
Teaching Logic Programming

at the Budapest University of Technology

Péter Szeredi
szeredi@cs.bme.hu

Dept. of Computer Science and Information Theory,
Budapest University of Technology and Economics (BUTE)

H-1117 Budapest, Magyar tudósok körútja 2.

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Introduction Page 2

Overview of the talk

The Budapest University of Technology and Economics

The Declarative Programming course

Elective LP courses

Other educational activities

Conclusions

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Introduction Page 3

The Budapest University of Technology and Economics

BUTE — Budapest University of Technology and Economics:

Established in 1782

Initially: Institutum Geometrico-Hydrotechnicum
within the Faculty of Liberal Arts, University of Buda

Present:

Seven faculties, >110 departments and institutes
About 1000 full-time lecturers, several hundred research staff
Approx. 10,000 students, of which 10% are foreigners
BUTE issues about 70% of Hungary’s engineering diplomas

Faculty of Electrical Engineering and Informatics — the home of computer-related education

About 200 full time teaching staff

Approx. 3,000 students, majoring in Electric Engineering and Technical Informatics
(roughly equivalent to Computer Science)

Five year (10 semester) education leading to an MSc/MEng degree

More info at: http://www.bute.hu/en/

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Introduction Page 4

Logic Programming education at BUTE

Students exposed to LP-related topics (and the relevant subjects):

Majors in Technical Informatics at Faculty of Electrical Eng. and Informatics
(approx. 400/year)

Mathematical Logic — semester 3, compulsory course
Declarative Programming (DP) — semester 4, compulsory course
Highly Efficient Logic Programming (HELP) — elective course
Selected Topics from Logic Programming (STLP) — elective student seminar
AI laboratory — semester 7 (specialisation Intelligent Systems)

Majors in Mathematics, at Faculty of Natural Sciences, with specialisation in Algebra and
applications (approx. 10/year)

Logic Programming — LP (semester 7, compulsory course, same as the logic
programming part of DP)

Students at some other faculties (e.g. Mechanical Engineering)

various courses on AI and Programming

The author is involved in the DP (LP), HELP, STLP courses — this is the focus of the present
talk

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 5

The Declarative Programming course

Course topics

Functional programming, SML — Péter Hanák

Logic programming, Prolog — Péter Szeredi

Course data

Base position: Semester 4 (spring), cross semester: 5 (autumn)

Students enrolled:

spring 2004: 473
autumn 2004: 162

Two 2*45 minute lectures/week, 14 weeks/semester

No laboratory exercises :-(

Presented — 20 times so far — since 1994
(until 1999, under the title Programming Paradigms)

Preceding courses

Programming languages: C, C++, Java

Mathematical Logic

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 6

Global course structure

Major lecture blocks

Lecture 1: Introducing the declarative programming paradigm

Lectures 2-8: Logic Programming, part 1

Lectures 9-15: Functional Programming, part 1

Lectures 16-21: Logic Programming, part 2

Lectures 22-27: Functional Programming, part 2

Lecture 28: Summary, outlook

Links between the functional and logic programming parts

Common concepts and techniques, e.g. tail-recursion, accumulators, construction and
decomposition using pattern-matching

Common major assignment, occasionally common minor assignments

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 7

Topics in LP — part 1

Lecture 1. Introducing the declarative programming paradigm. A very simple
declarative subset of the C language (Cékla = beet-root in Hungarian :-
).

Lecture 2. Introductory Prolog examples (family relations, summing numbers in
binary trees), Prolog as a subset of logic, declarative semantics.

Lecture 3. Procedural semantics of Prolog, execution models (goal-reduction and
procedure-box models).

Lecture 4. Data structures, unification, the logic variable.

Lecture 5. Operators, disjunction, negation, if-then-else.

Lecture 6. Lists, basic list handling library predicates.

Lecture 7. Example: finding paths in a graph, using various representations.

Lecture 8. Prolog syntax summary.

