E.
Composition

Let $\theta := \{X_1/s_1, \ldots, X_m/s_m\}$ and $\sigma := \{Y_1/t_1, \ldots, Y_n/t_n\}$ be substitutions. The composition $\theta \sigma$ of θ and σ is the substitution obtained from

$$\{X_1/s_1\sigma, \ldots, X_m/s_m\sigma, Y_1/t_1, \ldots, Y_n/t_n\}$$

by removing all $X_i/s_i\sigma$ where $X_i = s_i\sigma$ and all Y_i/t_i where $Y_i \in Dom(\theta)$.

More general substitution

A substitution θ is more general than σ ($\sigma \preceq \theta$) iff there exists a substitution ω such that $\theta \omega = \sigma$.
Theorem

Let θ, σ and γ be substitutions and E a term/formula. Then

- $(\theta \sigma) \gamma = \theta (\sigma \gamma)$;
- $E(\theta \sigma) = (E \theta) \sigma$;
- $\epsilon \theta = \theta \epsilon = \theta$.
Unification

A *structure* is a term or an atomic formula.

Unifier

A unifier of two structures s and t is a substitution θ such that $s\theta = t\theta$.

Most general unifier (mgu)

A unifier θ of s and t is called a most general unifier of s and t iff $\sigma \preceq \theta$ for every unifier σ of s and t. NB: Two unifiable structures have at least one mgu (usually infinitely many).
Solved form

A set of equation \(\{s_1 \equiv t_1, \ldots, s_n \equiv t_n\} \) is in solved form iff \(s_1, \ldots, s_n \) are distinct variables none of which occur in \(t_1, \ldots, t_n \).

Solution

A substitution \(\theta \) is a solution to a set of equations \(\{s_1 \equiv t_1, \ldots, s_n \equiv t_n\} \) iff \(\theta \) is a unifier of \(s_i \) and \(t_i \) (1 \(\leq \) i \(\leq \) n).

Theorem

If \(\{X_1 \equiv t_1, \ldots, X_n \equiv t_n\} \) is in solved form then \(\{X_1/t_1, \ldots, X_n/t_n\} \) is an mgu of \(X_i \) and \(t_i \) (1 \(\leq \) i \(\leq \) n).
select an arbitrary \(s \doteq t \in E \);

case \(s \doteq t \) **of**

\[f(s_1, \ldots, s_n) \doteq f(t_1, \ldots, t_n) \]

where \(n \geq 0 \) ⇒

replace equation by \(s_1 \doteq t_1, \ldots, s_n \doteq t_n \);

\[f(s_1, \ldots, s_m) \doteq g(t_1, \ldots, t_n) \]

where \(f/m \neq g/n \) ⇒

halt with \(\bot \);

\(X \doteq X \) ⇒

remove the equation;

\(t \doteq X \) where \(t \) is not a variable ⇒

replace equation by \(X \doteq t \);

\(X \doteq t \) where \(X \neq t \) and \(X \) has more than one occurrence in \(E \) ⇒

if \(X \) is a proper subterm of \(t \) **then**

halt with \(\bot \)

else

replace all other occurrences of \(X \) by \(t \);

esac
Theorem

The algorithm always terminates. If \(s \) and \(t \) are unifiable then the algorithm returns a solved form whose mgu is an mgu of \(s \) and \(t \). Otherwise the algorithm returns \(\bot \).

Renaming

A substitution \(\theta := \{X_1/Y_1, \ldots, X_n/Y_n\} \) where \(Y_1, \ldots, Y_n \) is a permutation of \(X_1, \ldots, X_n \) is called a renaming. The substitution \(\{Y_1/X_1, \ldots, Y_n/X_n\} \) is called the inverse of \(\theta \) (denoted \(\theta^{-1} \)).
Theorem

Let θ and σ be mgu’s of s and t. Then there exists a renaming γ such that $\theta \gamma = \sigma$ (and $\sigma \gamma^{-1} = \theta$).

Theorem

If θ is an mgu of s and t and σ a renaming, then $\theta \sigma$ is also an mgu of s and t.
In practice

The previous algorithm is worst-case exponential in the size of the structures. Take for instance

\[g(X_1, \ldots, X_n) = g(f(X_0, X_0), \ldots, f(X_{n-1}, X_{n-1})). \]

The reason is the *occurs check* (i.e. checking if \(X \) is a proper subterm of \(t \)).

There are also polynomial algorithms, but most Prolog implementations use the exponential algorithm, and simply drop the occurs check.

This rarely makes a difference, but does make Prolog unsound!!!
SLD-resolution rule

Let $H ← B_1, \ldots, B_n$ be a program clause renamed apart from $← A_1, \ldots, A_i, \ldots, A_m$, and let $θ$ be an mgu of A_i and H. Then:

\[
A_1, \ldots, A_i, \ldots, A_m H ← B_1, \ldots, B_n \quad \rightarrow \quad \left(A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m \right)θ
\]
SLD-derivation

Let G_0 be a goal. An SLD-derivation of G_0 is a finite/infinite sequence:

$$G_0 \overset{C_0}{\Rightarrow} G_1 \cdots G_{n-1} \overset{C_{n-1}}{\Rightarrow} G_n \cdots$$

of goals and (renamed) program clauses such that:

$$\frac{G_i \quad C_i}{G_{i+1}}$$
\text{gp}(X,Y) ::= \text{p}(X,Z), \text{p}(Z,Y).

\text{p}(X,Y) ::= \text{f}(X,Y).
\text{p}(X,Y) ::= \text{m}(X,Y).

\text{f}(adam,tom).
\text{f}(adam,mary).
\text{f}(tom,david).

\text{m}(mary,anne).
inv(0,1).
inv(1,0).

and(0,0,0).
and(0,1,0).
and(1,0,0).
and(1,1,1).

nand(X,Y,Z) :- and(X,Y,W), inv(W,Z).
Computation rule

A computation rule \mathcal{R} is a (partial) function that given a goal returns an atom in that goal.

SLD-refutation

An SLD-refutation of G_0 is a finite SLD-derivation

$$G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n$$

where $G_n = \Box$.
Failed derivation

A finite SLD-derivation

\[G_0 \overset{C_0}{\leadsto} G_1 \cdots G_{n-1} \overset{C_{n-1}}{\leadsto} G_n \]

is said to be failed if the selected atom in \(G_n \) does not unify with any program clause head.

