
Topics in Constraint Programming: Exercises

K. Kuchcinski, J. Ma luszyński, U. Nilsson

October 22, 1999

README.FIRST

The objective of the attached exercises is to give some practical experience with:

• the constraint solvers of Oz/Mozart

• the constraint handling rules (in SICStus Prolog),

• the interval CLP in Prolog IV.

Hardcopy solutions to the exercises must be handed in to Kris Kuchcinski NO
LATER THAN DECEMBER 6. The solutions must include justifications and
explanations in form of comments, and documentation of test runs. The exer-
cises should be solved individually, but you may discuss alternative solutions
with one another. The final seminar will be devoted to presentation and dis-
semination of alternative solutions.

1

s are
ach of
e (see
the

 find
 OZ
1. The Newspapers Problem (revisited)

There are four students, Algy, Bertie, Charlie, and Digby, who share a flat. Four newspaper
delivered to the house: the Financial Times, the Guardian, the Daily Express, and the Sun. E
the students reads all of the newspapers, in particular order and for a specified amount of tim
below). Given that Algy gets up at 8:30, Bertie and Charlie at 8:45, and Digby at 9:30, what is
earliest that they can all set off for college?

NOTE: Formulate the problem using the Oz language and its finite domain constraints and
the solution. Please, note that both cumulative and serialization constraints are available in
(see, System Modules, Part II: Constraint Programming).

Algy Bertie Charlie Digby

1st FT 60 min Guardian 75 min Express 5 min Sun 90 min

2nd Guardian 30 min Express 3 min Guardian 15 min FT 1 min

3rd Express 2 min TF 25 min FT 10 min Guardian 1 min

4st Sun 5 min Sun 10 min Sun 30 min Express 1 min

 sim-
n

s that
ilable
arti-

of the
t the
2. Partitioning of logic network graphs

Multi-output Boolean functions can be specified using logic network graphs. For example, a
ple network with 5 inputs, 6 terms and 2 outputs is depicted in the Figure 1. Partitioning is a

important task which needs to be performed before implementation. The partitioning mean
the network is decomposed into number of subnetworks which can be mapped into an ava
hardware fulfilling constraints on the number of inputs, outputs and terms allowed in each p
tion. All inputs and terms which contribute to the output assigned to a partition need to be
assigned to the same partition. For example, the Figure 1 depicts a non-disjoint partitioning
logic network graph from the Figure 1 which has at most 1 output in each partition. Note, tha
input 3 and the term 2 belong to both partitions.

1

2

3

4

1

2

3

4

5

6 1

2

Figure 1. An example of a logic network graph.

5

inputs outputsterms

1

2

3

4

1

2

3

4

5

6 1

2

Figure 2. An example of a partitioning of the logic network graph from the Figure 1.

5

4
2

3

n not
isjoint
e are
ach

et-
d

The goal of this assignment is to partition a logic network graph into two parts. Each part ca
have more than 6 inputs, 6 outputs and 16 terms. The partitioning does not need to create d
sets of inputs or terms, i.e. the same term or input can belong to more than one partition. W
looking for one solution to this problem which satisfies input, output and term constraints for e
partition, i.e., no optimization is required.
Solve this problem using finite set constraints offered by Oz. The Oz definition of the logic n
work graph to partition is given below. Each row represents one output specifying inputs an
terms used to create it.

Def = def(1: output(inputs: [1 2 3 4 5 6] terms: [1 4 5 6 7 8 9 10 15 16])
2: output(inputs: [1 2 3 4 7 8] terms: [15 16 17 19 21 22 24])

 3: output(inputs: [1 2 3 4 5 6] terms: [1 6 15 16])
 4: output(inputs: [1 2 3 4 7 8] terms: [15 16 18 20 21 22])
 5: output(inputs: [1 2 3 4 5 6] terms: [1 3 4 5 11])
 6: output(inputs: [1 2 3 4 5 6] terms: [3 4 5 11])
 7: output(inputs: [3 4 5 6] terms: [2 12 13 14])
 8: output(inputs: [1 2 3 4 5 6] terms: [2 4 5 7 9 10 12 13 15 16])
 9: output(inputs: [1 2 3 4 7 8] terms: [15 16 17 20 21 23])
 10: output(inputs: [1 2 3 4 7 8] terms: [15 16 18 19 21 23 24])
)

3. Constraint Handling Rules

This exercise is intended to familiarize you with Constraint Handling Rules
(CHR), which is a general purpose language for writing constraint solvers. In
this exercise you will implement a small solver for a minimal subset of finite
domain constraints. The finite domain language that we consider here consists
of three syntactic categories (apart from integers and variables); arithmetic
expressions, domain declarations and constraints (which are either declarations
or equalities):

E → Var | Int | E +E

D → Var in Int .. Int
C → D | E #= E

Implement a solver using the CHR-library in SICStus Prolog. The solver doesn’t
have to be complete, however, it should be able to do the following (it is likely
that the solver lists also other constraints in the answer):

| ?- X in 1..2, Y in 3..5, Z #= X+Y.

Z in 4..7,
X in 1..2,
Y in 3..5 ?

Moreover, propagation should work both ways:

| ?- X in 1..2, Z in 3..5, Z #= X+Y.

Z in 3..5,
X in 1..2,
Y in 1..4 ?

Then extend the solver with a labeling/0 procedure (which enumerates solutions
to the constraints). For instance:

| ?- X in 1..2, Z in 3..5, Z #= X+Y, labeling.

X = 2,
Y = 1,
Z = 3,
labeling ?

Note The description in the article on labeling is outdated. Please see the
examples in the CHR web site instead (e.g. the solver for booleans).

Hint 1 You probably have to use some of the built-in predicates of Prolog.
The ones that are most likely to come to use are the arithmetic predicates,
ground/1 (for checking is a term contains no variables) and var/1 (for checking
if a term is an unbound variable). It is also likely that you have to implement
a couple of “predefined” constraints in Prolog.

Hint 2 To facilitate the use of infix notation, include the following in the first
part of your file:

:- use_module(library(chr)).

handler fd.

operator(700,xfx,(in)).
operator(600,xfx,(..)).
operator(700,xfx,(#=)).

constraints in/2, (#=)/2, labeling/0.

4. Modeling a nonlinear problem in Prolog IV

A ball is pushed at some start point with the initial speed V b and
rolls on the ground with deceleration 0.5 m/sec2 until it stops. After
1 sec another ball is thrown in the air from the same start point with
the intention to hit the first ball while it is still rolling. Write a Pro-
log IV program that describes this problem. Use it to compute the
initial speed vector of the second ball provided that V b = 5 m/sec
and the second ball hits the first one at 10m from the start point.
Discuss what are other possible uses of your program.

5. Finding minima and maxima of the non-linear functions

Find global minimum and maximum of the following “six-hump camel-back function”:

in the box X1=[-2.5, 2.5] and X2=[-2.5, 2.5].

NOTE: To solve this problem you need to implement a simple branch and bound algorithm which
divides intervals and checks if there is a minimal or maximal solution in it. Checking for a solu-
tion can be done using interval splitting and the following Prolog construct which verifies the
existence of the solution without binding variables:

verify(X) :- \+ (\+ (X)).

where X is a verified predicate.

f X() 4 X1
2⋅ 2.1 X1

4 1
3
--- X1

6
X1 X2 4 X2

2
4 X2

4⋅+⋅–⋅+⋅+⋅–=

	CLP2-assignments.pdf
	Topics in Constraint Programming
	1. The Newspapers Problem (revisited)
	2. Partitioning of logic network graphs

