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Topics covered

Ordered sets

Lattices and complete partial orders
Ordinal numbers

Well-founded and transfinite induction
Fixed points

Finite automata for infinite words
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Some areas of application

Semantics of programming languages
Concurrency theory

Type systems

Inheritance

Taxonomical reasoning

Proof- and model-theory of logics
Computability theory

Formal verification




Preliminaries
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Cartesian product

Definition...
Ax B :={(a,b) |a € ANbe B}

Generalized to finite products...

Al X o x Ay = {(21, ..., 3p) | 7 € Ay}

Or simply...
An

(Set of n-tuples.)

xpand ing reai'l__t'};




Strings

An element w € X" is also called a string of length n > 0.
The set of all strings over a (finite) alphabet X is denoted

>* and
N* = U i
1>0

A set of strings is called a language.
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Relations

A relation R on A and B:
RCAxB

Alternative notations
(a,b) € Ror R(a,b)ora Rb




Properties of relations

A binary relation R C A x Ais

» reflexive iff R(x,z) for every x € A.

» irreflexive iff R(x,z) for no z € A.

# antisymmetric iff = = y whenever R(z,y) and R(y, x).
# symmetric iff R(x,y) whenever R(y, x).

# transitive iff R(x, z) whenever R(z,y) and R(y, z).
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More relations

|dentity relation on A, denoted ID 4:
R(z,y)iffr=yand x € A

Composition Rjo Ry of Ry CAx Band R, C B x C.
Rio Ry := {(a, C) e Ax(C ‘ dbe B (Rl(a, b) A Rg(b, C))}

Note: if RC Ax BthenlbyjoR= RolDg = R.




More on composition

lterated Compositionof R C A x A

R = Dy,

R = R'oR (né€N),
RT = Upez+ R,

R* = U,en B

RT: the transitive closure of R,
R*: the reflexive and transitive closure of R.
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Example: Transition system

A transition system is a pair (C, =) where
#® ('is a set of configurations;
® = C (C x () is atransition relation.

a b C
@

(&
- = {(CL, b): (b7 C)v <C7 d)> (dv 6)7 (6, b>’ (6, C>}

=7 = {(CL, C)a (b7 d)a (C7 6)7 (dv b)? (d> C)? <67 C)7 (6’ d>}
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Functions

Space of all functions from A to B denoted A — B
f: A— Bisarelation on A x B where each a € A is related

to exactly one element in B.
Notation

(a,b) € for(a—b)e for fla)=">

Graph of a function f
{0—1,1—1,2—2,3—6,4—24...}.
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Closedness

Aset B C Aisclosed under f: A — Aiff f(x) € B for all
xr € B, thatisif f(B) C B.

Extends to n-ary functions f: A™ — A.




Example: Regular Languages

Consider subsets of ¥*, i.e. languages.
The set of regular languages is closed under

# complementation (if L is regular, then so is X* \ L);
® union (if Ly, Lo are regular, then so is L U L»);

# intersection (dito).
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Digression

Note: A™ may be seen as the space of all functions from
{0,...,n — 1} to A.

Example: (5,4,2) € N? is isomorphic to
{0— 51+ 4,2+ 2}

N — A can be thought of as an infinite product “A*”, but
usually written A%,




Powersets

Powerset of A: the set of all subsets of a set A
Denoted: 24,
Note: 24 may be viewed as A — {0, 1}.

Note: The space A — B is sometimes written B4.

Example: Boolean interpretation

A boolean interpretation of a set of parameters Var is a
mapping in (Var — {0, 1}). For instance, if Var = {z,y, 2z}

oo ={z+— 0,y — 0,2+ 0}
or={r+— 1L,y—0,z+— 0}
oo ={x—0,y— 1,2+ 0}
os={r+— lLy— 12— 0}
oy ={x—0,y— 0,z — 1}
o5 ={z+— 1Ly—0,z+— 1}

o6 ={rx—0,y— 12— 1}
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or={z—lLy—1lz2—1}




Example (cont)

...or they can be seen as elements of 2V&

® op=10

® 0 ={z}

® oy ={y}

® o3 ={z,y}
® o4=1{z}

® o5 =A{x,z}
® o5=1{y,z}
® o7 ={z,y, 2}

I s
@
—
B0
=

=25
=
(a1
Cx.
H

Basic orderings
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Preorder/quasi ordering

Definition Arelation R C A x Ais called a preorder (or
guasi ordering) if it is reflexive and transitive.
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Partial order

Definition A preorder R C A x A is called a partial order if
it is also antisymmetric.

Definition If < C A x A is a partial order then the pair
(A, <) is called a partially ordered set, or poset.