Complete SLD-derivation

An SLD-derivation is complete if it is a refutation, a failed or infinite derivation.
Let

\[G_0 \overset{c_0}{\sim} G_1 \cdots G_{n-1} \overset{c_{n-1}}{\sim} G_n \]

be an SLD-derivation

Computed substitution

If \(\theta_i \) is mgu \(i \) of the derivation then

\[\theta_1 \theta_2 \cdots \theta_n \]

is called the computed substitution in the derivation.

Computed answer-substitution

The computed answer-substitution in a refutation of \(G_0 \) is the computed substitution of the refutation restricted to the variables occurring in \(G_0 \).
Let P be a logic program;
Let \mathcal{R} be a computation rule

SLD-tree

The SLD-tree of a goal G_0 is a tree where

- the root of the tree is G_0;

- if G_i is a node in the tree then G_i has a child G_{i+1} (connected via a branch labelled “C_i”) iff there exists an SLD-derivation

 $$G_0 \xrightarrow{C_0} G_1 \cdots G_i \xrightarrow{C_i} G_{i+1}$$

 with the computation rule \mathcal{R}.
Soundness and completeness

Theorem (soundness)

Let P be a logic program, \mathcal{R} a computation rule and θ an \mathcal{R}-computed answer-substitution of the goal $\leftarrow A_1, \ldots, A_n$. Then $\forall((A_1 \wedge \ldots \wedge A_n)\theta)$ is a logical consequence of P.

Theorem (completeness)

Let P be a logic program and \mathcal{R} a computation rule. If $\forall(A_1 \wedge \ldots \wedge A_n)\sigma$ is a logical consequence of P then there is a refutation of $\leftarrow A_1, \ldots, A_n$ with \mathcal{R}-computed answer-substitution θ such that $(A_1 \wedge \ldots \wedge A_n)\sigma$ is an instance of $(A_1 \wedge \ldots \wedge A_n)\theta$.
Example

\% leq(X,Y) - X is less than or equal to Y
leq(0, Y).
leq(s(X), s(Y)) :- leq(X, Y).

:- leq(0, N).
yes

That is $P \models \forall N \ leq(0, N)$.

Note that it is impossible to obtain e.g. the answer $N = s(0))$. However, we get a more general answer.
Negation: Overview

• Closed World Assumption;

• Negation as Failure;

• Completion;

• SLDNF-resolution (part I);

• General (alt. normal) logic programs;

• Stratified logic programs;

• SLDNF-resolution (part II).
Program:

parent(a,b).
parent(a,c).
parent(c,d).

female(a).
female(d).

mother(X) :- parent(X,Y), female(X).

Least Herbrand model:

parent(a,b).
parent(a,c).
parent(c,d).
female(a).
female(d).
mother(a).
Program:

\[
\begin{align*}
\text{edge}(a,b). \\
\text{edge}(a,c). \\
\text{edge}(b,d). \\
\text{edge}(c,d). \\
\text{path}(X,Y) & :\neg \text{edge}(X,Y). \\
\text{path}(X,Y) & :\text{edge}(X,Z),\text{path}(Z,Y).
\end{align*}
\]

Least Herbrand model:

\[
\begin{align*}
\text{edge}(a,b). \\
\text{edge}(a,c). \\
\text{edge}(b,d). \\
\text{edge}(c,d). \\
\text{path}(a,b). \\
\text{path}(a,c). \\
\text{path}(b,d). \\
\text{path}(c,d). \\
\text{path}(a,d).
\end{align*}
\]
Closed World Assumption

Background Definite programs can only be used to describe positive knowledge; it is not possible to describe objects that are *not* related.

Solution I Closed world assumption:

\[
\frac{P \nvdash A}{\neg A}
\]

Problem \(P \nvdash A \) is undecidable.
Negation as (finite) Failure

Solution II An SLD-tree is finitely failed iff it is finite and does not contain any refutations.

Observation If \(\leftarrow A \) has a finitely failed SLD-tree then \(P \not\models A \). (Follows from the soundness and completeness of SLD-resolution.)

The NAF rule

\[
\begin{array}{c}
\leftarrow A \text{ has a finitely failed SLD-tree} \\
\hline
\neg A
\end{array}
\]

Problem The NAF rule is not sound.
Completion

Thesis The program contains information that is not written out explicitly. The *completed program* is the program obtained after addition of the missing information.

Observation \(\{a \leftarrow b, a \leftarrow c\} \equiv \{a \leftarrow b \lor c\} \).

Principle An implication \(a \leftarrow b \) is replaced by an equivalence \(a \leftrightarrow b \).
Let Y_1, \ldots, Y_i be all variables in $p(t_1, \ldots, t_m) \leftarrow A_1, \ldots, A_n$.

Step 1 Replace the clause by

$$p(X_1, \ldots, X_m) \leftarrow \exists Y_1 \ldots Y_i(X_1 \equiv t_1, \ldots, X_m \equiv t_m, A_1, \ldots, A_n)$$

Step 2 Take all clauses

$$p(X_1, \ldots, X_m) \leftarrow E_1$$

$$\vdots$$

$$p(X_1, \ldots, X_m) \leftarrow E_j$$

that define p/m and replace by

$$p(X_1, \ldots, X_m) \leftarrow E_1 \lor \ldots \lor E_j \quad (j > 0)$$

$$p(X_1, \ldots, X_m) \leftarrow \square \quad (j = 0)$$

Step 3 Replace all implications with equivalences.
Step 4 Add the “free equality axioms”:

\[X = X \]
\[X = Y \rightarrow Y = X \]
\[X = Y \land Y = Z \rightarrow X = Z \]
\[X_1 = Y_1 \land \ldots \land X_m = Y_m \rightarrow \]
\[f(X_1, \ldots, X_m) = f(Y_1, \ldots, Y_m) \]
\[X_1 = Y_1 \land \ldots \land X_m = Y_m \rightarrow \]
\[(p(X_1, \ldots, X_m) \rightarrow p(Y_1, \ldots, Y_m)) \]
\[f(X_1, \ldots, X_m) \neq g(Y_1, \ldots, Y_n) \text{ if } f/m \neq g/n \]
\[f(X_1, \ldots, X_m) = f(Y_1, \ldots, Y_m) \rightarrow \]
\[X_1 = Y_1 \land \ldots \land X_m = Y_m \]
\[f(\ldots X \ldots) \neq X \]
Soundness of “Negation as Failure”

Theorem Let P be a definite program. If $\leftarrow A$ has a finitely failed SLD-tree then $\text{comp}(P) \models \forall \neg A$.

