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Topics covered

Ordered sets

Lattices and complete partial orders

Ordinal numbers

Well-founded and transfinite induction

Fixed points

Finite automata for infinite words
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Some areas of application

Semantics of programming languages

Concurrency theory

Type systems

Inheritance

Taxonomical reasoning

Proof- and model-theory of logics

Computability theory

Formal verification
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Preliminaries
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Cartesian product

Definition...

A × B := {(a, b) | a ∈ A ∧ b ∈ B}

Generalized to finite products...

A1 × ... × An := {(x1, . . . , xn) | xi ∈ Ai}

Or simply...
An

(Set of n-tuples.)

6



Strings

An element w ∈ Σn is also called a string of length n ≥ 0.
The set of all strings over a (finite) alphabet Σ is denoted
Σ∗, and

Σ∗ :=
⋃

i≥0

Σi

A set of strings is called a language.
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Relations

A relation R on A and B:

R ⊆ A × B

Alternative notations

(a, b) ∈ R or R(a, b) or a R b

8



Properties of relations

A binary relation R ⊆ A × A is

reflexive iff R(x, x) for every x ∈ A.

irreflexive iff R(x, x) for no x ∈ A.

antisymmetric iff x = y whenever R(x, y) and R(y, x).

symmetric iff R(x, y) whenever R(y, x).

transitive iff R(x, z) whenever R(x, y) and R(y, z).
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More relations

Identity relation on A, denoted IDA:
R(x, y) iff x = y and x ∈ A

Composition R1 ◦ R2 of R1 ⊆ A × B and R2 ⊆ B × C:

R1 ◦ R2 := {(a, c) ∈ A × C | ∃b ∈ B (R1(a, b) ∧ R2(b, c))}.

Note: if R ⊆ A × B then IDA ◦ R = R ◦ IDB = R.
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More on composition

Iterated Composition of R ⊆ A × A

R0 := IDA,

Rn+1 := Rn ◦ R (n ∈ N),

R+ :=
⋃

n∈Z+ Rn,

R∗ :=
⋃

n∈N
Rn.

R+: the transitive closure of R,
R∗: the reflexive and transitive closure of R.
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Example: Transition system

A transition system is a pair (C,⇒) where

C is a set of configurations;

⇒ ⊆ (C × C) is a transition relation.

⇒ = {(a, b), (b, c), (c, d), (d, e), (e, b), (e, c)}

⇒2 = {(a, c), (b, d), (c, e), (d, b), (d, c), (e, c), (e, d)}

12



Functions

Space of all functions from A to B denoted A → B

f : A → B is a relation on A × B where each a ∈ A is related
to exactly one element in B.

Notation

(a, b) ∈ f or (a 	→ b) ∈ f or f(a) = b

Graph of a function f

{0 	→ 1, 1 	→ 1, 2 	→ 2, 3 	→ 6, 4 	→ 24 . . .}.
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Closedness

A set B ⊆ A is closed under f : A → A iff f(x) ∈ B for all
x ∈ B, that is if f(B) ⊆ B.

Extends to n-ary functions f : An → A.
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Example: Regular Languages

Consider subsets of Σ∗, i.e. languages.
The set of regular languages is closed under

complementation (if L is regular, then so is Σ∗ \ L);

union (if L1, L2 are regular, then so is L1 ∪ L2);

intersection (dito).
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Digression

Note: An may be seen as the space of all functions from
{0, . . . , n − 1} to A.

Example: (5, 4, 2) ∈ N
3 is isomorphic to

{0 	→ 5, 1 	→ 4, 2 	→ 2}.

N → A can be thought of as an infinite product “A∞”, but
usually written Aω.
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Powersets

Powerset of A: the set of all subsets of a set A

Denoted: 2A.

Note: 2A may be viewed as A → {0, 1}.

