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Introduction: Overview

• Goals of the course.

• What is logic programming?

• Why logic programming?
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Goals of the course

• Logic as a specification AND
programming language;

• Theoretical foundation of logic
programming;

• Practice of Prolog and constraint
programming;

• Relations to other areas:

– Databases

– Formal/natural languages

– Combinatorial problems

• To program DECLARATIVELY.
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Declarative vs imperative
languages

Imperative Declarative

Paradigm Describe HOW
TO solve the
problem

Describe
WHAT the
problem is

Program A sequence of
commands

A set of state-
ments

Examples C, Fortran,
Ada, Java

Prolog, Pure
Lisp, Haskell,
ML

Advantages Fast, special-
ized programs

General,
readable,
correct(?)
programs.
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Declarative description A grandchild to x is

a child of one of x’s children.

Imperative description I To find a

grandchild of x, first find a child of x. Then

find a child of that child.

Imperative description II To find a

grandchild of x, first find a parent-child pair

and then check if the parent is a child of x.

Imperative description III To find a

grandchild of x, compute the factorial of 123,

then find a child of x. Then find a child of

that child.
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Compare . . .

read(person);

for i := 1 to maxparent do

if parent[i;1] = person then

for j := 1 to maxparent do

if parent[j;1] = parent[i;2] then

write(parent[j;2]);

fi

od

fi

od

with . . .

gc(X,Z) :- c(X,Y), c(Y,Z).
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Logic: Overview

• Syntax and semantics

• Vocabulary, terms and formulas

• Interpretations and models

• Logical consequence and equivalence

• Proofs/derivations

• Soundness and completeness
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Predicate logic vocabulary

• Constants (17, george, tEX, . . .)

• Functors (cons/2,+/2, father/1, . . .)

• Predicate symbols

(member/2, </2, father/1, . . .)

• Variables (X, X11, , 123, T eX, . . .)

• Logical connectives (∧,∨,⊃,¬,↔)

• Quantifiers (∀,∃)

• Auxiliary symbols (., (, ), . . .)
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Example

A = {volvo; owner/1; owns/2, happy/1}
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Terms

Let A be a vocabulary.

The set of all terms over A is the least set

such that

• every constant in A is a term;

• every variable is a term;

• if f/n is a functor in A and t1, . . . , tn are

terms over A then f(t1, . . . , tn) is a term.
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Ground terms

A term that contains no variables is called a

ground term.
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(Well-formed) formulas

Let A be a vocabulary.

The set of all formulas over A is the least set

such that:

• if p/n is a predicate symbol in A and

t1, . . . , tn are terms, then p(t1, . . . , tn) is a

formula;

• if F and G are formulas, then

(F ∧G), (F ∨G), (F ⊃ G), (F ↔ G) and ¬F

are formulas;

• if F is a formula and X a variable, then

∀X F and ∃X F are formulas.
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Atoms

A formula of the form p(t1, . . . , tn) is called an

atomic formula (atom).

Free occurrences of variables

An occurrence of X in a formula is said to be

free iff the occurrence does not follow

immediately after a quantifier, or in a formula

immediately after ∀X or ∃X.

Closed formulas

A formula that does not contain any free

occurrences of variables is said to be closed.
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Universal closure

Assume that {X1, . . . , Xn} are the only free

occurrences of variables in a formula F . The

universal closure ∀F of F is the closed

formula ∀X1 . . . ∀Xn F .

The existential closure ∃F is defined similarly.
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Interpretations

Let A be a vocabulary.

An interpretation � of A consists of (1) a

non-empty set D (often written |�|) of

objects (the domain of �) and (2) a function

that maps:

• every constant c in A on an element c� in

D;

• every functor f/n in A on a function

f� : Dn→ D;

• every predicate symbol p/n in A on a

relation p� ⊆ Dn.
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Example

The vocabulary:

A = {volvo; owner/1; owns/2, happy/1}

Consider � where |�| = {0,1,2, . . .} and were:

• volvo� = 0

• owner�(x) = x + 1

• owns� = greater-than

• happy� = nonzero-property
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NOTE!

An interpretation defines how to interpret

constants, functors and predicate symbols but

it does not say what a variable denotes.

Valuation

A valuation is a function from variables to

objects in the domain of an interpretation.
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The interpretation of terms

Let � be an interpretation of a vocabulary A.

Let σ be a valuation.

The interpretation σ�(t) of the term t is an

object in �’s domain:

• if t is a constant c then σ�(t) = c�;

• if t is a variable X then σ�(t) = σ(X);

• if t is a term f(t1, . . . , tn) then

σ�(t) = f�(σ�(t1), . . . , σ�(tn)).
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Example

Consider � where |�| = {0,1,2, . . .} and were:

• volvo� = 0

• owner�(x) = x + 1

Then:

σ�(owner(owner(volvo)))
= owner�(σ�(owner(volvo)))
= (σ�(owner(volvo))) + 1

= (owner�(σ�(volvo))) + 1

= ((σ�(volvo)) + 1) + 1

= ((volvo�) + 1) + 1

= (0 + 1) + 1

= 2
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Example

Consider also σ(X) = 3. Then:

σ�(owner(X))
= owner�(σ�(X))
= (σ�(X)) + 1

= (σ(X)) + 1

= 3 + 1

= 4
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The interpretation of formulas

The meaning of a formula is a

truth-value—“true” or “false”. Given an

interpretation � and a valuation σ we write

� |=σ F when F is true wrt � and σ.

� 
|=σ F when F is false wrt � and σ.

• � |=σ p(t1, . . . , tn) iff

(σ�(t1), . . . , σ�(tn)) ∈ p�;

• � |=σ ¬F iff � 
|=σ F ;

• � |=σ F ∧G iff � |=σ F and � |=σ G;

• � |=σ F ∨G iff � |=σ F and/or � |=σ G;
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The interpretation of formulas
(cont’d.)

• � |=σ F ⊃ G iff � 
|=σ F and/or � |=σ G;

• � |=σ F ↔ G iff � |=σ F exactly when

� |=σ G;

• � |=σ ∀XF iff � |=σ[x�→t] F for every

t ∈ |�|;

• � |=σ ∃XF iff � |=σ[x�→t] F for some

t ∈ |�|.
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Example

Consider � as before.

Then:

� |= owns(volvo, volvo) ⊃ happy(volvo)

iff

� 
|= owns(volvo, volvo)

or

� |= happy(volvo)

iff

〈σ�(volvo), σ�(volvo)〉 
∈ owns�
or

σ�(volvo) ∈ happy�
iff

〈0,0〉 
∈ owns� or 0 ∈ happy�
iff

0 
> 0 or 0 
= 0

iff

true
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Models

Let F be a closed formula.

Let P be a set of closed formulas.

An interpretation � is a model of F iff � |= F .

An interpretation � is a model of P iff � is a

model of every formula in P .

Satisfiability

F (resp. P) is satisfiable iff F (resp. P) have

at least one model. (Otherwise F/P is

unsatisfiable.)
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Example

� (defined as before) is a model of:

owns(owner(volvo), volvo)

and:

∀X(owns(X, volvo) ⊃ happy(X))
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Logical consequence

F is a logical consequence of P (P |= F) iff F

is true in all of P ’s models

(Mod(P) ⊆Mod(F)).