Completeness of “Negation as Failure”

Theorem Let P be a definite program. If $\text{comp}(P) \models \forall \neg A$ then there exists a finitely failed SLD-tree of $\leftarrow A$.

SLDNF-resolution for definite programs

A general goal is an expression

\[\leftarrow L_1, \ldots, L_n. \]

where each \(L_i \) is an atom (positive literal) or a negated atom (negative literal).

Combine SLD-resolution and “Negation as Failure”

Given a general goal — if the selected literal is positive then the next goal is obtained in the usual way. If the selected literal is negative (\(\neg A \)) and \(\leftarrow A \) has a finitely failed SLD-tree then the next goal is obtained by removing \(\neg A \) from the goal.
Soundness of SLDNF

Theorem Let P be a definite program and $\leftarrow L_1, \ldots, L_n$ a general goal. If $\leftarrow L_1, \ldots, L_n$ has an SLDNF-refutation with computed answer-substitution θ then $\forall (L_1 \land \cdots \land L_n)\theta$ is a logical consequence of $\text{comp}(P)$.

No completeness!!!
General (or normal) programs

A general clause is a clause of the form

\[A \leftarrow L_1, \ldots, L_n \quad (n \geq 0) \]

where \(L_1, \ldots, L_n \) are positive/negative literals.

Completion

Completion of a general program is obtained in the same way as for definite programs. (Negative literals are handled like positive literals.)
Stratified programs

Problem Completion of a general program can be inconsistent (unsatisfiable).

Limitation A stratified program is a general program where “no relation is defined in terms of its own complement”. That is, no predicate symbol depends on its own negation.
Stratified programs

A general program P is stratified iff there exists a partitioning P_1, \ldots, P_n of P such that

- if $p(\ldots) \leftarrow \ldots, q(\ldots), \ldots \in P_i$ then
 $\text{DEF}(q) \subseteq P_1 \cup \ldots \cup P_i$.

- if $p(\ldots) \leftarrow \ldots, \neg q(\ldots), \ldots \in P_i$ then
 $\text{DEF}(q) \subseteq P_1 \cup \ldots \cup P_{i-1}$.

Theorem Completion of a stratified program is always consistent.
SLDNF-resolution for general programs

Let P be a general program, G_0 a general goal and \mathcal{R} a computation rule. The SLDNF-forest of G_0 is the least forest (modulo renaming) such that

1. G_0 is a root of one tree.

2. if G is a node and $\mathcal{R}(G) = A$ then G has a child G' for each clause C such that G' is obtained from G and C. If there is no such clause, G has a single child FF;

3. if G is a node of the form
 \[\leftarrow L_1, \ldots, L_{i-1}, \neg A, L_{i+1}, \ldots, L_{i+j} \] and $\mathcal{R}(G) = \neg A$, then
Cont’d

• the forest contains a tree with the root $\leftarrow A$;

• if the tree with the root $\leftarrow A$ has a leaf \Box with the empty computed answer-substitution, then G has a child \mathbf{FF}.

• if the tree with root $\leftarrow A$ is finite and all leaves are \mathbf{FF}, then G has a single child $\leftarrow L_1, \ldots, L_{i-1}, L_{i+1}, \ldots, L_{i+j}$.
Soundness of SLDNF-resolution

Let P be a general program, $\leftarrow L_1, \ldots, L_n$ a general goal and \mathcal{R} a computation rule. If θ is a computed answer-substitution in an SLDNF-refutation of $\leftarrow L_1, \ldots, L_n$ then $\forall((L_1 \land \ldots \land L_n)\theta)$ is a logical consequence of comp(P).
father(X) :-
 parent(X,Y),
 \+ mother(X,Y).

disjoint([],X).
disjoint([X|Xs],Ys) :-
 \+ member(X,Ys),
 disjoint(Xs,Ys).
founding(X) :-
 on(Y,X),
 on_ground(X).

on_ground(X) :-
 \+ off_ground(X).

off_ground(X) :-
 on(X,Y).

on(c,b).

on(b,a).

go_well_together(X,Y) :-
 \+ incompatible(X,Y).

incompatible(X,Y) :-
 \+ likes(X,Y).
incompatible(X,Y) :-
 \+ likes(Y,X).

likes(X,Y) :-
 harmless(Y).
likes(X,Y) :-
 eats(X,Y).

harmless(rabbit).

eats(python,rabbit).
father(X,Y) :-
 parent(X,Y),
 \+ mother(X,Y).

parent(a,b).
parent(c,b).

mother(a,b).
father(X, Y) :-
 parent(X, Y),
 \+ mother(X, Y).

mother(X, Y) :-
 parent(X, Y),
 \+ father(X, Y).

parent(a, b).
parent(c, b).
on_top(X) :-
 \+ blocked(X).

blocked(X) :-
 on(Y,X).

on(a,b).

%---------------------
| ?- \+ on_top(b).

| ?- \+ on_top(X).
Logic and Grammars: Overview

- Context free languages;
- Context sensitive languages;
- Definite Clause Grammars (DCGs);
- DCGs and Prolog.
Context free languages

- A context free grammar is a triple \(\langle N, T, P \rangle \) where:
 - \(N \) is a finite set of non-terminals;
 - \(T \) is a finite set of terminals (and \(N \cap T = \emptyset \));
 - \(P \subseteq N \times (N \cup T)^* \) is a finite set of production rules.