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 8

SAMPLE SLIDE: Procedure-box model example

p(X,Y) :- q(X,Z), p(Z,Y).
p(X,Y) :- q(X,Y).

q(1,2). q(2,3), q(2,4).

q(X,Z)

q(X,Y)

p(Z,Y)

p(X,Y)

Call

Fail

Exit

Redo

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 9

SAMPLE SLIDE: Box model — OO view, the „next solution” method of p/2

bool p::next()
{ switch(clno) {
case 0: // entry point for the Call port
clno = 1; // enter clause 1: p(X,Y) :- q(X,Z), p(Z,Y).
qaptr = new q(x, &z); // create a new instance of subgoal q(X,Z)

redo11:
if(!qaptr->next()) { // if q(X,Z) fails
delete qaptr; // destroy it,
goto cl2; // and continue with clause 2 of p/2

}
pptr = new p(z, py); // otherwise, create a new instance of subgoal p(Z,Y)

case 1: // (enter here for Redo port if clno==1)
/* redo12: */
if(!pptr->next()) { // if p(Z,Y) fails
delete pptr; // destroy it,
goto redo11; // and continue at redo port of q(X,Z)

}
return true; // otherwise, exit via the Exit port

cl2:
clno = 2; // enter clause 2: p(X,Y) :- q(X,Y).
qbptr = new q(x, py); // create a new instance of subgoal q(X,Y)

case 2: // (enter here for Redo port if clno==1)
/* redo21: */
if(!qbptr->next()) { // if q(X,Y) fails
delete qbptr; // destroy it,
return false; // and exit via the Fail port

}
return true; // otherwise, exit via the Exit port

} }

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 10

Topics in LP — part 2

Lecture 16. Pruning the search space. Control predicates.

Lecture 17. Determinism, indexing, tail-recursion, accumulators.

Lecture 18. Rewriting imperative programs to Prolog, collecting and enumerating
solutions.

Lecture 19. Meta-logical built-in predicates.

Lecture 20. Modularity, meta-predicates, meta-programming, dynamic predicates.

Lecture 21. Definite clause grammars, „traditional” built-in predicates.

Lecture 28. Brief outlook on LP extensions (external interfaces, coroutining, con-
straints).

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 11

SAMPLE SLIDE: Meta-logical predicates, implementing term-precedes

% T1 precedes T2-t in standard order. (Equivalent to T1 @< T2, except for
% variables, these are ordered by their first occurrence in T1-T2.)
precedes(T1, T2) :-

\+ \+ (numbervars(T1-T2, 0, _), prec(T1, T2)).

% class(+T, -C): Term T belongs to term class C.
class(T, C) :-

(T=’$VAR’(_) -> C=0 % variable
; float(T) -> C=1 % float
; integer(T) -> C=2 % integer
; atom(T) -> C=3 % atom
; compound(T) -> C=4 % compound
).

% Numbervar’d term T1 precedes term T2-t.
prec(T1, T2) :-

class(T1, C1), class(T2, C2),
(C1 =:= C2 ->

(C1 =:= 1 -> T1 < T2 % floating point numbers)
; C1 =:= 2 -> T1 < T2 % integers
; struct_prec(T1, T2) % variables, atoms, compounds
)

; C1 < C2 % different term classes
).

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 12

SAMPLE SLIDE: implementing term-precedes (contd.)

% S1 precedes S2 (S1 and S2 are callable terms, i.e. atoms or compounds).
struct_prec(S1, S2) :-

functor(S1, F1, N1), functor(S2, F2, N2),
(N1 < N2 -> true
; N1 =:= N2,

(F1 == F2 -> args_prec(1, N1, S1, S2)
; atom_prec(F1, F2)
)

).

% For the first argument position i, N0=<i=<N, for which
% S1[i] differs from S2[i], S1[i] precedes S2[i] (and such i exists).
args_prec(N0, N, S1, S2) :-

N0 =< N,
arg(N0, S1, A1), arg(N0, S2, A2),
(A1 = A2 -> N1 is N0+1, args_prec(N1, N, S1, S2)
; prec(A1, A2)
).

% Atom A1 precedes atom A2.
atom_prec(A1, A2) :-

atom_codes(A1, C1), atom_codes(A2, C2), struct_prec(C1, C2).

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 13

SAMPLE SLIDE: Coroutining: Simplified Hamming problem (partial code)

��

� � ��
�

�

�

���

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��prefix

times 2

times 3

mergeH 1 U

X

Y

Z

% List H contains the first N numbers whose all prime factors are 2 or 3.
hamming(N, H) :-

U = [1|H], times(U, 2, X), times(U, 3, Y),
merge(X, Y, Z), prefix(N, Z, H).

% times(X, M, Z): Elements of list Z are those of X multiplied by M.
:- block times(-, ?, ?).
times([A|X], M, Z) :- B is M*A, Z = [B|U], times(X, M, U).
times([], _, []).