Theorem

P |= F iff P ∪ {¬F} is unsatisfiable.
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Logical equivalence

Let F, G,∀XH(X) be formulas.

F and G are logically equivalent (F ≡ G) iff

� |=σ F exactly when � |=σ G.

F ⊃ G ≡ ¬F ∨G

F ⊃ G ≡ ¬G ⊃ ¬F

F ↔ G ≡ (F ⊃ G) ∧ (G ⊃ F)

¬(F ∧G) ≡ ¬F ∨ ¬G

¬(F ∨G) ≡ ¬F ∧ ¬G

¬∀XH(X) ≡ ∃X¬H(X)

¬∃XH(X) ≡ ∀X¬H(X)

In addition, if X does not occur free in F .

∀X(F ∨H(X)) ≡ F ∨ ∀XH(X)
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Proofs (derivations)

A proof (derivation) is a sequence of formulas

where each formula in the sequence is either

a so-called premise or is obtained from

previous formulas in the sequence by means

of a collection of derivation rules.

Natural deductions

F F ⊃ G

G

∀XF(X)

F(t)

F G

F ∧G
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Example

1. owns(owner(volvo), volvo) P
2. ∀X(owns(X, volvo) ⊃ happy(X)) P
3. owns(owner(volvo), volvo) ⊃ happy(owner(volvo)))
4. happy(owner(volvo))
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Proofs

Let P be a set of closed formulas (premises)

Let F be a closed formula.

We write P � F when there is a derivation of

F from the premises P .

Soundness and completeness

If P � F then P |= F . (soundness)

If P |= F then P � F . (completeness)
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Definite Programs: Overview

• Definite programs:

– Rules;

– Facts;

– Goals.

• Herbrand-interpretations;

• Herbrand-models;

• Fixpoint-semantics.
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Clauses

A clause is a formula:

∀(A1 ∨ . . . ∨Am ∨ ¬Am+1 ∨ . . . ∨ ¬Am+n)

where A1, . . . , Am, Am+1, . . . , Am+n are atoms

and m, n ≥ 0.

∀(A1 ∨ . . . ∨Am ∨ ¬Am+1 ∨ . . . ∨ ¬Am+n)

≡
∀((A1 ∨ . . . ∨Am) ∨ ¬(Am+1 ∧ . . . ∧Am+n))

≡
∀((A1 ∨ . . . ∨Am)← (Am+1 ∧ . . . ∧Am+n))
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Definite clauses

A definite clause is a clause where m ≤ 1:

Rules

A rule is a clause where m = 1 and n > 0:

∀(A1 ← A2 ∧ . . . ∧Am+n)

Facts

A fact is a clause where m = 1 and n = 0:

∀(A1)
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(Definite) goals

A goal is a clause where m = 0 and n ≥ 0:

∀(¬(A1 ∧ . . . ∧Am+n))

A goal where m = n = 0 is called the empty

goal.

Notation

Rules: A1 ← A2, . . . , An+1. n > 0
Facts: A1.
Goals: ← A1, . . . , An. n > 0

� n = 0
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Logic Programming Anatomy

head neck body
A0 ← A1, . . . , An
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Logic programs

A definite program is a finite set of rules and

facts.

A definite program P is used to answer

“existential questions” (queries) such as:

“are there any odd integers?”

The query can be answered “yes” if e.g:

P |= ∃X odd(X)

This is equivalent to proving that:

P ∪ {¬∃X odd(X)}
is unsatisfiable (has no models).
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Resolution

Note that ¬∃(A1 ∧ . . . ∧An) is equivalent to

∀¬(A1 ∧ . . . ∧An). That is, a goal.

Resolution is used to prove that a set of

clauses is unsatisfiable. As a side-effect

resolution produces “witnesses” (variable

bindings). See chapter 3.
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Herbrand interpretations

Let P be a logic program based on the

vocabulary A

Herbrand universe

The Herbrand universe of P (A really) is the

set of all ground terms that can be built

using constants and functors in P (A).

Denoted UP (UA).

Herbrand base

The Herbrand base of P (A) is the set of all

ground atoms that can be built using UP and

the predicate symbols of P (A). Denoted BP

(BA).
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Example

Vocabulary:

A = {volvo; owner/1; owns/2, happy/1}

Herbrand universe:

UA = {volvo, owner(volvo), owner(owner(volvo)), . . .}

Herbrand base:

BA = {happy(s) | s ∈ UA}∪{owns(s, t) | s, t ∈ UA}
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Herbrand interpretations

A Herbrand interpretation of P is an

interpretation � where |�| = UP and where:

• c� = c for every constant c;

• f�(t1, . . . , tn) = f(t1, . . . , tn) for every

functor f/n;

• p� is a subset of UP × · · · × UP︸ ︷︷ ︸
n

for every

predicate symbol p/n.

That is, the interpretation of a ground term

is the term itself!
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Observation I

Since all ground terms are interpreted as

themselves, it is sufficient to specify the

interpretation of the predicate symbols when

describing a Herbrand interpretation; in other

words, to specify a Herbrand interpretation �
it is sufficient to specify, for each predicate

symbol, the set:

{〈t1, . . . , tn〉 ∈ Un
P | p(t1, . . . , tn) is true in �}

Observation II

Instead of describing a Herbrand

interpretation � as a family of sets we usually

describe � as a single set of all ground atoms

that are true in �.
� = {p(t1, . . . , tn) | p(t1, . . . , tn) is true in �}
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Example

Alternative I

owns� = {〈owner(volvo), volvo〉, . . .}
happy� = {〈owner(volvo)〉, . . .}

Alternative II

� = {owns(owner(volvo), volvo), . . . ,
happy(owner(volvo)), . . .}
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Ground instances of P

Let C be a definite clause of the form

A0← A1, . . . , An (n ≥ 0)

(C is considered to be a fact if n = 0.)

By a ground instance of C we mean the same

clause with all variables replaced by ground

terms (several occurrences of the same

variable are replaced by the same term):

By ground(C) we mean the set of all ground

instances of C.

If P is a definite program then

ground(P) = {C ′ | ∃C ∈ P s.t. C ′ ∈ ground(C)}
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Why Herbrand Interpretations?

For an arbitrary interpretation �:
� |=σ ∀X(happy(X)← owns(X, volvo))

iff
� |=σ[X �→a] happy(X)← owns(X, volvo)

for all a ∈ |�|

For a Herbrand interpretation �:
� |=σ ∀X(happy(X)← owns(X, volvo))

iff
� |=σ happy(t)← owns(t, volvo)

for any t ∈ UP

No need to worry about valuations!!!
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Herbrand models

A Herbrand model of F (resp. P) is a

Herbrand interpretation which is a model of F

(resp. all formulas in P).

Observation

A ground atom A is true in a Herbrand

interpretation � iff A ∈ �.

Theorem

Let P be a set of definite clauses

(facts/rules/goals) and M be an arbitrary

model of P . Then:

� := {A ∈ BP |M |= A}
is a Herbrand model of P .
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Theorem

Let {M1, M2, . . .} be a non-empty set of

Herbrand models of P . Then also

� :=
⋂{M1, M2, . . .} is a Herbrand model of P .

The Least Herbrand model

The intersection of all Herbrand models of P

is called the least Herbrand model of P and is

denoted MP .