Note: The space A → B is sometimes written BA.
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Example: Boolean interpretation

A boolean interpretation of a set of parameters Var is a
mapping in (Var → {0, 1}). For instance, if Var = {x, y, z}

σ0 = {x 	→ 0, y 	→ 0, z 	→ 0}

σ1 = {x 	→ 1, y 	→ 0, z 	→ 0}

σ2 = {x 	→ 0, y 	→ 1, z 	→ 0}

σ3 = {x 	→ 1, y 	→ 1, z 	→ 0}

σ4 = {x 	→ 0, y 	→ 0, z 	→ 1}

σ5 = {x 	→ 1, y 	→ 0, z 	→ 1}

σ6 = {x 	→ 0, y 	→ 1, z 	→ 1}

σ7 = {x 	→ 1, y 	→ 1, z 	→ 1}
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Example (cont)

...or they can be seen as elements of 2Var

σ0 = ∅

σ1 = {x}

σ2 = {y}

σ3 = {x, y}

σ4 = {z}

σ5 = {x, z}

σ6 = {y, z}

σ7 = {x, y, z}
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Basic orderings
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Preorder/quasi ordering

Definition A relation R ⊆ A × A is called a preorder (or
quasi ordering) if it is reflexive and transitive.
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Partial order

Definition A preorder R ⊆ A × A is called a partial order if
it is also antisymmetric.

Definition If ≤ ⊆ A × A is a partial order then the pair
(A,≤) is called a partially ordered set, or poset.

Every preorder induces a (unique) poset where ≤ is lifted to
the equivalence classes of the relation

x ≡ y iff x ≤ y and y ≤ x
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Example: Prefix order

Consider an alphabet Σ and its finite words Σ∗. Let u, v ∈ Σ∗

and denote by uv the concatenation of u and v. Define the
relation � ⊆ Σ∗ × Σ∗ as follows

u � v iff there is a w ∈ Σ∗ such that uw = v.
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Example: Information order

Consider the following partial functions from N to N

f0 = {0 	→ 1}

f1 = {0 	→ 1, 1 	→ 1}

f2 = {0 	→ 1, 1 	→ 1, 2 	→ 2}

f3 = {0 	→ 1, 1 	→ 1, 2 	→ 2, 3 	→ 6}

g2 = {0 	→ 1, 1 	→ 2, 2 	→ 1}

We say that e.g. f3 is more defined than f2 since f2 ⊆ f3,
while e.g. f3 and g2 are unrelated. The ordering

f ≤ g iff f ⊆ g

is called the information ordering.
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Strict order

Definition A relation R ⊆ A × A which is transitive and
irreflexive is called a (strict) partial order.
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Total orders/chains and anti-chains

Definition A poset (A,≤) is called a total order (or chain,
or linear order ) if either a ≤ b or b ≤ a for all a, b ∈ A.

Definition A poset (A,≤) is called an anti-chain if x ≤ y

implies x = y, for all x, y ∈ A.

Used also in the context of strict orders.
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Induced order

Let A := (A,≤) be a poset and B ⊆ A. Then B := (B,�) is
called the poset induced by A if

x � y iff x ≤ y for all x, y ∈ B.
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Componentwise and pointwise order

Theorem Let (A,≤) be a poset, and consider a relation �
on A × A defined as follows

(x1, y1) � (x2, y2) iff x1 ≤ x2 ∧ y1 ≤ y2.

Then (A × A,�) is a poset.

Theorem Let (A,≤) be a poset, and consider a relation �
on B → A defined as follows

σ1 � σ2 iff σ1(x) ≤ σ2(x) for all x ∈ B.

Then (B → A,�) is a poset.
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Example: Pointwise order

Consider the function space (Var → {0, 1}) of boolean
interpretations of Var, given the poset ({0, 1},≤):
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Lexicographical order

Theorem Let Σ = {a1, . . . , an} be a finite alphabet totally
ordered a1 < . . . < an. Let Σ∗ be the set of all (possibly
empty) strings from Σ and define x1 . . . xi � y1 . . . yj iff

i < j and x1 . . . xi = y1 . . . yi, or

there is some k < i such that xk+1 < yk+1 and
x1 . . . xk = y1 . . . yk.