- Examples of production rules:

\[
\begin{align*}
\langle expr \rangle & \rightarrow \langle expr \rangle + \langle expr \rangle \\
\langle sent \rangle & \rightarrow \langle np \rangle \langle vp \rangle
\end{align*}
\]
Derivations

- Let $\alpha, \beta, \gamma \in (N \cup T)^\ast$. We say that $\alpha A \gamma$ directly derives $\alpha \beta \gamma$ iff $A \rightarrow \beta \in P$. Denoted

$$\alpha A \gamma \Rightarrow \alpha \beta \gamma$$

- We say that α_1 derives α_n iff there exists a sequence

$$\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \ldots, \alpha_{n-1} \Rightarrow \alpha_n.$$ Denoted

$$\alpha_1 \Rightarrow^* \alpha_n$$

- A terminal string $\alpha \in T^\ast$ is in the language of A iff $A \Rightarrow^* \alpha$.
Example: Context free grammar

\[
\begin{align*}
\langle sent \rangle & \rightarrow \langle np \rangle \langle vp \rangle \\
\langle np \rangle & \rightarrow \text{the} \ \langle n \rangle \\
\langle vp \rangle & \rightarrow \text{runs} \\
\langle n \rangle & \rightarrow \text{engine} \\
\langle n \rangle & \rightarrow \text{rabbit}
\end{align*}
\]
Naive implementation

\[
\text{sent}(Z) \leftarrow \text{append}(X, Y, Z), np(X), vp(Y).
\]
\[
np([\text{the}|X]) \leftarrow n(X).
\]
\[
vp([\text{runs}]).
\]
\[
n([\text{engine}]).
\]
\[
n([\text{rabbit}]).
\]
\[
\text{append}([], Xs, Xs).
\]
\[
\text{append}([X|Xs], Ys, [X|Zs]) \leftarrow \text{append}(Xs, Ys, Zs).
\]
Usage of “Difference Lists”

- Assume that “−/2” denotes a partial function which given two strings $x_1 \ldots x_{m-1}x_m \ldots x_n$ and $x_m \ldots x_n$ returns the string $x_1 \ldots x_{m-1}$.

- Example

$$sent(X_0-X_2) \leftarrow np(X_0-X_1), vp(X_1-X_2).$$
Two Alternatives

\[
\begin{align*}
\text{sent}(X_0-X_2) & \leftarrow \text{np}(X_0-X_1), \text{vp}(X_1-X_2). \\
\text{np}(X_0-X_2) & \leftarrow 'C'(X_0, \text{the}, X_1), n(X_1-X_2). \\
\text{vp}(X_0-X_1) & \leftarrow 'C'(X_0, \text{runs}, X_1). \\
\text{n}(X_0-X_1) & \leftarrow 'C'(X_0, \text{engine}, X_1). \\
\text{n}(X_0-X_1) & \leftarrow 'C'(X_0, \text{rabbits}, X_1). \\
'\text{C'}([X|Y], X, Y). \\
\end{align*}
\]

\[
\begin{align*}
\text{sent}(X_0-X_2) & \leftarrow \text{np}(X_0-X_1), \text{vp}(X_1-X_2). \\
\text{np}([\text{the}|X_1]-X_2) & \leftarrow n(X_1-X_2). \\
\text{vp}([\text{runs}|X_1]-X_1). \\
\text{n}([\text{engine}|X_1]-X_1). \\
\text{n}([\text{rabbit}|X_1]-X_1). \\
\end{align*}
\]
Partial deduction

grandparent(X,Y) :-
 parent(X,Z), parent(Z,Y).

parent(X,Y) :-
 father(X,Y).
parent(X,Y) :-
 mother(X,Y).

%-------------------------------------

grandparent(X,Y) :-
 father(X,Z), parent(Z,Y).
grandparent(X,Y) :-
 mother(X,Z), parent(Z,Y).

parent(X,Y) :-
 father(X,Y).
parent(X,Y) :-
 mother(X,Y).
Context sensitive languages

- Some languages cannot be described by context free grammars. For instance

\[ABC = \{ a^n b^n c^n \mid n \geq 0 \} = \{ \epsilon, abc, aabbcc, aaabbbcccc, \ldots \} \]

- The language \(ABC \) can be expressed in Prolog

\[
\begin{align*}
abc(X_0 &- X_3) \leftarrow \\
& a(N, X_0 - X_1), \\
& b(N, X_1 - X_2), \\
& c(N, X_2 - X_3).
\end{align*}
\]

\[
\begin{align*}
a(0, X_0 - X_0). \\
a(s(N), [a|X_1] - X_2) & \leftarrow a(N, X_1 - X_2). \\
b(0, X_0 - X_0). \\
b(s(N), [b|X_1] - X_2) & \leftarrow b(N, X_1 - X_2). \\
c(0, X_0 - X_0). \\
c(s(N), [c|X_1] - X_2) & \leftarrow c(N, X_1 - X_2).
\end{align*}
\]
Definite Clause Grammars (DCGs)

- A Definite Clause Grammar is a triple $\langle N, T, P \rangle$ where
 - N is a finite/infinite set of atoms;
 - T is a finite/infinite set of terms (and $N \cap T = \emptyset$);
 - $P \subseteq N \times (N \cup T)^*$ is a finite set of production rules.
Derivations

• Let $\alpha, \beta, \gamma \in (N \cup T)^*$. We say that $\alpha A \gamma$ directly derives $(\alpha \beta \gamma)\theta$ iff $A' \rightarrow \beta \in P$ and $mgu(A, A') = \theta$. Denoted

$$\alpha A \gamma \Rightarrow (\alpha \beta \gamma)\theta$$

• We say that α_1 derives α_n (denoted $\alpha_1 \Rightarrow^* \alpha_n$) iff there exists a sequence

$$\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \ldots, \alpha_{n-1} \Rightarrow \alpha_n$$

• A terminal string $\alpha \in T^*$ is in the language of A iff $A \Rightarrow^* \alpha$.

104
Example of DCG

sent(s(X,Y)) --> np(X, N)\ vp(Y, N).
np(john, singular(3)) --> [john].
np(they, plural(3)) --> [they].
vp(run, plural(X)) --> [run].
vp(runs, singular(3)) --> [runs].
Semantical (context sensitive) constraints

The following DCG describes the language \(\{a^{2n}b^{2n}c^{2n} \mid n \geq 0\} \)

\[
\begin{align*}
abc & \quad \rightarrow \quad a(N), \ b(N), \ c(N), \ \text{even}(N). \\
\text{a}(0) & \quad \rightarrow \quad []. \\
\text{a}(s(N)) & \quad \rightarrow \quad [a], \ a(N). \\
\ldots & \\
\text{even}(0) & \quad \rightarrow \quad []. \\
\text{even}(s(s(N))) & \quad \rightarrow \quad \text{even}(N).
\end{align*}
\]
Note

• The language of $\text{even}(X)$ contains only the string ϵ!!!