(...)

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 14

Assignments

How to teach a programming language without laboratory exercises?

Assignments: multiple minor and a single major assignment (common to LP and FP)

Interactive exercising tool (in ETS, see later)

All these are non-compulsory

Minor assignments

4-6 assigments alltogether in LP and FP

Fairly simple problems, < 20 lines of code needed

Submission within two weeks

Major assignment

A single task to be solved in Prolog and/or SML

A scalable problem, most often a logic puzzle

Even a simple generate-and-test solution gets some credit

Best solutions compete in a „ladder contest” for extra credit

Submission in 4-6 weeks

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 15

SAMPLE: Minor assignment 1

Write in Cékla a function palindrome(n)

palindrome(n) returns the smallest integer b>1

such that n written in base b is a palindrome.

Main characteristics of the Cékla C subset:

integer type only

functions, if, and return statements

+, -, *, /, and % arithmetic operators, the six comparison operators

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 16

The solution of minor assignment 1

/* The reverse of number ‘n’ in base ‘base’ appended to ‘revn’ */
int reverse(int n, int base, int revn) {
if (n == 0)
return revn;

else {
int last_digit = n % base;
return reverse(n/base, base, revn*base+last_digit);

}
}

/* The smallest integer ‘b’ >= ‘base’, so that ‘n’ written
in base ‘b’ is a palindrome */

int palindrome1(int n, int base){
if (reverse(n, base, 0) == n)
return base;

else return palindrome1(n, base+1);
}

/* The smallest integer ‘b’, so that ‘n’ written in base ‘b’ is a palindrome */
int palindrome(int n) {
return palindrome1(n,2);

}

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 17

Major assignment in spring 2002: the Magic Spiral puzzle

The puzzle:

A square board of n ∗ n fields is given.

Place integer numbers, chosen from the range [1..m], m ≤ n, on the board, so that:

1. in each row and each column all integers in [1, m] occur exactly once (and so there are
n − m empty fields);

2. along the spiral starting from the top left corner, the integers follow the pattern
1, 2, . . .m, 1, 2, . . . , m, . . . (number m is called the period of the spiral).

Initially, some numbers are already placed on the board.

An example puzzle and its solution:

4
1

1 2 3 4
2 3 4 1
1 3 4 2
4 2 3 1
3 1 4 2

4 3 2 1
2 1 4 3

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 18

Major assignment in spring 2003: the Snake puzzle

The puzzle:

A rectangular board of n ∗ m fields is given.

Mark certain fields on the board as belonging to the snake:

The snake consists of a sequence of neighbouring fields (i.e. fields sharing a side).
The position of the snake head (the first field) and of the tail (last field) is given.
The snake can touch itself only diagonally.
Certain fields of the table contain a number.
• The snake cannot pass through fields containing a number.
• If a field contains number c, then among the eight side and diagonal neighbours of this

field there are exactly c which contain a snake piece. (cf. the minesweeper game).

An example puzzle and its solution:

H T
5

4

3

5
4

3

�

� �

�

� � � �

�

��

��

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 19

Major assignment in spring 2004: the Clouds puzzle

The puzzle:

A board of n ∗ m fields is given. Mark certain fields on the board as belonging to a cloud:
Clouds occupy an area of rectangular shape, their width and height is at least two units.
No clouds touch each other, not even diagonally.

Supplied information:
the size of the board;
the number of cloudy fields in certain rows/columns of the board (-1 means unknown);
the presence (+) or absence (-) of a cloud at certain fields of the board.

An example puzzle and its solution:
+---+---+---+---+---+ +---+---+---+---+---+
| | | | | | 4 | # | # | # | # | . | 4
+---+---+---+---+---+ +---+---+---+---+---+
| | | | | - | 4 | # | # | # | # | - | 4
+---+---+---+---+---+ +---+---+---+---+---+
| | | | | | 0 | . | . | . | . | . | 0
+---+---+---+---+---+ +---+---+---+---+---+
| | + | | | | -1 | # | + | . | # | # | -1
+---+---+---+---+---+ +---+---+---+---+---+
| | | | | | 4 | # | # | . | # | # | 4
+---+---+---+---+---+ +---+---+---+---+---+
4 4 -1 4 2 4 4 -1 4 2

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 20

Tools used in teaching Declarative Programming

The Electronic Teaching aSsistant (ETS) is a Web based facility providing

access to a database of students of the course, and their results,

assignment submission and automatic testing,

facilities for student exercising.