Then (Σ∗,�) is a (strict) total order.
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Well-founded relations and
well-orders
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Extremal elements

Definition Consider a relation R ⊆ A × A. An element
a ∈ A is called R-minimal (or simply minimal) if there is no
b ∈ A such that b R a.
Similary, a ∈ A is called maximal if there is no b ∈ A such
that a R b.

Definition An element a ∈ A is called least if a R b for all
b ∈ A; it is called greatest if b R a for all b ∈ A.
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Well-founded and well-ordered sets

Definition A relation R ⊆ A × A is said to be well-founded
if every non-empty subset of A has an R-minimal element.

Definition A strict total order (A,<) which is well-founded
is called a well-order.
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More on well-founded sets

Theorem Any subset (B,<) of a well-order (A,<) is a
well-order.

Definition Let (A,≤) be a poset. A well-order x0 < x1 < . . .

where {x0, x1, . . .} ⊆ A is called an ascending chain in A.
Descending chain is defined dually.

Theorem A relation < ⊆ A × A is well-founded iff (A,<)
contains no infinite descending chain . . . < x2 < x1 < x0.
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Order ideals

Definition Let (A,≤) be a poset. A set B ⊆ A is called a
down-set (or an order ideal) iff

y ∈ B whenever x ∈ B and y ≤ x.

A set B ⊆ A induces a down-set, denoted B↓,

B↓ := {x ∈ A | ∃y ∈ B, x ≤ y} .

By O(A) we denote the set of all down-sets in A,

{B↓ | B ⊆ A} .

A notion of up-set, also called order filter, is defined dually.
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Lattices
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Upper and lower bounds

Definition Let (A,≤) be a poset and B ⊆ A. Then x ∈ A is
called an upper bound of B iff y ≤ x for all y ∈ B (often
written B ≤ x by abuse of notation). The notion of lower
bound is defined dually.

Definition Let (A,≤) be a poset and B ⊆ A. Then x ∈ A is
called a least upper bound of B iff B ≤ x and x ≤ y

whenever B ≤ y. The notion of greatest lower bound is
defined dually.
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Lattice

Definition A lattice is a poset (A,≤) where every pair of
elements x, y ∈ A has a least upper bound denoted x ∨ y

and greatest lower bound denoted x ∧ y.

Synonyms:
Least upper bound/lub/join/supremum

Greatest lower bound/glb/meet/infimum
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Lattice
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Lattice terminology

Definition Let (A,≤) be a lattice. An element a ∈ A is said
to cover an element b ∈ A iff a > b and there is no c ∈ A

such that a > c > b.

Definition The length of a poset (A,≤) (and hence lattice)
is |C| − 1 where C is the longest chain in A.
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Complete lattice

Definition A complete lattice is a poset (A,≤) where every
subset B ⊆ A (finite or infinite) has a least upper bound

∨
B

and a greatest lower bound
∧

B.

∨
A is called the top element and is usually denoted �.

∧
A is called the bottom element and is denoted ⊥.

Theorem Any finite lattice is a complete lattice.
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Complemented lattice

Definition Let (A,≤) be a lattice with ⊥ and � . We say
that a ∈ A is the complement of b ∈ A iff a ∨ b = � and
a ∧ b = ⊥.

Definition We say that a lattice is complemented if every
element has a complement.
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Distributive and Boolean lattice

Definition A lattice (A,≤) is said to be distributive iff
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ A.

Definition A lattice (A,≤) is said to be Boolean iff it is
complemented and distributive.
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More on lattices

Definition Let A be a set and B ⊆ 2A. If (B,⊆) is a
(complete) lattice, then we refer to it as a (complete) lattice
of sets.
Theorem We have the following results:

1. Any lattice of sets is distributive.

2. (2A,⊆) is distributive, and Boolean.