• This may be emphasized by writing

$$\text{abc } \rightarrow \text{a(N), b(N), c(N), \{even(N)\}.}$$

• and by defining $\text{even} / 1$ as a logic program

$$\begin{align*}
\text{even}(0). \\
\text{even}(s(s(X))) & \leftarrow \text{even}(X).
\end{align*}$$
DCGs and Prolog

- Every production rule in a DCG can be compiled into a Prolog clause;

- The resulting Prolog program can be used as a (top-down) parser for the language (cf. “recursive descent”);
Compilation

- Assume that X_0, \ldots, X_m are distinct variables that do not occur in

$$p(t_1, \ldots, t_n) \rightarrow T_1, \ldots, T_m$$

- The Prolog program will then contain a clause

$$p(t_1, \ldots, t_n, X_0, X_m) \leftarrow T'_1, \ldots, T'_m.$$

where each T'_i, $(1 \leq i \leq m)$, is of the form

$$q(t_1, \ldots, t_n, X_{i-1}, X_i) \text{ if } T_i = q(t_1, \ldots, t_n)$$

'$C'(X_{i-1}, t, X_i) \text{ if } T_i = [t]$

$T, X_{i-1} = X_i \text{ if } T_i = \{T\}$

$X_{i-1} = X_i \text{ if } T_i = [$]

109
Example

sent --> np, vp.
np --> [the], n.
vp --> [runs].
n --> [boy].

% Translates into...

sent(S0,S2) :- np(S0,S1), vp(S1,S2).
np(S0,S2) :- 'C'(S0,the,S1), n(S1,S2).
vp(S0,S1) :- 'C'(S0,runs,S1).
n(S0,S1) :- 'C'(S0,boy,S1).

'C'([X|Xs],X,Xs).
Summary

• Logic programming can be used to define
 – (Regular languages);
 – Context free languages;
 – Context sensitive languages;
 – (Recursively enumerable languages).

• Definite Clause Grammars (DCGs);

• Compilation of DCGs into Prolog.
Examples

% Membership in a ordered binary tree
member(X, node(Left, X, Right)).
member(X, node(Left, Y, Right)) :-
 X < Y,
 member(X, Left).
member(X, node(Left, Y, Right)) :-
 X > Y,
 member(X, Right).

% Property of being a father
father(X) :-
 parent(X, Y), male(X).
General

- Prolog constructs the SLD(NF)-tree by a depth-first search in combination with backtracking.

- By means of cut (!) the user can prohibit the Prolog engine from exploring certain branches in the tree.

- Cut (!) may only occur in the righthand sides of clauses and can be viewed as a regular (nullary) atom.
Principles

• Two principal uses
 – Prune infinite and failed branches (green cut);
 – Prune refutations (red cut).

• Acceptable "red cut":
 – Prune multiple occurrences of the same answer.
The Golden Rule

First write a correct program without cuts. Then add cuts in appropriate places to improve the efficiency.
Constraint logic programming

• Constraints

• Operations on constraints

• Constraint Logic Programming
 – Language
 – Operational semantics
 – Examples
Constraint

Given a set of variables, a constraint is a restriction on the possible values of the variables.

Example

Variables: X, Y.

Constraint I: $X^2 + Y^2 \leq 4$

Constraint II: $Y \geq 2 - 2 \cdot X$
Solution

The constraint $X^2 + Y^2 \leq 4$ has a set of solutions – variable assignments when the constraint is true, e.g:

\{
X \mapsto 2, Y \mapsto 0
\}

\{
X \mapsto 0, Y \mapsto 2
\}

\{
X \mapsto 1, Y \mapsto 1
\}

A mapping from variables to values is called a valuation. A valuation where the constraint is true is called a solution.
Domain of a constraint

Whether a constraint has a solution or not depends on the values that the variables can take.

The constraint $X^2 = 2$ has a real solution, but not an integer or a rational solution.

The set of all possible values of the variables is called the *domain* of the constraint.
Conjunctive constraints

The conjunction of the primitive constraints $X^2 + Y^2 \leq 4$ and $Y \geq 2 - 2 \cdot X$ is a new (conjunctive) constraint:

Sets of primitive constraints represent conjunctive constraints.
Properties of constraints

A constraint is said to be *satisfiable* iff it has at least one solution.

A constraint C_1 *implies* a constraint C_2 (written $C_1 \models C_2$) iff every solution of C_1 is also a solution of C_2.

Two constraints are *equivalent* if they have the same set of solutions.
Optimal solutions

A solution σ of a set of constraints S is \textit{maximal subject to} an expression E if $\sigma(E)$ is greater than $\sigma'(E)$ for any solution σ' of S.

Example

The solution $\{X \mapsto 1.6, Y \mapsto -1.2\}$ is a maximal solution of

\[
X^2 + Y^2 \leq 4 \\
Y \geq 2 - 2 \cdot X
\]

subject to $-Y$.
Constraint Logic Programming

sorted([]).
sorted([X]).
sorted([Fst,Snd|Rst]) :-
 Fst =< Snd, sorted([Snd|Rst]).

:- sorted([X1,X2,X3]).

ARITHMETIC ERROR!!!
Language

- Functors and predicate symbols divided into:
 - Uninterpreted symbols (Herbrand terms/atoms);
 - Interpreted symbols (constraints).
- Special solvers handle constraints;
- SLD(NF)-resolution is used for Herbrand atoms;
Language (cont’d.)

• A clause is an expression

\[A_0 \leftarrow C_1, \ldots , C_m, A_1, \ldots , A_n \]

where

– \(A_0, \ldots , A_n \) are Herbrand atoms;

– \(C_1, \ldots , C_m \) are constraints.

• A goal is an expression

\[\leftarrow C_1, \ldots , C_m, A_1, \ldots , A_n \]
CLP(X): A Family of Languages

CLP(R) Linear equations over reals

CLP(Q) Linear equations over rationals

CLP(B) Boolean

CLP(FD) Finite domains
Example CLP(R)

mortgage(Loan, Years, AInt, Bal, APay) :-
 { Years>0,
 Years <= 1,
 Bal = Loan*(1+Years*AInt)-APay }.
mortgage(Loan, Years, AInt, Bal, APay) :-
 { Years>1,
 NewLoan = Loan*(1+AInt)-APay,
 Years1 = Years-1 },
 mortgage(NewLoan, Years1, AInt, Bal, APay).