Every preorder induces a (unique) poset where < is lifted to
the equivalence classes of the relation

r=yiffr<yandy <z




Example: Prefix order

Consider an alphabet X and its finite words X*. Let u,v € X*
and denote by uv the concatenation of v and v. Define the
relation < C ¥* x ¥* as follows

u < iff there is a w € X" such that vw = v.

o=
pore X
s
e
£=1s]
e
=
1]
a
el
04

Example: Information order

Consider the following partial functions from N to N
® fo={0—1}

® 1={0—1,1— 1}

® fo={0—1,1—12—2}

® f3={0—~1,1—1,2—2 3~ 6}

® pp={0—1,1—22—1}

We say that e.g. f3 is more defined than f, since f, C f3,
while e.g. f3 and ¢» are unrelated. The ordering

f<giff fCyg

Is called the information ordering.




Strict order

Definition A relation R C A x A which is transitive and
irreflexive is called a (strict) partial order.
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Total orders/chains and anti-chains

Definition A poset (A, <) is called a total order (or chain,
or linear order) if eithera < bor b < aforall a,b € A.

Definition A poset (A, <) is called an anti-chain if x <y
implies z =y, for all z,y € A.

Used also in the context of strict orders.




Induced order

Let A:= (A, <) beaposetand B C A. Then B := (B, X)is
called the poset induced by A if
xyiffe <yforall x,y € B.

Componentwise and pointwise order

Theorem Let (A, <) be a poset, and consider a relation <
on A x A defined as follows

(x1,y1) = (22,y2) Iff x1 <22 Ay < 9.

Then (A x A, <) is a poset.

Theorem Let (A, <) be a poset, and consider a relation <
on B — A defined as follows

o1 = o9 Iff 01([13) < Ug(w) for all z € B.

Then (B — A, <) is a poset.
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Example: Pointwise order

Consider the function space (Var — {0, 1}) of boolean
interpretations of Var, given the poset ({0, 1}, <):

(x—1,y—12—1}
| T

{x—1,y—1,z2—0} {x—1,y—0,z2—1} {x—0,y—1,z—1}

{x—1,y—0,z—0} {x—0,y—1,z—0} {x—0,y—0,z—1}

[x—0,y—07—0}
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Lexicographical order

Theorem Let > = {ay,...,a,} be afinite alphabet totally
ordered a; < ... < a,. Let ¥* be the set of all (possibly
empty) strings from £ and define zq...x; T y; ...y, iff

® i<jandzxy...z;=y1...y; OF
# thereis some k < i such that x; 1 < yr,1 and

r1... Tk =Y ...Yk-
Then (X*,C) is a (strict) total order.




Well-founded relations and
well-orders
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Extremal elements

Definition Consider a relation R C A x A. An element
a € Ais called R-minimal (or simply minimal) if there is no

be Asuchthatb R a.
Similary, a € A is called maximal if there is no b € A such

that a R b.

Definition An elementa € A is called least if a R b for all
be A;itis called greatest if b Ra forall b € A.
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Well-founded and well-ordered sets

Definition A relation R C A x A is said to be well-founded
if every non-empty subset of A has an R-minimal element.

Definition A strict total order (A, <) which is well-founded
IS called a well-order.
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More on well-founded sets

Theorem Any subset (B, <) of a well-order (A, <) is a
well-order.

Definition Let (A, <) be a poset. A well-order xg < 1 < ...
where {xg,z1,...} C A s called an ascending chain in A.
Descending chain is defined dually.

Theorem A relation < C A x A is well-founded iff (A, <)
contains no infinite descending chain ... < xo < 71 < xy.




Order ideals

Definition Let (A, <) be a poset. Aset B C Ais called a
down-set (or an order ideal) iff

y € Bwhenever z € Band y < .
A set B C A induces a down-set, denoted B/,
Bl ={xe€A|Jye B,z <y}.
By O(A) we denote the set of all down-sets in A,

(Bl |BC A},

A notion of up-set, also called order filter, is defined dually.
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Lattices




Upper and lower bounds

Definition Let (A, <) be aposetand BC A. Thenxz € Ais
called an upper bound of B iff y < « for all y € B (often
written B < x by abuse of notation). The notion of lower
bound is defined dually.

Definition Let (A, <) be aposetand B C A. Thenz € Ais
called a least upper bound of Biff B <z and x <y
whenever B < y. The notion of greatest lower bound is

defined dually.

Lattice

Definition A lattice is a poset (A, <) where every pair of
elements z,y € A has a least upper bound denoted x Vv y
and greatest lower bound denoted x A .

Synonyms:
Least upper bound/lub/join/supremum
Greatest lower bound/glb/meet/infimum




Lattice
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Lattice terminology

Definition Let (A, <) be a lattice. An elementa € A is said
to cover an elementb € Aiffa > b and thereisnoce A

such that a > ¢ > b.

Definition The length of a poset (A, <) (and hence lattice)
IS |C'| — 1 where C'is the longest chain in A.
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Complete lattice

Definition A complete lattice is a poset (A, <) where every
subset B C A (finite or infinite) has a least upper bound \/ B
and a greatest lower bound A B.

\/ A is called the top element and is usually denoted T.

/\ A is called the bottom element and is denoted L.