3. If (A,≤) is Boolean then the complement of all x ∈ A is
unique.
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Lattices as algebras

The algebraic structure (A,⊗,⊕) is a lattice if the operations
satisfy

(L1) Idempotency: a ⊗ a = a ⊕ a = a

(L2) Commutativity: a ⊗ b = b ⊗ a and a ⊕ b = b ⊕ a

(L3) Associativity: a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c and
a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

(L4) Absorption: a ⊗ (a ⊕ b) = a and a ⊕ (a ⊗ b) = a

The algebra induces partial order: x ≤ y iff x ⊗ y = x (iff

x ⊕ y = y).
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Complete partial orders (cpo’s)
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Complete partial order

Definition A partial order (A,≤) is said to be complete if it
has a bottom element ⊥ and if each ascending chain

a0 < a1 < a2 < ...

has a least upper bound
∨
{a0, a1, a2, ...}.
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Ordinal numbers
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Cardinal numbers

Two sets A and B are isomorphic iff there exists a bijective
map f : A → B (and hence a bijection f−1 : B → A).
Notation A ∼ B.

∼ is an equivalence relation.

A cardinal number is an equivalence class of all isomorphic
sets.
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(Order-) isomorphism

Definition A function f from (A,<) to (B,≺) is called
monotonic (isotone, order-preserving) iff x < y implies
f(x) ≺ f(y) for all x, y ∈ A.

Definition A monotonic map f from (A,<) into (B,≺) is
called

a monomorphism if f is injective;

an epimorphism if f is onto (surjective);

an isomorphism if f is bijective (injective and onto).

Notation: A � B when A and B are isomorphic (the order is
implicitly understood).
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Ordinal numbers

Definition An ordinal (number) is an equivalence class of
all (order-)isomorphic well-orders.

Notation: The finite ordinals 0,1,2,3, ...

Definition Ordinals containing well-orders with a maximal
element are called successor ordinals. Otherwise they are
called limit ordinals.

Convention: we often identify a well-order, e.g. 1 < 2 < 3,
with its ordinal number, e.g. 3, and write that 3 = 1 < 2 < 3.
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Finite von Neumann ordinals

NOTATION CANONICAL REPRESENTATION

0 ∅

1 {∅} = 0 ∪ {0} = {0}

2 {∅, {∅}} = 1 ∪ {1} = {0,1}

3 {∅, {∅}, {∅, {∅}}} = 2 ∪ {2} = {0,1,2}

4 {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} =

3 ∪ {3} = {0,1,2,3}

etc.

More generally α + 1 = α ∪ {α}.
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Infinite (countable) ordinals

Least infinite ordinal: 0,1,2,3, ...
Denoted: ω

Then follows: 0,1,2,3, ..., ω
Denoted: ω + 1

...and: 0,1,2,3, ..., ω, ω + 1

Denoted: ω + 2

...up to: 0,1,2,3, ..., ω, ω + 1, ω + 2, ...
Denoted: ω + ω (or ω · 2)
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von Neumann ordinals

More generally

∅ is a von Neumann ordinal,

if α is a von Neumann ordinal then so is α ∪ {α},

if {αi}i∈I is a set of von Neumann ordinals, then so is
⋃

i∈I

αi
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Addition of ordinals

Consider two ordinals α and β. Let A ∈ α and B ∈ β be
disjoint well-orders.

Then α + β is the equivalence class of all well-orders
isomorphic to A ∪ B ordered as before and where in
addition x < y for all x ∈ A and y ∈ B.

Addition of finite ordinals reduces to ordinary addition of
natural numbers, but ...
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Ordinal addition isn’t commutative

Consider
ω = {1, 2, 3, 4, ...} and 1 = {0}.

Then ω +1 is 1, 2, 3, 4, ..., 0 which is isomorphic to 0, 1, 2, ..., ω.

But 1 + ω is 0, 1, 2, 3, 4, ... which is the limit ordinal ω.