?- mortgage(120000, 10, 0.1, 0, AnnPay).
AnnPay = 19529.4

?- mortgage(Loan, 10, 0.1, 0, 19529.4).
Loan = 120000

?- mortgage(Loan, 10, 0.1, 0, AnnPay).
Loan = 6.14457*AnnPay
Resolution with constraints

A state is a pair \((G; S')\) where \(G\) is a goal, and \(S\) is a *constraint store*. Given a program \(P\) a derivation is a sequence of states:

- \((\leftarrow A, B; S') \Rightarrow (\leftarrow A \equiv A', B', B; S')\) if \(A' \leftarrow B' \in P\)

- \((\leftarrow C, G; S') \Rightarrow (\leftarrow G; \{C\} \cup S)\)

- \((G; S) \Rightarrow fail\) if \(\text{sat}(S) = false\);

- \((G; S) \Rightarrow (G; S')\) if \(S\) and \(S'\) are equivalent.

- \((G; \{X = t\} \cup S) \Rightarrow (G; S)\{X/t\}\)

129
Example: Arithmetic

:- res(ser(r(10),r(20)),X).

res(r(X),Y) :-
 \{X=Y\}.
res(cell(X),Y) :-
 \{Y=0\}.
res(ser(X1,X2),R) :-
 \{R=R1+R2\}, res(X1,R1), res(X2,R2).
res(par(X1,X2),R) :-
 \{1/R=1/R1+1/R2\}, res(X1,R1), res(X2,R2).
Modeling with Boolean constraints

Boolean operations

+ Disjunktion
<= Implikation
Exclusive or
* Conjunction
=:= Equivalence
~ Negation

MOS transistors

\[
\text{nmos}(S,G,D) :- \text{sat}(S * G =:= D * G).
\]
\[
\text{pmos}(S,G,D) :- \text{sat}(S * \sim G =:= D * \sim G).
\]
Design of XOR-gate

circuit(X,Y,Z) :-
 pmos(X,Y,Z),
 pmos(1,X,T),
 nmos(T,X,0),
 nmos(T,Y,Z),
 nmos(Y,T,Z),
 pmos(Y,X,Z).
Verification of correctness

?- circuit(X,Y,Z), taut(Z =:= X#Y, 1).
yes
CLP with Finite Domains

- Constraints and constraint problems
- Primitive constraints
- CLP(FD)
- Optimization
- Global constraints
Example

• A, B and C live in different houses

• C lives left of B

• B has two neighbors
Constraint problem

- A constraint problem consists of a finite set of problem variables,

- Each variable takes its value from a given domain

- Constraints are relations that restrict the values that can be assigned to the problem variables
Mathematical reformulation

- $A, B, C \in \{1, 2, 3\}$

- $A \neq B$, $A \neq C$ and $B \neq C$

- $C < B$

- $(A < B < C)$ or $(C < B < A)$
Example

Two problem variables X and Y with the integer domains 5..10 and 1..7. One constraint (relation) $X < Y$:

New domains imposed by the constraint:
- X in 5..6
- Y in 6..7
Operations on constraints

- **Satisfiability**: Does a given set of constraint have at least one solution?

- **Entailment**: Is every solution of a set S of constraints also a solution of a constraint C (denoted $S \models C$)?

- **Equality**: Do two sets of constraints have the same set of solutions?

- **Optimality**: Find the best solution (given some criterion of optimality)

- **Simplification**: Given a set S' of constraints, find a simpler set of constraints S' equivalent to S.

139
Primitive Finite Domain constraints

| ?- X in 3..8.
 X in 3..8

| ?- X in 3..8, Y in 1..4, Z ≠ X+Y.
 X in 3..8,
 Y in 1..4,
 Z in 4..12

| ?- X in 5..10, Y in 1..7, X < Y.
 X in 5..6,
 Y in 6..7
Domains vs solutions

Note that domains are not identical to solutions:

?- X in 5..10, Y in 1..7, X #< Y.

Produces the domains:

X in 5..6.
Y in 6..7.

But the domains contain all solutions:

\[\begin{align*}
X &= 5, \ Y &= 6 \\
X &= 5, \ Y &= 7 \\
X &= 6, \ Y &= 7
\end{align*} \]
More examples

?- X in 0..9, Y in 0..1, X #< Y.
X = 0,
Y = 1

?- X in 4..6, Y in 1..3, X #< Y.
no

?- X in 1..12, Y in 1..12, X #= 2*Y.
X in 2..12,
Y in 1..6

?- X in 1..2, Y in 1..2, Z in 1..2,
 X #\= Y, X #\= Z, Y #\= Z.
X in 1..2,
Y in 1..2,
Z in 1..2

Parallel declaration of domains

?- domain([X,Y,Z], 0, 9).
Labeling

Domains approximate solutions...

?- X in 1..2, Y in 1..3, X #< Y.
X in 1..2,
Y in 2..3

Systematically assign values to a variable from its domain.

?- X in 1..2, Y in 1..3, X #< Y,
 labeling([], [X,Y]).
X=1, Y=2
X=1, Y=3
X=2, Y=3

?- X in 1..12, Y in 1..12, X #= 2*Y,
 labeling([], [X,Y]).
X=2, Y=1
X=4, Y=2
...

143
CLP(\(X\))

A logic program is a set of rules

\[A_0 :\sim A_1, \ldots, A_n \]

or facts

\[A_0 \]

where \(A_0, A_1, \ldots, A_n\) are atomic formulas; i.e. formulas of the form \(p(t_1, \ldots, t_n)\).

Note: A constraint is an atomic formula!

A constraint logic program is a logic program where some of \(A_1, \ldots, A_n\) may be (some pre-defined) constraints over some algebraic structure \(X\).
CLP(X)

- CLP(R), reals
- CLP(Q), rational numbers
- CLP(B), Boolean values
- CLP(FD), finite domains
- CLP(Sets), sets
CLP(FD)

1. queens(N, L) :-
2. length(L, N),
3. domain(L, 1, N),
4. safe(L),
5. labeling([], L).