Theorem

MP = {A ∈ BP | P |= A}
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“Construction” of MP

Observation

In order for � to be a model of P it is
required that:

• If A is a ground instance of a fact then
A ∈ �, and

• If A← A1, . . . , An is a ground instance of a
clause in P and {A1, . . . , An} ⊆ � then
A ∈ �.

Immediate consequence operator

TP (x) :=

{A ∈ BP | A← A1, . . . , An ∈ ground(P)

and {A1, . . . , An} ⊆ x}
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Theorem

MP = Tn
P (∅) when n→∞
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Example

gp(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- f(X,Y).

p(X,Y) :- m(X,Y).

f(adam,bill).

f(adam,carol).

f(bill,eve).

m(carol,david).
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Example

• �0 = ∅

• �1 = TP(∅) = {f(a, b), f(a, c), f(b, e), m(c, d)}
[ f(a, b) ∈ �1 since (f(a, b)← ) ∈ ground(P ) and
∅ ⊆ ∅. ]

• �2 = TP(�1) = T 2
P(∅) =

{p(a, b), p(a, c), p(b, e), p(c, d)} ∪ �1

[ p(a, b) ∈ �2 since (p(a, b)← f(a, b)) ∈ ground(P )
and {f(a, b)} ⊆ �1. ]

• �3 = TP(�2) = T 3
P(∅) = {gp(a, d), gp(a, e)} ∪ �2

[ gp(a, d) ∈ �3 since
(gp(a, d)← p(a, c), p(c, d)) ∈ ground(P ) and
{p(a, c), p(c, d)} ⊆ �2. ]

• �4 = TP(�3) = T 4
P(∅) = �3
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SLD-Resolution: Overview

• Substitutions;

• Unification;

• SLD-derivations;

• Soundness and completeness.
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Substitutions

A substitution is a finite set

{X1/t1, . . . , Xn/tn} where:

• every ti is a term;

• every Xi is a variable distinct from ti;

• if i 
= j then Xi 
= Xj.

The empty substitution {} is denoted ε.
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Let θ be a substitution {X1/t1, . . . , Xn/tn}.

Domain and Range

The domain Dom(θ) of θ is {X1, . . . , Xn} and

the range Range(θ) is the set of all variables

occurring in t1, . . . , tn.

Application

Let E be a term or formula. The application

Eθ of θ to E is the term/formula obtained

from E by simultaneously replacing all

occurrences of Xi by ti.

Eθ is called an instance of E.
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Composition

Let θ := {X1/s1, . . . , Xm/sm} and

σ := {Y1/t1, . . . , Yn/tn} be substitutions. The

composition θσ of θ and σ is the substitution

obtained from

{X1/s1σ, . . . , Xm/smσ, Y1/t1, . . . , Yn/tn}
by removing all Xi/siσ where Xi = siσ and all

Yi/ti where Yi ∈ Dom(θ).

More general substitution

A substitution θ is more general than σ

(σ � θ) iff there exists a substitution ω such

that θω = σ.

53



Theorem

Let θ, σ and γ be substitutions and E a

term/formula. Then

• (θσ)γ = θ(σγ);

• E(θσ) = (Eθ)σ;

• εθ = θε = θ.

54



Unification

A structure is a term or an atomic formula.

Unifier

A unifier of two structures s and t is a

substitution θ such that sθ = tθ.

Most general unifier (mgu)

A unifier θ of s and t is called a most general

unifier of s and t iff σ � θ for every unifier σ

of s and t. NB: Two unifiable structures have

at least one mgu (usually infinitely many).
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Solved form

A set of equation {s1 .
= t1, . . . , sn

.
= tn} is in

solved form iff s1, . . . , sn are distinct variables

none of which occur in t1, . . . , tn.

Solution

A substitution θ is a solution to a set of

equations {s1 .
= t1, . . . , sn

.
= tn} iff θ is a

unifier of si and ti (1 ≤ i ≤ n).

Theorem

If {X1
.
= t1, . . . , Xn

.
= tn} is in solved form

then {X1/t1, . . . , Xn/tn} is an mgu of Xi and

ti (1 ≤ i ≤ n).
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select an arbitrary s
.
= t ∈ E ;

case s
.
= t of

f(s1, . . . , sn)
.
= f(t1, . . . , tn)

where n ≥ 0 ⇒
replace equation by s1

.
= t1, . . . , sn

.
= tn;

f(s1, . . . , sm)
.
= g(t1, . . . , tn)

where f/m 
= g/n ⇒
halt with ⊥;

X
.
= X ⇒
remove the equation;

t
.
= X where t is not a variable ⇒

replace equation by X
.
= t;

X
.
= t where X 
= t and X has more than

one occurrence in E ⇒
if X is a proper subterm of t then

halt with ⊥
else

replace all other occurrences

of X by t;

esac
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Theorem

The algorithm always terminates. If s and t

are unifiable then the algorithm returns a

solved form whose mgu is an mgu of s and t.

Otherwise the algorithm returns ⊥.

Renaming

A substitution θ := {X1/Y1, . . . , Xn/Yn} where

Y1, . . . , Yn is a permutation of X1, . . . , Xn is

called a renaming. The substitution

{Y1/X1, . . . , Yn/Xn} is called the inverse of θ

(denoted θ−1).
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Theorem

Let θ and σ be mgu’s of s and t. Then there

exists a renaming γ such that θγ = σ (and

σγ−1 = θ).

Theorem

If θ is an mgu of s and t and σ a renaming,

then θσ is also an mgu of s and t.
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In practice

The previous algorithm is worst-case

exponential in the size of the structures.

Take for instance

g(X1, . . . , Xn) = g(f(X0, X0), . . . , f(Xn−1, Xn−1)).

The reason is the occurs check (i.e. checking

if X is a proper subterm of t).

There are also polynomial algorithms, but

most Prolog implementations use the

exponential algorithm, and simply drop the

occurs check.

This rarely makes a difference, but does make

Prolog unsound!!!
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SLD-resolution rule

Let H ← B1, . . . , Bn be a program clause

renamed apart from ← A1, . . . , Ai, . . . , Am, and

let θ be an mgu of Ai and H. Then:

← A1, . . . , Ai, . . . , Am H ← B1, . . . , Bn

← (A1, . . . , Ai−1, B1, . . . , Bn, Ai+1, . . . , Am)θ
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SLD-derivation

Let G0 be a goal. An SLD-derivation of G0 is

a finite/infinite sequence:

G0
C0
� G1 · · ·Gn−1

Cn−1
� Gn · · ·

of goals and (renamed) program clauses such

that:
Gi Ci

Gi+1
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gp(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- f(X,Y).

p(X,Y) :- m(X,Y).

f(adam,tom).

f(adam,mary).

f(tom,david).

m(mary,anne).
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inv(0,1).

inv(1,0).

and(0,0,0).

and(0,1,0).

and(1,0,0).

and(1,1,1).

nand(X,Y,Z) :- and(X,Y,W), inv(W,Z).

64



Computation rule

A computation rule � is a (partial) function

that given a goal returns an atom in that

goal.

SLD-refutation

An SLD-refutation of G0 is a finite

SLD-derivation

G0
C0
� G1 · · ·Gn−1

Cn−1
� Gn

where Gn = �.

65



Failed derivation

A finite SLD-derivation

G0
C0
� G1 · · ·Gn−1

Cn−1
� Gn

is said to be failed if the selected atom in Gn

does not unify with any program clause head.