The RDBG reduction debugger visualisation tool

step-by-step building of the Prolog search tree

skipping, unleashing, breakpoints

The MATCH plagiarism-detection tool

detects similar assignment solutions

comparing the call graphs of the programs

with front-ends for both Prolog and SML

Other tools

The Cékla interpreter

The xdvipresent package for slides

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 21

Student exercising with ETS

Each exercise belongs to a scheme and a topic and has a difficulty:

The scheme determines the presentation and processing format,
e.g. the student is expected to predict what happens when a given goal is run

The topic corresponds to the part of the material taught, e.g. list processing

The difficulty can be easy, medium, or hard.

Prolog schemes

Execution: decide on the result of executing a given goal

Success/failure/error: deterministic goal, can fail or raise an exception. A single variable
assignment is asked for.
Multiple variables: supply the substitutions of all variables of a deterministic goal
(typically unification).
All solutions: enumerate all solutions of a non-deterministic goal, in proper order.

Canonical form: type in the canonical form of a Prolog term (cf. write_canonical).

Programming: write a Prolog program following a given specification.

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

The DP course Page 22

Student exercising with ETS — examples

Scheme: „Canonical form”, topic: lists/operators

[[],[]] - (1,2) 1 - - 1

Scheme: „Success/failure/error”, topic: unification

| ?- [X,1|X] = [_,_].

| ?- [X,a,X] = [1,2,a,1,2].

Scheme: „Multiple variables”, topic: unification

| ?- g(1+2+3, [a,b]) = g(X+Y, [U|V]).

| ?- h([H, G], H*G) = h([Q/1|R], P/Q*3).

Scheme: „Success/failure/error”, topic: list processing and control predicates

| ?- length(X, 1), member(a, X).

| ?- member(X, [1,2,3]), !, X < 3.

Scheme: „Multiple solutions”, topic: list processing:

Program: app([X|L1], L2, [X|L3]) :- app(L1, L2, L3).
app([], L, L).

Goal: | ?- app(L, [a|_], [a,b,a,b,a]).

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Elective courses Page 23

Elective courses — Highly Efficient Logic Programming

14 lectures, 2*45 minutes each, so far held 8 times since 1997

Course topics

Mercury — efficiency through streamlining and cleaning the LP language (2 lectures)

CLP(X) — efficiency through additional reasoning capabilities (12 lectures)

the CLP(B), CLP(R/Q), CLP(FD) and CHR libraries of SICStus Prolog
major assignment usually shared with the preceding DP course

Typical course layout (1 unit = 45 minutes)

Topic Time Slides

1. Prolog extensions relevant for CLP 3 units 15 slides

2. The CLP(X) scheme and CLP(R/Q) 3 units 19 slides

3. CLP(B) 2 units 8 slides

4. CLP(FD) 14 units 109 slides

5. Constraint Handling Rules 2 units 11 slides

6. Mercury 4 units 23 slides
∑

28 units 185 slides

For more details see Szeredi’s paper in LNAI 3010

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Elective courses Page 24

Other elective courses

Selected Topics from Logic Programming — student seminar

14 lectures, 90 minutes each, so far held twice, in 2001 and 2003

I hold the first few lectures, normally on Prolog implementation

Subsequent (45 or 90 minute) lectures held by students, topics:

theory of LP
parallel logic programming,
object-oriented, graphical, and web-related extensions,
abstract interpretation,
tracing,
overviews of concrete Prolog implementations

The Semantic Web and Ontologies (by Gergely Lukácsy and Péter Szeredi)

Web technologies, RDF, Description Logics, etc.

Link to LP: several students chose to write the assignment, a tableaux based reasoner for a
Description Logic, in Prolog

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 25

Other LP-related activities — Directed Projects

Semesters 8 and 9, weekly load equivalent to 6*45 minutes course

Some Directed Projects I led:

Applying CLP(FD) for scheduling plastic moulding machines — Tamás Benkő, 1997

Interfacing Prolog to Corba — Gábor Gesztesi and Gábor Marosi, 1997–98

Debugging CLP(FD) programs — Dávid Hanák and Tamás Szeredi, 2000
(this led to the development of a new SICStus library, see the poster and the talk at WELP)