6. safe([]).
7. safe([X|Xs]) :-
8. safe_between(X, Xs, 1),
9. safe(Xs).

10. safe_between(X, [], M).
11. safe_between(X, [Y|Ys], M) :-
12. no_attack(X, Y, M),
13. M1 is M+1,
14. safe_between(X, Ys, M1).

15. no_attack(X, Y, N) :-
16. X \#\= Y, X+N \#\= Y, X-N \#\= Y.
General Strategy

1. solution(L) :-
2. create_variables(L),
3. constrain_variables(L),
4. solve_constraints(L).
Optimization

?- X in 1..9, Y in 4..6, Z ≠ X-Y,
 labeling([maximize(Z)],[X,Y]).

1. items(A,B,C,S,P) :-
2. domain([A,B,C],0,10),
3. AS #= 2*A, AP #= 3*A,
4. BS #= 3*B, BP #= 4*B,
5. CS #= 7*C, CP #= 10*C,
6. S #>= AS+BS+CS,
7. P #= AP+BP+CP,
8. labeling([maximize(P)],[P,S,A,B,C]).
Global Constraints

all_different([X_1, \ldots, X_n])

1. smm([S, E, N, D, M, O, R, Y]) :-
2. domain([S, E, N, D, M, O, R, Y], 0, 9),
3. S #> 0, M #> 0,
4. all_different([S, E, N, D, M, O, R, Y]),
5. sum(S, E, N, D, M, O, R, Y),
6. labeling([], [S, E, N, D, M, O, R, Y]).

7. sum(S, E, N, D, M, O, R, Y) :-
8. 1000*S + 100*E + 10*N + D
9. +1000*M + 100*O + 10*R + E
10. #= 10000*M + 1000*O + 100*N + 10*E + Y.
cumulative(Ss,Ds,Rs,L)

?- domain([S1,S2,S3],0,4),
 S1 #< S3,
 cumulative([S1,S2,S3],[3,4,2],[2,1,3],3),
 labeling([], [S1,S2,S3]).
Resource allocation

1. shower(S, Done) :-
2. D = [5,3,8,2,7,3,9,3,3,5,7],
3. R = [1,1,1,1,1,1,1,1,1,1,1],
4. length(D, N),
5. length(S, N),
6. domain(S, 0, 100),
7. Done in 0..100,
8. ready(S, D, Done),
9. cumulative(S, D, R, 3),
10. labeling([minimize(Done)], [Done|S]).
11. ready([], [], _).
12. ready([S|Ss], [D|Ds], Done) :-
13. Done #>= S+D,
14. ready(Ss, Ds, Done).
element(\(X, [X_1, \ldots, X_n], Y\))

| ?- element(X, [1,2,3,5], Y). |

| ?- X in 2..3, element(X, [1, X, 4, 5], Y). |
circuit([X_1,\ldots,X_n])

Traveling Salesman

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
<th>X_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>X_2</td>
<td>4</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>X_3</td>
<td>8</td>
<td>7</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>X_4</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>X_5</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>X_6</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>X_7</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
Traveling Salesman (cont’d)

1. tsp(Cities, Cost) :-
2. Cities = [X1,X2,X3,X4,X5,X6,X7],
3. element(X1, [0, 4, 8, 10, 7, 14, 15], C1),
4. element(X2, [4, 0, 7, 7, 10, 12, 5], C2),
5. element(X3, [8, 7, 0, 4, 6, 8, 10], C3),
6. element(X4, [10, 7, 4, 0, 2, 5, 8], C4),
7. element(X5, [7, 10, 6, 2, 0, 6, 7], C5),
8. element(X6, [14, 12, 8, 5, 6, 0, 5], C6),
9. element(X7, [15, 5, 10, 8, 7, 5, 0], C7),
10. Cost #= C1+C2+C3+C4+C5+C6+C7,
11. circuit(Cities),
12. labeling([[minimize(Cost)], Cities).
Deductive Databases: Overview

- Top-down evaluation;
- Relational databases;
- Bottom-up evaluation;
- "Magic templates"
Logic programs as Databases

- Powerful language for representation of relational data.
 - Explicit data
 - Views
 - Queries
 - Integrity constraints

- How to compute answers to database queries?

- Does not address issues such as concurrency control, updates, crashes etc.
Top-down ⇒ Recomputation

path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).

edge(a, b).
edge(b, c).
edge(a, c).
...

Top-down \Rightarrow Infinite computations

\begin{verbatim}
path(X,Y) :- edge(X,Y).
path(X,Z) :- path(X,Y), edge(Y,Z).

edge(a,b).
edge(b,a).
edge(b,c).
\end{verbatim}
Properties: Top-down

- Advantages:
 - Efficient handling of search space;
 - Goal-directed (Backward-chaining);

- Disadvantages:
 - Termination;
 - Recomputations;
How to compute database queries?

Example:

<table>
<thead>
<tr>
<th>Father</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>tom</td>
<td>mary</td>
</tr>
<tr>
<td>john</td>
<td>mary</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>mary</td>
<td>billy</td>
</tr>
<tr>
<td>kate</td>
<td>tom</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

New derived relations using relational algebra:

\[
P \ := \ F(X, Y) \cup M(X, Y)
\]

\[
GP \ := \ \pi_{X,Z}(P(X, Y) \Join P(Y, Z))
\]
Bottom-up evaluation (Cf. \(T_P \))

\[
S_P(X) = \{ A_0 \theta \mid A_0 \leftarrow A_1, \ldots, A_n \in P \text{ and } A_1', \ldots, A_n' \in X \text{ and } mgu\{A_1 = A_1', \ldots, A_n = A_n'\} = \theta \}
\]

Naive evaluation

```plaintext
fun naive(P)
begin
    x := facts(P);
    repeat
        y := x;
        x := \( SP(y) \);
        until x = y;
    return x;
end
```
Bottom-up evaluation (cont’d.)

\[\Delta S_P(X, \Delta X) = \]

\[\{ A_0 \theta \mid A_0 \leftarrow A_1, \ldots, A_n \in P \text{ and } A'_1, \ldots, A'_n \in X, \exists A'_i \in \Delta X \text{ and } mgu\{A_1 = A'_1, \ldots, A_n = A'_n\} = \theta \} \]