Complete SLD-derivation

An SLD-derivation is complete if it is a

refutation, a failed or infinite derivation.
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Let

G0
C0
� G1 · · ·Gn−1

Cn−1
� Gn

be an SLD-derivation

Computed substitution

If θi is mgu i of the derivation then

θ1θ2 . . . θn

is called the computed substitution in the

derivation.

Computed answer-substitution

The computed answer-substitution in a

refutation of G0 is the computed substitution

of the refutation restricted to the variables

occurring in G0.
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Let P be a logic program;

Let � be a computation rule

SLD-tree

The SLD-tree of a goal G0 is a tree where

• the root of the tree is G0;

• if Gi is a node in the tree then Gi has a

child Gi+1 (connected via a branch

labelled “Ci”) iff there exists an

SLD-derivation

G0
C0
� G1 · · ·Gi

Ci
� Gi+1

with the computation rule �.

68



Soundness and completeness

Theorem (soundness)

Let P be a logic program, � a computation

rule and θ an �-computed answer-substitution

of the goal ← A1, . . . , An. Then

∀((A1 ∧ . . . ∧An)θ) is a logical consequence of

P .

Theorem (completeness)

Let P be a logic program and � a

computation rule. If ∀(A1 ∧ . . . ∧An)σ is a

logical consequence of P then there is a

refutation of ← A1, . . . , An with �-computed

answer-substitution θ such that

(A1 ∧ . . . ∧An)σ is an instance of

(A1 ∧ . . . ∧An)θ.
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Example

% leq(X,Y) - X is less than or equal to Y

leq(0, Y).

leq(s(X), s(Y)) :- leq(X, Y).

-------------------

:- leq(0, N).

yes

That is P |= ∀N leq(0, N).

Note that it is impossible to obtain e.g. the

answer N = s(0)). However, we get a more

general answer.
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Negation: Overview

• Closed World Assumption;

• Negation as Failure;

• Completion;

• SLDNF-resolution (part I);

• General (alt. normal) logic programs;

• Stratified logic programs;

• SLDNF-resolution (part II).
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Program:

parent(a,b).

parent(a,c).

parent(c,d).

female(a).

female(d).

mother(X) :- parent(X,Y), female(X).

Least Herbrand model:

parent(a,b).

parent(a,c).

parent(c,d).

female(a).

female(d).

mother(a).
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Program:

edge(a,b).

edge(a,c).

edge(b,d).

edge(c,d).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

Least Herbrand model:

edge(a,b).

edge(a,c).

edge(b,d).

edge(c,d).

path(a,b).

path(a,c).

path(b,d).

path(c,d).

path(a,d).
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Closed World Assumption

Background Definite programs can only be

used to describe positive knowledge; it is not

possible to describe objects that are not

related.

Solution I Closed world assumption:

P 
|= A

¬A

Problem P 
|= A is undecidable.
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Negation as (finite) Failure

Solution II An SLD-tree is finitely failed iff it

is finite and does not contain any refutations.

Observation If ← A has a finitely failed

SLD-tree then P 
|= A. (Follows from the

soundness and completeness of

SLD-resolution.)

The NAF rule

← A has a finitely failed SLD-tree

¬A

Problem The NAF rule is not sound.
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Completion

Thesis The program contains information

that is not written out explicitly. The

completed program is the program obtained

after addition of the missing information.

Observation {a← b, a← c} ≡ {a← b ∨ c}.

Principle An implication a← b is replaced by

an equivalence a↔ b.
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Let Y1, . . . , Yi be all variables in

p(t1, . . . , tm)← A1, . . . , An.

Step 1 Replace the clause by

p(X1, . . . , Xm)←
∃Y1 . . . Yi(X1

.
= t1, . . . , Xm

.
= tm, A1, . . . , An)

Step 2 Take all clauses

p(X1, . . . , Xm)← E1
...

p(X1, . . . , Xm)← Ej

that define p/m and replace by

p(X1, . . . , Xm)← E1 ∨ . . . ∨ Ej (j > 0)
p(X1, . . . , Xm)← � (j = 0)

Step 3 Replace all implications with

equivalences.
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Step 4 Add the “free equality axioms”:

X
.
= X

X
.
= Y → Y

.
= X

X
.
= Y ∧ Y

.
= Z → X

.
= Z

X1
.
= Y1 ∧ . . . ∧Xm

.
= Ym→

f(X1, . . . , Xm)
.
= f(Y1, . . . , Ym)

X1
.
= Y1 ∧ . . . ∧Xm

.
= Ym→

(p(X1, . . . , Xm)→ p(Y1, . . . , Ym))
f(X1, . . . , Xm) 
= g(Y1, . . . , Yn) if f/m 
= g/n
f(X1, . . . , Xm)

.
= f(Y1, . . . , Ym)→

X1
.
= Y1 ∧ . . . ∧Xm

.
= Ym

f(. . . X . . .) 
= X
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Soundness of “Negation as Failure”

Theorem Let P be a definite program. If

← A has a finitely failed SLD-tree then

comp(P) |= ∀¬A.

Completeness of “Negation as Failure”

Theorem Let P be a definite program. If

comp(P) |= ∀¬A then there exists a finitely

failed SLD-tree of ← A.
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SLDNF-resolution for definite programs

A general goal is an expression

← L1, . . . , Ln.

where each Li is an atom (positive literal) or

a negated atom (negative literal).

Combine SLD-resolution and “Negation

as Failure”

Given a general goal — if the selected literal

is positive then the next goal is obtained in

the usual way. If the selected literal is

negative (¬A) and ← A has a finitely failed

SLD-tree then the next goal is obtained by

removing ¬A from the goal.
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Soundness of SLDNF

Theorem Let P be a definite program and

← L1, . . . , Ln a general goal. If ← L1, . . . , Ln

has an SLDNF-refutation with computed

answer-substitution θ then ∀(L1 ∧ · · · ∧ Ln)θ is

a logical consequence of comp(P).

No completeness!!!
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General (or normal) programs

A general clause is a clause of the form

A← L1, . . . , Ln (n ≥ 0)

where L1, . . . , Ln are positive/negative literals.

Completion

Completion of a general program is obtained

in the same way as for definite programs.

(Negative literals are handled like positive

literals.)
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Stratified programs

Problem Completion of a general program

can be inconsistent (unsatisfiable).

Limitation A stratified program is a general

program where “no relation is defined in

terms of its own complement”. That is, no

predicate symbol depends on its own

negation.
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Stratified programs

A general program P is stratified iff there

exists a partitioning P1, . . . , Pn of P such that

• if p(. . .)← . . . , q(. . .), . . . ∈ Pi then

DEF(q) ⊆ P1 ∪ . . . ∪ Pi.

• if p(. . .)← . . . ,¬q(. . .), . . . ∈ Pi then

DEF(q) ⊆ P1 ∪ . . . ∪ Pi−1.

Theorem Completion of a stratified program

is always consistent.
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SLDNF-resolution for general
programs

Let P be a general program, G0 a general

goal and � a computation rule. The

SLDNF-forest of G0 is the least forest

(modulo renaming) such that

1. G0 is a root of one tree.

2. if G is a node and �(G) = A then G has a

child G′ for each clause C such that G′ is
obtained from G and C. If there is no

such clause, G has a single child FF;

3. if G is a node of the form

← L1, . . . , Li−1,¬A, Li+1, . . . , Li+j and

�(G) = ¬A, then
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Cont’d

• the forest contains a tree with the root

← A;

• if the tree with the root ← A has a leaf �

with the empty computed

answer-substitution, then G has a child

FF.