Hence, 1 + ω �= ω + 1.
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Multiplication of ordinals

Consider two ordinals α and β. Let A ∈ α and B ∈ β.

Then α · β is the equivalence class of all well-orders
isomorphic to {(a, b) | a ∈ A and b ∈ B} where

(a1, b1) ≺ (a2, b2) iff either b1 < b2, or b1 = b2 and a1 < a2.

Multiplication of finite ordinals reduces to ordinary
multiplication of natural numbers, but...
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Multiplication isn’t commutative

2 · ω is
(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), ...

which is isomorphic to ω.

ω · 2 is

(0, 0), (1, 0), (2, 0), (3, 0), ..., (0, 1), (1, 1), (2, 1), (3, 1), ...

which is isomorhic to ω + ω.

Hence, ω · 2 = ω + ω �= 2 · ω = ω.
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Properties of ordinal arithmetic

For all ordinals α, β, γ:

α + 0 = 0 + α = α

ω + 1 �= 1 + ω

α · 1 = 1 · α = α

ω + ω = ω · 2 �= 2 · ω = ω

If β �= 0 then α < α + β

If α < β then α + γ ≤ β + γ

If α < β then γ + α < γ + β

(α + β) + γ = α + (β + γ)

(α · β) · γ = α · (β · γ)
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Ascending ordinal powers

Consider a function f : A → A on a complete lattice (A,≤).
The (ascending) ordinal powers of f are

f0(x) := x

fα+1(x) := f(fα(x)) for successor ordinals α + 1

fα(x) :=
∨

β<α fβ(x) for limit ordinals α

When x equals ⊥ we write fα instead of fα(⊥).
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Descending ordinal powers

f0(x) := x

fα+1(x) := f(fα(x)) for successor ordinals α + 1

fα(x) :=
∧

β<α fβ(x) for limit ordinals α
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Principles of induction
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Standard inductions

Standard induction derivation rule:

P (0) ∀n ∈ N (P (n) ⇒ P (n + 1))

∀n ∈ N P (n)
.

Applies to any well-ordered set isomorphic to ω.
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Strong mathematical induction

P (0) ∀n ∈ N (P (0) ∧ ... ∧ P (n) ⇒ P (n + 1))

∀n ∈ N P (n)

or more economically

∀n ∈ N (P (0) ∧ ... ∧ P (n − 1) ⇒ P (n))

∀n ∈ N P (n)
.
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Well-founded induction
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Inductive definition

An inductive definition of A consists of three statements

one or more base cases, B, saying that B ⊆ A,

one or more inductive cases, saying schematically that
if x ∈ A and R(x, y), then y ∈ A,

an extremal condition stating that A is the least set
closed under the previous two.

Let R(X) := {y | ∃x ∈ X,R(x, y)}. Then A is the least set X

such that
B ⊆ X and R(X) ⊆ X, that is, B ∪R(X) ⊆ X

(A,R) is typically well-founded (or can be made well-

founded) with minimal elements B.
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Well-founded induction principle

Let (A,≺) be a well-founded set and P a property of A.

1. If P holds of all minimal elements of A, and

2. whenever P holds of all x such that x ≺ y then P holds
of y,

then P holds of all x ∈ A.
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Well-founded induction principle II

As a derivation rule:

∀y ∈ A (∀x ∈ A (x < y ⇒ P (x)) ⇒ P (y))

∀x ∈ A P (x)
.
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Transfinite induction
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Transfinite induction principle

Let P be a property of ordinals, then P is true of every
ordinal if

P is true of 0,

P is true of α + 1 whenever P is true of α,

P is true of β whenever β is a limit ordinal and P is true
of every α < β.
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Transfinite induction II

Theorem Let (A,≤) be a complete lattice and assume that
f : A → A is monotonic. We prove that fα ≤ fα+1 for all
ordinals α.

Lemma Let (A,≤) be a complete lattice and assume that
f : A → A is monotonic. If B ⊆ A then
f(

∨
B) ≥

∨
{f(x) | x ∈ B}.
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