Semi-naive evaluation

\[
\text{fun} \text{ seminaive}(P) \\
\text{begin} \\
\Delta x := \text{facts}(P); \\
x := \Delta x; \\
\text{repeat} \\
\Delta x := \Delta S_P(x, \Delta x) \setminus x; \\
x := x \cup \Delta x; \\
\text{until} \ \Delta x = \emptyset; \\
\text{return} \ x; \\
\text{end}
\]
Properties: Bottom-up

- Advantages:
 - Termination;
 - Re-use of already computed results;

- Disadvantages:
 - Not goal-directed;
 - Termination;
Magic Templates

Let $magic(P)$ be the least program such that if $A_0 \leftarrow A_1, \ldots, A_n \in P$ then:

- $A_0 \leftarrow call(A_0), A_1, \ldots, A_n \in magic(P)$

- $call(A_i) \leftarrow call(A_0), A_1, \ldots, A_{i-1} \in magic(P)$

In addition $call(A) \in magic(P)$ if $\leftarrow A$.

Compute $naive(magic(P))$.
Example

%--------ORIGI NAL PROGRAM--------

p(X,Y) :- e(X,Y).
p(X,Z) :- p(X,Y), e(Y,Z).

e(a,b).
e(b,a).
e(b,c).

:- p(a,X).

%--------MAGIC PROGRAM--------

p(X,Y) :- call(p(X,Y)), e(X,Y).
p(X,Z) :- call(p(X,Z)), p(X,Y), e(Y,Z).
e(a,b) :- call(e(a,b)).
e(b,a) :- call(e(b,a)).
e(b,c) :- call(e(b,c)).

% call(e(X,Y)) :- call(p(X,Y)).
call(p(X,Y)) :- call(p(X,Z)).
call(e(Y,Z)) :- call(p(X,Z)), p(X,Y).

% call(p(a,X)).
Bottom-up with Magic Templates

• Advantages:
 – Termination;
 – Re-use of results;
 – Goal-directed;

• Disadvantages:
 – Sometimes slower than Prolog (when Prolog terminates);
Logic programming with Equations

- What is equality?
- E-unification.
- Logic programs with Equations
- SLDE-resolution
What is equality?

We sometimes want to express that two terms should be interpreted as the same object.

Example

Let Γ be:

\[
\begin{align*}
\text{person}(X) & \leftarrow \text{female}(X). \\
\text{female}(\text{queen}). \\
\text{silvia} & \equiv \text{queen}.
\end{align*}
\]

Then $\Gamma \models \text{person}(\text{silvia})$.
Equations

An equation is an atom $s \equiv t$ where s and t are terms.

The predicate \equiv is always interpreted as the identity relation.

That is, $\mathcal{G} \models_\sigma s \equiv t$ iff $\sigma_\mathcal{G}(s) = \sigma_\mathcal{G}(t)$.

Example

\[
\begin{align*}
X + 0 & \equiv X. \\
X + s(Y) & \equiv s(X + Y). \\
1 & \equiv s(0). \\
2 & \equiv 1 + 1. \\
3 & \equiv 2 + 1. \\
\vdots
\end{align*}
\]
Equality theory

\[E \vdash s \equiv t: \text{ "} s \equiv t \text{ is derived from } E \text{"} \]

\[
\{\ldots, s \equiv t, \ldots\} \vdash s \equiv t
\]

\[E \vdash s \equiv s \]

\[E \vdash s \equiv t \]

\[E \vdash s \sigma \equiv t \sigma \]

\[E \vdash s \equiv t \]

\[E \vdash t \equiv s \]

\[E \vdash r \equiv s \quad E \vdash s \equiv t \]

\[E \vdash r \equiv t \]

\[E \vdash s_1 \equiv t_1 \ldots \quad E \vdash s_n \equiv t_n \]

\[E \vdash f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n) \]

\[s \equiv_E t \text{ iff } E \vdash s \equiv t \]
Theorem

The relation \equiv_E is an equality relation.

Theorem

$E \models s \equiv t$ iff $s \equiv_E t$ (iff $E \vdash s \equiv t$).

E-unification

Two terms s and t are E-unifiable iff $s\theta \equiv_E t\theta$. The substitution θ is called an E-unifier.
Problem

- E-unification is undecidable;

- In general there is no single “most general unifier” but only “complete sets of E-unifiers”;

- This set may be infinite.

Unification...

...can be carried out using e.g. narrowing.
Logic programs with Equations

Programs consist of two components

• A set of definite clauses that do not include the predicate symbol \(\div / 2 \);

• A set of equations;
Observation

Herbrand interpretations are uninteresting!

Patch

Consider interpretations whose domain consists of sets (equivalence classes) of ground terms.

Every equivalence class consists of “equivalent term”.

Interpretations with domain U_P/\equiv_E are of special interest.
Let \mathcal{S} be an interpretation where $|\mathcal{S}| = \mathbb{U}_P / \equiv_E$:

That is, $\bar{s} = \{ t \in \mathbb{U}_P \mid E \vdash s \models t \}$.

Theorem

$$\mathcal{S} \models s \models t \iff \bar{s} = \bar{t} \iff s \equiv_E t \iff E \models s \models t$$

NB: Herbrand interpretations as a special case!
The Least Model

Every program P, E has a least model $M_{P,E}$:

$$P, E \models p(t_1, \ldots, t_n) \text{ iff } p(t_1, \ldots, t_n) \in M_{P,E}$$

Fixed point semantics

$$T_{P,E}(x) := \{ \overline{A} \mid A \leftarrow B_1, \ldots, B_n \in \text{ground}(P) \land \overline{B_1}, \ldots, \overline{B_n} \in x \}$$
SLDE-Resolution

Given a goal

\[\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_n \]

with selected literal \(A_i \). If

- \(H \leftarrow B_1, \ldots, B_m \) is a renamed program clause
- \(H \) and \(A_i \) have a non-empty set \(\Theta \) of \(E \)-unifiers
- \(\theta \in \Theta \)

then

\[\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_m, A_{i+1}, \ldots, A_n)\theta \]

is a new goal.
Theorem [Soundness]

If $\leftarrow A_1, \ldots, A_n$ has a computed answer substitution θ then $P, E \models \forall (A_1 \land \cdots \land A_n)\theta$.

Theorem [Completeness]

Similar to SLD-resolution.