• if the tree with root ← A is finite and all

leaves are FF, then G has a single child

← L1, . . . , Li−1, Li+1, . . . , Li+j.
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Soundness of SLDNF-resolution

Let P be a general program, ← L1, . . . , Ln a

general goal and � a computation rule. If θ is

a computed answer-substitution in an

SLDNF-refutation of ← L1, . . . , Ln then

∀((L1 ∧ . . . ∧ Ln)θ) is a logical consequence of

comp(P).
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father(X) :-

parent(X,Y),

\+ mother(X,Y).

disjoint([],X).

disjoint([X|Xs],Ys) :-

\+ member(X,Ys),

disjoint(Xs,Ys).
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founding(X) :-

on(Y,X),

on_ground(X).

on_ground(X) :-

\+ off_ground(X).

off_ground(X) :-

on(X,Y).

on(c,b).

on(b,a).
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go_well_together(X,Y) :-

\+ incompatible(X,Y).

incompatible(X,Y) :-

\+ likes(X,Y).

incompatible(X,Y) :-

\+ likes(Y,X).

likes(X,Y) :-

harmless(Y).

likes(X,Y) :-

eats(X,Y).

harmless(rabbit).

eats(python,rabbit).
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father(X,Y) :-

parent(X,Y),

\+ mother(X,Y).

parent(a,b).

parent(c,b).

mother(a,b).
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father(X,Y) :-

parent(X,Y),

\+ mother(X,Y).

mother(X,Y) :-

parent(X,Y),

\+ father(X,Y).

parent(a,b).

parent(c,b).
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on_top(X) :-

\+ blocked(X).

blocked(X) :-

on(Y,X).

on(a,b).

%---------------------

| ?- \+ on_top(b).

| ?- \+ on_top(X).
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Logic and Grammars: Overview

• Context free languages;

• Context sensitive languages;

• Definite Clause Grammars (DCGs);

• DCGs and Prolog.
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Context free languages

• A context free grammar is a triple

〈N, T, P 〉 where:

– N is a finite set of non-terminals;

– T is a finite set of terminals (and

N ∩ T = ∅);

– P ⊆ N × (N ∪ T)∗ is a finite set of

production rules.

• Examples of production rules:

〈expr〉 → 〈expr〉+ 〈expr〉
〈sent〉 → 〈np〉 〈vp〉
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Derivations

• Let α, β, γ ∈ (N ∪ T)∗. We say that αAγ

directly derives αβγ iff A→ β ∈ P .

Denoted

αAγ ⇒ αβγ

• We say that α1 derives αn iff there exists

a sequence

α1⇒ α2, α2 ⇒ α3, . . . , αn−1 ⇒ αn. Denoted

α1
∗⇒ αn

• A terminal string α ∈ T ∗ is in the language

of A iff A
∗⇒ α.
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Example: Context free grammar

〈sent〉 → 〈np〉 〈vp〉
〈np〉 → the 〈n〉
〈vp〉 → runs

〈n〉 → engine

〈n〉 → rabbit
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Naive implementation

sent(Z)← append(X, Y, Z), np(X), vp(Y ).
np([the|X])← n(X).
vp([runs]).
n([engine]).
n([rabbit]).

append([ ], Xs, Xs).
append([X|Xs], Y s, [X|Zs])←

append(Xs, Y s, Zs).
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Usage of “Difference Lists”

• Assume that “−/2” denotes a partial

function which given two strings

x1 . . . xm−1xm . . . xn and xm . . . xn returns

the string x1 . . . xm−1.

• Example

sent(X0–X2)← np(X0–X1), vp(X1–X2).

x1 . . . xi−1 xi . . . xj−1 xj . . . xk︸ ︷︷ ︸
X2︸ ︷︷ ︸

X1︸ ︷︷ ︸
X0
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Two Alternatives

sent(X0–X2)← np(X0–X1), vp(X1–X2).
np(X0–X2)← ’C’(X0, the, X1), n(X1–X2).
vp(X0–X1)← ’C’(X0, runs, X1).
n(X0–X1)← ’C’(X0, engine, X1).
n(X0–X1)← ’C’(X0, rabbits, X1).
’C’([X|Y ], X, Y ).

sent(X0–X2)← np(X0–X1), vp(X1–X2).
np([the|X1]–X2)← n(X1–X2).
vp([runs|X1]–X1).
n([engine|X1]–X1).
n([rabbit|X1]–X1).
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Partial deduction

grandparent(X,Y) :-

parent(X,Z), parent(Z,Y).

-----------

parent(X,Y) :-

father(X,Y).

parent(X,Y) :-

mother(X,Y).

%-------------------------------------

grandparent(X,Y) :-

father(X,Z), parent(Z,Y).

grandparent(X,Y) :-

mother(X,Z), parent(Z,Y).

parent(X,Y) :-

father(X,Y).

parent(X,Y) :-

mother(X,Y).

101



Context sensitive languages

• Some languages cannot be described by

context free grammars. For instance

ABC = {anbncn | n ≥ 0}
= {ε, abc, aabbcc, aaabbbccc, . . .}

• The language ABC can be expressed in

Prolog

abc(X0–X3)←
a(N, X0–X1),
b(N, X1–X2),
c(N, X2–X3).

a(0, X0–X0).
a(s(N), [a|X1]–X2)← a(N, X1–X2).
b(0, X0–X0).
b(s(N), [b|X1]–X2)← b(N, X1–X2).
c(0, X0–X0).
c(s(N), [c|X1]–X2)← c(N, X1–X2).
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Definite Clause Grammars (DCGs)

• A Definite Clause Grammar is a triple

〈N, T, P 〉 where

– N is a finite/infinite set of atoms;

– T is a finite/infinite set of terms (and

N ∩ T = ∅);

– P ⊆ N × (N ∪ T)∗ is a finite set of

production rules.
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Derivations

• Let α, β, γ ∈ (N ∪ T)∗. We say that αAγ

directly derives (αβγ)θ iff A′ → β ∈ P and

mgu(A, A′) = θ. Denoted

αAγ ⇒ (αβγ)θ

• We say that α1 derives αn (denoted

α1
∗⇒ αn) iff there exists a sequence

α1 ⇒ α2, α2 ⇒ α3, . . . , αn−1⇒ αn

• A terminal string α ∈ T ∗ is in the language

of A iff A
∗⇒ α.
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Example of DCG

sent(s(X,Y)) --> np(X, N)\ vp(Y, N).

np(john, singular(3)) --> [john].

np(they,plural(3)) --> [they].

vp(run,plural(X)) --> [run].

vp(runs,singular(3)) --> [runs].
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Semantical (context sensitive)
constraints

The following DCG describes the language

{a2nb2nc2n | n ≥ 0}

abc --> a(N), b(N), c(N), even(N).

a(0) --> [].

a(s(N)) --> [a], a(N).

...

even(0) --> [].

even(s(s(N))) --> even(N).
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Note

• The language of even(X) contains only

the string ε!!!

• This may be emphasized by writing

abc --> a(N), b(N), c(N), {even(N)}.