Using CHR for reasoning in Description Logics — Bence Szász, 2002

A Prolog based RDF reasoning system — Gergely Lukácsy, 2002

A Prolog-Java interface using sockets — Péter Biener, 2003

Typically Directed Projects serve as the basis for the MSc Thesis

All above projects, except for the Corba one, led to an MSc Thesis

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 26

Other LP-related activities — MSc Theses

MSc Theses I supervised (further to Theses resulting from Directed Projects):

Implementation of a constraint reasoning system — Tamás Rozmán, 1997

Conversion of document description languages — Zsolt Lente, 2000

Knowledge-based tools for information integration — Attila Fokt, 2000

Computer Support for Declarative Programming Courses — Dávid Hanák, 2001

Verification of object-oriented models using constraints — Péter Tarján, 2001

Transforming object-constraints to logic — Károly Opor, 2002

Logic-based methods for planning queries on heterogeneous data sources — Lukács Tamás
Berki, 2003

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 27

Other LP-related activities — Student Research Projects

Student Research Projects — a long tradition at Hungarian Universities

Yearly, faculty-level Student Conference (TDK in Hungarian):

40-60 page paper
20 minute presentation
best papers get 1st, 2nd and 3rd prizes

Biennial National Student Conferences

Student Conference in 2003 at the Faculty of Electrical Engineering and Informatics at BUTE:

118 presentations,

involving approx. 170 students

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 28

Other LP-related activities — Student Research Projects (contd.)

Student Conference Papers related to LP:

Solving a stock exchange allocation problem (using CLP), Dániel Varró, 1998, I. Prize.

Conversion of SGML languages, Zsolt Lente, 1999, II. Prize.

Comparison of source program structures, Gergely Lukácsy, 2000, I. Prize, Rector’s Special
Prize; I. Prize at the National Student Conference, 2001

Efficient access of an object-oriented database from logic programs, Ambrus Wagner, 2000

A Web-based student exercising system for teaching programming languages, András
György Békés, Lukács Tamás Berki, 2001

Intelligent querying and reasoning on the Web, Gergely Lukácsy, 2002, I. Prize; Special
Prize of the Hungarian W3C Office at the National Student Conference, 2003

Visualisation of Prolog program execution, Tamás Nepusz, 2003, II. Prize

Using abstract interpretation in SICStus Prolog, Balázs Leitem, 2003, III. Prize

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 29

Discussion

Good points

Each year about 400 students of BUTE get acquainted with logic programming

Logic programming attracts the attention of talented students

programming style previously unknown to most students
the course shows some problems where the new paradigm can be used
the major assignment poses a challenge, as it would be quite difficult to solve using
imperative languages
the ladder contest adds the thrill of peer-to-peer competition

Most talented students get further involved with LP:

learn constraint logic programming in the HELP course (top 10%)
explore further areas of logic programming in the STLP seminar (top 2–3%)
work on logic programming as part of his/her Directed Project, Student Research Project,
or Thesis (top 1%)

Student evaluation of the LP courses is fairly positive

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 30

Discussion (contd.)

Debatable points

Practice vs. theory of LP

the courses focus more on the practical programming side than on the theoretical side of
LP
this seems to fit the students’ interest better
theoretical foundations get discussed in the STLP seminar

Language(s) taught

a single FP+LP language (such as Oz, or Mercury) would avoid a lot of student confusion
(mostly syntactic)
Prolog and SML have a much larger user/application base, and so will be more likely of
use to the graduate
switching to a new language requires major investment on the lecturers’ part
consequently, we stay with the present setup, and try to link the LP and FP topics as much
as possible

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 31

Future Work

Electronic Teaching aSsistant

stand-alone exercising tool need for students without Internet access

set of exercising should be made larger

extension of the administrative side to support multiple courses and multiple semesters

The RDBG execution visualisation tool — several extensions underway

The Match plagiarism-detection tool

front-ends for new languages, such as Cékla

. . .

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

Other LP-related activities Page 32

Acknowledgements

Péter Hanák, exactly 10 years ago, invited me to teach declarative programming at BUTE.

Enthusiastic student helpers (we had about 50 of these!) did a lot to make the task of teaching
LP and FP possible

Several students carried the major burden of development of various utilities and tools:

András György Békés

Tamás Benkő

Lukács Tamás Berki

Dávid Hanák

Gergely Lukácsy

Tamás Nepusz

Tamás Rozmán

Péter Szeredi: Teaching Logic Programming at BUTE TeachLP 2004 Workshop, ICLP, Saint-Malo, September 2004