• and by defining even/1 as a logic program

even(0).
even(s(s(X)))← even(X).
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DCGs and Prolog

• Every production rule in a DCG can be

compiled into a Prolog clause;

• The resulting Prolog program can be used

as a (top-down) parser for the language

(cf. “recursive descent”);
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Compilation

• Assume that X0, . . . , Xm are distinct

variables that do not occur in

p(t1, . . . , tn) → T1, . . . , Tm

• The Prolog program will then contain a

clause

p(t1, . . . , tn, X0, Xm)← T ′1, . . . , T ′m.

where each T ′i , (1 ≤ i ≤ m), is of the form

q(t1, . . . , tn, Xi−1, Xi) if Ti = q(t1, . . . , tn)
’C’(Xi−1, t, Xi) if Ti = [t]

T, Xi−1 = Xi if Ti = {T}
Xi−1 = Xi if Ti = [ ]
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Example

sent --> np, vp.

np --> [the], n.

vp --> [runs].

n --> [boy].

% Translates into...

sent(S0,S2) :- np(S0,S1), vp(S1,S2).

np(S0,S2) :- ’C’(S0,the,S1), n(S1,S2).

vp(S0,S1) :- ’C’(S0,runs,S1).

n(S0,S1) :- ’C’(S0,boy,S1).

’C’([X|Xs],X,Xs).
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Summary

• Logic programming can be used to define

– (Regular languages);

– Context free languages;

– Context sensitive languages;

– (Recursively enumerable languages).

• Definite Clause Grammars (DCGs);

• Compilation of DCGs into Prolog.
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Examples

% Membership in a ordered binary tree

member(X, node(Left, X, Right)).

member(X, node(Left, Y, Right)) :-

X < Y,

member(X, Left).

member(X, node(Left, Y, Right)) :-

X > Y,

member(X, Right).

% Property of being a father

father(X) :-

parent(X, Y), male(X).
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General

• Prolog constructs the SLD(NF)-tree by a

depth-first search in combination with

backtracking.

• By means of cut (!) the user can prohibit

the Prolog engine from exploring certain

branches in the tree.

• Cut (!) may only occur in the righthand

sides of clauses and can be viewed as a

regular (nullary) atom.
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Principles

• Two principal uses

– Prune infinite and failed branches

(green cut);

– Prune refutations (red cut).

• Acceptable ”red cut”:

– Prune multiple occurrences of the

same answer.
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The Golden Rule

First write a correct program without cuts.

Then add cuts in approprate places to

improve the efficiency.
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Constraint logic programming

• Constraints

• Operations on constraints

• Constraint Logic Programming

– Language

– Operational semantics

– Examples
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Constraint

Given a set of variables, a constraint is a

restriction on the possible values of the

variables.

Example

Variables: X, Y .

Constraint I: X2 + Y 2 ≤ 4

Constraint II: Y ≥ 2− 2 ·X
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Solution

The constraint X2 + Y 2 ≤ 4 has a set of

solutions – variable assignments when the

constraint is true, e.g:

{X �→ 2, Y �→ 0}
{X �→ 0, Y �→ 2}
{X �→ 1, Y �→ 1}

A mapping from variables to values is called a

valuation. A valuation where the constraint is

true is called a solution.

119



Domain of a constraint

Whether a constraint has a solution or not

depends on the values that the variables can

take.

The constraint X2 = 2 has a real solution,

but not an integer or a rational solution.

The set of all possible values of the variables

is called the domain of the constraint.
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Conjunctive constraints

The conjunction of the primitive constraints

X2 + Y 2 ≤ 4 and Y ≥ 2− 2 ·X is a new

(conjunctive) constraint:

Sets of primitive constraints represent

conjunctive constraints.
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Properties of constraints

A constraint is said to be satisfiable iff it has

at least one solution.

A constraint C1 implies a constraint C2

(written C1 |= C2) iff every solution of C1 is

also a solution of C2.

Two constraints are equivalent if they have

the same set of solutions.
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Optimal solutions

A solution σ of a set of constraints S is

maximal subject to an expression E if σ(E) is

greater than σ′(E) for any solution σ′ of S.

Example

The solution {X �→ 1.6, Y �→ −1.2} is a

maximal solution of

X2 + Y 2 ≤ 4
Y ≥ 2− 2 ·X

subject to −Y .
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Constraint Logic Programming

sorted([]).

sorted([X]).

sorted([Fst,Snd|Rst]) :-

Fst =< Snd, sorted([Snd|Rst]).

------------------------------------

:- sorted([X1,X2,X3]).

ARITHMETIC ERROR!!!
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Language

• Functors and predicate symbols divided

into:

– Uninterpreted symbols (Herbrand

terms/atoms);

– Interpreted symbols (constraints).

• Special solvers handle constraints;

• SLD(NF)-resolution is used for Herbrand

atoms;
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Language (cont’d.)

• A clause is an expression

A0← C1, . . . , Cm, A1, . . . , An

where

– A0, . . . , An are Herbrand atoms;

– C1, . . . , Cm are constraints.

• A goal is an expression

← C1, . . . , Cm, A1, . . . , An
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CLP(X): A Family of Languages

CLP(R) Linear equations over reals

CLP(Q) Linear equations over rationals

CLP(B) Booleans

CLP(FD) Finite domains
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Example CLP(R)

mortgage(Loan,Years,AInt,Bal,APay) :-

{ Years>0,

Years <= 1,

Bal=Loan*(1+Years*AInt)-APay }.

mortgage(Loan,Years,AInt,Bal,APay) :-

{ Years>1,

NewLoan = Loan*(1+AInt)-APay,

Years1 = Years-1 },

mortgage(NewLoan,Years1,AInt,Bal,APay).

-------------------------------------------

?- mortgage(120000,10,0.1,0,AnnPay).

AnnPay=19529.4

?- mortgage(Loan,10,0.1,0,19529.4).

Loan=120000

?- mortgage(Loan,10,0.1,0,AnnPay).

Loan=6.14457*AnnPay
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Resolution with constraints

A state is a pair (G ; S) where G is a goal,

and S is a constraint store. Given a program

P a derivation is a sequence of states:

• (←A, B ; S)⇒ (←A = A′, B′, B ; S) if

A′←B′ ∈ P

• (←C, G ; S)⇒ (←G ; {C} ∪ S)

• (G ; S)⇒ fail if sat(S) = false;

• (G ; S)⇒ (G ; S′) if S and S′ are
equivalent.

• (G ; {X = t} ∪ S)⇒ (G ; S){X/t}
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Example: Arithmetic

:- res(ser(r(10),r(20)),X).

---------------------------

res(r(X),Y) :-

{X=Y}.

res(cell(X),Y) :-

{Y=0}.

res(ser(X1,X2),R) :-

{R=R1+R2}, res(X1,R1), res(X2,R2).

res(par(X1,X2),R) :-

{1/R=1/R1+1/R2}, res(X1,R1), res(X2,R2).
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Modeling with Boolean constraints

Boolean operations

+ Disjunktion * Conjunction
=< Implikation =:= Equivalence
# Exclusive or ~ Negation

MOS transistors

drain

source

gate

drain

source

gate

nmos(S,G,D) :- sat(S * G =:= D * G).

pmos(S,G,D) :- sat(S * ~G =:= D * ~G).
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Design of XOR-gate

XY

Z

T

1

0

circuit(X,Y,Z) :-

pmos(X,Y,Z),

pmos(1,X,T),

nmos(T,X,0),

nmos(T,Y,Z),

nmos(Y,T,Z),

pmos(Y,X,Z).
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Verification of correctness

?- circuit(X,Y,Z), taut(Z =:= X#Y, 1).

yes
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CLP with Finite Domains

• Constraints and constraint problems

• Primitive constraints

• CLP(FD)

• Optimization

• Global constraints
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Example

• A, B and C live in different houses

• C lives left of B

• B has two neighbors
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Constraint problem

• A constraint problem consists of a finite

set of problem variables,

• Each variable takes its value from a given

domain

• Constraints are relations that restrict the

values that can be assigned to the

problem variables
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Mathematical reformulation

• A, B, C ∈ {1,2,3}

• A 
= B, A 
= C and B 
= C

• C < B

• (A < B < C) or (C < B < A)
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Example

Two problem variables X and Y with the

integer domains 5..10 and 1..7. One

constraint (relation) X<Y:

�

�

�
�

�
�

�
�

�
�

�
�

��

X < Y

X in 5..10

Y in 1..7

New domains imposed by the constraint:

X in 5..6

Y in 6..7
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Operations on constraints

• Satisfiability: Does a given set of

constraint have at least one solution?

• Entailment: Is every solution of a set S

of constraints also a solution of a

constraint C (denoted S |= C)?

• Equality: Do two sets of constraints have

the same set of solutions?

• Optimality: Find the best solution (given

some criterion of optimality)

• Simplification: Given a set S of

constraints, find a simpler set of

constraints S′ equivalent to S.
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Primitive Finite Domain
constraints

| ?- X in 3..8.

X in 3..8

| ?- X in 3..8, Y in 1..4, Z #= X+Y.

X in 3..8,

Y in 1..4,

Z in 4..12

| ?- X in 5..10, Y in 1..7, X #< Y.

X in 5..6,

Y in 6..7
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Domains vs solutions

Note that domains are not identical to

solutions:

?- X in 5..10, Y in 1..7, X #< Y.

Produces the domains:

X in 5..6.

Y in 6..7.

But the domains contain all solutions:

X = 5, Y = 6

X = 5, Y = 7

X = 6, Y = 7
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More examples

| ?- X in 0..9, Y in 0..1, X #< Y.

X = 0,

Y = 1

| ?- X in 4..6, Y in 1..3, X #< Y.

no

| ?- X in 1..12, Y in 1..12, X #= 2*Y.

X in 2..12,

Y in 1..6

| ?- X in 1..2, Y in 1..2, Z in 1..2,

X #\= Y, X #\= Z, Y #\= Z.

X in 1..2,

Y in 1..2,

Z in 1..2

Parallel declaration of domains

| ?- domain([X,Y,Z], 0, 9).
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Labeling

Domains approximate solutions...

| ?- X in 1..2, Y in 1..3, X #< Y.

X in 1..2,

Y in 2..3

Systematically assign values to a variable

from its domain.

| ?- X in 1..2, Y in 1..3, X #< Y,

labeling([],[X,Y]).

X=1, Y=2

X=1, Y=3

X=2, Y=3

| ?- X in 1..12, Y in 1..12, X #= 2*Y,

labeling([],[X,Y]).

X=2, Y=1

X=4, Y=2

...
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CLP(X)

A logic program is a set of rules

A0 :- A1, . . . , An

or facts

A0

where A0, A1, . . . , An are atomic formulas;

i.e. formulas of the form p(t1, . . . , tn).

Note: A constraint is an atomic formula!

A constraint logic program is a logic program

where some of A1, . . . , An may be (some

pre-defined) constraints over some algebraic

structure X.
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CLP(X)

• CLP(R), reals

• CLP(Q), rational numbers

• CLP(B), Boolean values

• CLP(FD), finite domains

• CLP(Sets), sets

145



CLP(FD)

1. queens(N, L) :-

2. length(L, N),

3. domain(L, 1, N),

4. safe(L),

5. labeling([], L).

6. safe([]).

7. safe([X|Xs]) :-

8. safe_between(X, Xs, 1),

9. safe(Xs).

10. safe_between(X, [], M).

11. safe_between(X, [Y|Ys], M) :-

12. no_attack(X, Y, M),

13. M1 is M+1,

14. safe_between(X, Ys, M1).

15. no_attack(X, Y, N) :-

16. X #\= Y, X+N #\= Y, X-N #\= Y.
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General Strategy

1. solution(L) :-

2. create_variables(L),

3. constrain_variables(L),

4. solve_constraints(L).
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Optimization

| ?- X in 1..9, Y in 4..6, Z #= X-Y,

labeling([maximize(Z)],[X,Y]).

1. items(A,B,C,S,P) :-

2. domain([A,B,C],0,10),

3. AS #= 2*A, AP #= 3*A,

4. BS #= 3*B, BP #= 4*B,

5. CS #= 7*C, CP #= 10*C,

6. S #>= AS+BS+CS,

7. P #= AP+BP+CP,

8 . labeling([maximize(P)],[P,S,A,B,C]).
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Global Constraints

all_different([X1, . . . , Xn])

1. smm([S,E,N,D,M,O,R,Y]) :-

2. domain([S,E,N,D,M,O,R,Y], 0, 9),

3. S #> 0, M #> 0,

4. all_different([S,E,N,D,M,O,R,Y]),

5. sum(S,E,N,D,M,O,R,Y),

6. labeling([], [S,E,N,D,M,O,R,Y]).

7. sum(S, E, N, D, M, O, R, Y) :-

8. 1000*S+100*E+10*N+D

9. +1000*M+100*O+10*R+E

10. #= 10000*M+1000*O+100*N+10*E+Y.
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cumulative(Ss,Ds,Rs,L)

| ?- domain([S1,S2,S3],0,4),

S1 #< S3,

cumulative([S1,S2,S3],[3,4,2],[2,1,3],3),

labeling([],[S1,S2,S3]).
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Resource allocation

1. shower(S, Done) :-

2. D = [5,3,8,2,7,3,9,3,3,5,7],

3. R = [1,1,1,1,1,1,1,1,1,1,1],

4. length(D, N),

5. length(S, N),

6. domain(S, 0, 100),

7. Done in 0..100,

8. ready(S, D, Done),

9. cumulative(S, D, R, 3),

10. labeling([minimize(Done)], [Done|S]).

11. ready([], [], _).

12. ready([S|Ss], [D|Ds], Done) :-

13. Done #>= S+D,

14. ready(Ss, Ds, Done).
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element(X,[X1, . . . , Xn],Y )

| ?- element(X, [1,2,3,5], Y).

| ?- X in 2..3, element(X, [1, X, 4, 5], Y).
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circuit([X1, . . . , Xn])

Traveling Salesman

X1 X2 X3 X4 X5 X6 X7
X1 − 4 8 10 7 14 15
X2 4 − 7 7 10 12 5
X3 8 7 − 4 6 8 10
X4 10 7 4 − 2 5 8
X5 7 10 6 2 − 6 7
X6 14 12 8 5 6 − 5
X7 15 5 10 8 7 5 −
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Traveling Salesman (cont’d)

1. tsp(Cities, Cost) :-

2. Cities = [X1,X2,X3,X4,X5,X6,X7],

3. element(X1,[ 0, 4, 8,10, 7,14,15],C1),

4. element(X2,[ 4, 0, 7, 7,10,12, 5],C2),

5. element(X3,[ 8, 7, 0, 4, 6, 8,10],C3),

6. element(X4,[10, 7, 4, 0, 2, 5, 8],C4),

7. element(X5,[ 7,10, 6, 2, 0, 6, 7],C5),

8. element(X6,[14,12, 8, 5, 6, 0, 5],C6),

9. element(X7,[15, 5,10, 8, 7, 5, 0],C7),

10. Cost #= C1+C2+C3+C4+C5+C6+C7,

11. circuit(Cities),

12. labeling([minimize(Cost)], Cities).
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Deductive Databases: Overview

• Top-down evaluation;

• Relational databases;

• Bottom-up evaluation;

• ”Magic templates”
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Logic programs as Databases

• Powerful language for representation of

relational data.

– Explicit data

– Views

– Queries

– Integrity constraints

• How to compute answers to database

queries?

• Does not address issues such as

concurrency control, updates, crashes etc.
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Top-down ⇒ Recomputation

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

edge(a,b).

edge(b,c).

edge(a,c).

...
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Top-down ⇒ Infinite computations

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), edge(Y,Z).

edge(a,b).

edge(b,a).

edge(b,c).
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Properties: Top-down

• Advantages:

– Efficient handling of search space;

– Goal-directed (Backward-chaining);

• Disadvantages:

– Termination;

– Recomputations;
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How to compute database queries?

Example:

Father Mother
X Y
tom mary
john tom
... ...

X Y
mary billy
kate tom
... ...

New derived relations using relational algebra:

P := F(X, Y ) ∪M(X, Y )

GP := πX,Z(P(X, Y ) � P(Y, Z))
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Bottom-up evaluation (Cf. TP)

SP (X) =
{A0θ | A0← A1, . . . , An ∈ P and

A′1, . . . , A′n ∈ X and
mgu{A1 = A′1, . . . , An = A′n} = θ}

Naive evaluation

fun naive(P)
begin

x := facts(P);
repeat

y := x;
x := SP (y);

until x = y;
return x;

end
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Bottom-up evaluation (cont’d.)

∆SP (X,∆X) =

{A0θ | A0 ← A1, . . . , An ∈ P and
A′1, . . . , A′n ∈ X, ∃A′i ∈∆X and
mgu{A1 = A′1, . . . , An = A′n} = θ}

Semi-naive evaluation

fun seminaive(P)
begin

∆x := facts(P);
x := ∆x;
repeat

∆x := ∆SP (x,∆x) \ x;
x := x ∪∆x;

until ∆x = ∅;
return x;

end
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Properties: Bottom-up

• Advantages:

– Termination;

– Re-use of already computed results;

• Disadvantages:

– Not goal-directed;

– Termination;
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Magic Templates

Let magic(P) be the least program such that

if A0 ← A1, . . . , An ∈ P then:

• A0← call(A0), A1, . . . , An ∈ magic(P)

• call(Ai)← call(A0), A1, . . . , Ai−1 ∈
magic(P)

In addition call(A) ∈ magic(P) if ← A.

Compute naive(magic(P)).
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Example

%-----------ORIGINAL PROGRAM--------------

p(X,Y) :- e(X,Y).

p(X,Z) :- p(X,Y), e(Y,Z).

e(a,b).

e(b,a).

e(b,c).

:- p(a,X).

%--------------MAGIC PROGRAM--------------

p(X,Y) :- call(p(X,Y)), e(X,Y).

p(X,Z) :- call(p(X,Z)), p(X,Y), e(Y,Z).

e(a,b) :- call(e(a,b)).

e(b,a) :- call(e(b,a)).

e(b,c) :- call(e(b,c)).

%

call(e(X,Y)) :- call(p(X,Y)).

call(p(X,Y)) :- call(p(X,Z)).

call(e(Y,Z)) :- call(p(X,Z)), p(X,Y).

%

call(p(a,X)).
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Bottom-up with Magic Templates

• Advantages:

– Termination;

– Re-use of results;

– Goal-directed;

• Disadvantages:

– Sometimes slower than Prolog (when

Prolog terminates);
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Logic programming with Equations

• What is equality?

• E-unification.

• Logic programs with Equations

• SLDE-resolution
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What is equality?

We sometimes want to express that two

terms should be interpreted as the same

object.

Example

Let Γ be:

person(X)← female(X).
female(queen).
silvia

.
= queen.

Then Γ |= person(silvia).
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Equations

An equation is an atom s
.
= t where s and t

are terms.

The predicate
.
= is always interpreted as the

identity relation.

That is, � |=σ s
.
= t iff σ�(s) = σ�(t).

Example

X + 0
.
= X.

X + s(Y )
.
= s(X + Y ).

1
.
= s(0).

2
.
= 1 + 1.

3
.
= 2 + 1.
...
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Equality theory

E � s
.
= t: “s

.
= t is derived from E”

{. . . , s .
= t, . . .} � s

.
= t

E � s
.
= s

E � s
.
= t

E � sσ
.
= tσ

E � s
.
= t

E � t
.
= s

E � r
.
= s E � s

.
= t

E � r
.
= t

E � s1
.
= t1 · · · E � sn

.
= tn

E � f(s1, . . . , sn)
.
= f(t1, . . . , tn)

***

s ≡E t iff E � s
.
= t
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Theorem

The relation ≡E is an equality relation.

Theorem

E |= s
.
= t iff s ≡E t (iff E � s

.
= t) .

E-unification

Two terms s and t are E-unifiable iff sθ ≡E tθ.

The substitution θ is called an E-unifier.
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Problem

• E-unification is undecidable;

• In general there is no single “most general

unifier” but only “complete sets of

E-unifiers”;

• This set may be infinite.

Unification. . .

. . . can be carried out using e.g. narrowing.
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Logic programs with Equations

Programs consist of two components

• A set of definite clauses that do not

include the predicate symbol
.
=/2;

• A set of equations;
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Observation

Herbrand interpretations are uninteresting!

Patch

Consider interpretations whose domain

consists of sets (equivalence classes) of

ground terms.

Every equivalence class consists of

“equivalent term”.

Interpretations with domain UP/ ≡E are of

special interest.
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Let � be an interpretation where |�| = UP/≡E:

That is, s = {t ∈ UP | E � s
.
= t}.

Theorem

� |= s
.
= t iff s = t

iff s ≡E t
iff E |= s

.
= t

NB: Herbrand interpretations as a special

case!
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The Least Model

Every program P, E has a least model MP,E:

P, E |= p(t1, . . . , tn) iff p(t1, . . . , tn) ∈MP,E

Fixed point semantics

TP,E(x) := {A | A← B1, . . . , Bn ∈ ground(P)
∧B1, . . . , Bn ∈ x}
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SLDE-Resolution

Given a goal

← A1, . . . , Ai−1, Ai, Ai+1, . . . , An

with selected literal Ai. If

• H ← B1, . . . , Bm is a renamed program
clause

• H and Ai have a non-empty set Θ of
E-unifiers

• θ ∈ Θ

then

← (A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An)θ

is a new goal.
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Theorem [Soundness]

If ← A1, . . . , An has a computed answer

substitution θ then P, E |= ∀(A1 ∧ · · · ∧An)θ.

Theorem [Completeness]

Similar to SLD-resolution.
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