Theorem Any finite lattice is a complete lattice.
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Complemented lattice

Definition Let (A, <) be a lattice with 1. and T . We say
that a € A is the complement of b € Aiffav b= T and
aNb= 1.

Definition We say that a lattice is complemented if every
element has a complement.




Distributive and Boolean lattice

Definition A lattice (A, <) is said to be distributive iff
aN(bVe)=(aNb)V(aAc)forallab,ce A.

Definition A lattice (A, <) is said to be Boolean iff it is
complemented and distributive.
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More on lattices

Definition Let Abeasetand B C24.If (B,C)isa
(complete) lattice, then we refer to it as a (complete) lattice

of sets.
Theorem We have the following results:

1. Any lattice of sets is distributive.
2. (24, C) is distributive, and Boolean.

3. If (A, <) is Boolean then the complement of all z € A is
unigue.




Lattices as algebras

The algebraic structure (A, ®, @) is a lattice if the operations
satisfy
(L1) Idempotency: a@a=a®a=a
(L2) Commutativity: a@b=bR@acanda®b=>0@ a
(L3) Associativity: ¢ ® (b® c) = (a ®b) ® c and
adbdc)=(adb) dc
(L4) Absorption: a® (e b) =aanda® (a®b) =a

The algebra induces partial order: = < y iff r ® y

TDY =y).
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Complete partial orders (cpo’s)

N
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Complete partial order

Definition A partial order (A, <) is said to be complete if it
has a bottom element L and if each ascending chain

ag < a1 < ag < ...

"y

has a least upper bound \/{ayg, a1, as,
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Ordinal numbers
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Cardinal numbers

Two sets A and B are isomorphic iff there exists a bijective
map f: A — B (and hence a bijection f~!: B — A).
Notation A ~ B.

~ IS an equivalence relation.

A cardinal number is an equivalence class of all isomorphic
sets.
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(Order-) isomorphism

Definition A function f from (A, <) to (B, <) is called
monotonic (isotone, order-preserving) iff z < y implies
f(x) < f(y) forall x,y € A.

Definition A monotonic map f from (A, <) into (B, <) is
called

#® a monomorphism if f is injective;
#® an epimorphism if f is onto (surjective);
#® anisomorphism if f is bijective (injective and onto).

Notation: A ~ B when A and B are isomorphic (the order is
implicitly understood).




Ordinal numbers

Definition An ordinal (number) is an equivalence class of
all (order-)isomorphic well-orders.

Notation: The finite ordinals 0,1, 2. 3, ...

Definition Ordinals containing well-orders with a maximal
element are called successor ordinals. Otherwise they are
called limit ordinals.

Convention: we often identify a well-order, e.g. 1 < 2 < 3,
with its ordinal number, e.g. 3, and writethat 3 =1 < 2 < 3.

Finite von Neumann ordinals

NOTATION CANONICAL REPRESENTATION
0 0

1 {0} =ou{o} ={o}
2 {0.{0}} =10{1} ={0,1}
3 {(Da {(Z)}7 {@7 {(Z)}}} =2U {2} - {07 1, 2}
4 {0.{0},{0,{0}},{0.{0},{0,{0}}} =
3uU{3} ={0,1,2,3}
etc.

More generally o + 1 = a U {a}.




Infinite (countable) ordinals

Least infinite ordinal: 0,1,2, 3, ...
Denoted: w

Then follows: 0,1,2,3,...,w
Denoted: w + 1

..and: 0,1,2,3,...,w,w+1
Denoted: w + 2

..upto: 0,1,2,3,...,w,w+1,w+2,...
Denoted: w + w (Or w - 2)
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von Neumann ordinals

More generally
® ()is a von Neumann ordinal,
# if o is a von Neumann ordinal then so is a U {a},

® if {o;};c7 1S @ set of von Neumann ordinals, then so is
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Addition of ordinals

Consider two ordinals «w and 3. Let A € o« and B € 3 be
disjoint well-orders.

Then o + 3 is the equivalence class of all well-orders
isomorphic to AU B ordered as before and where in
addition x <y forall z € Aand y € B.

Addition of finite ordinals reduces to ordinary addition of
natural numbers, but ...
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Ordinal addition isn’t commutative

Consider
w=1{1,2,3,4,...} and 1 = {0}.

Thenw-+1is1,2,3,4,...,0 which is isomorphicto 0,1, 2, ..., w.
Butl+wis0,1,2,3,4,... which is the limit ordinal w.

Hence, 1 + w # w + 1.




Multiplication of ordinals

Consider two ordinals o and 3. Let A € « and B € £.

Then « - § is the equivalence class of all well-orders
isomorphic to {(a,b) | a € Aand b € B} where

(al, bl) < (CLQ, bg) Iff either by < by, Or by = be and a; < ag.

Multiplication of finite ordinals reduces to ordinary
multiplication of natural numbers, but...
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Multiplication isn’t commutative

2-wlIS
(0,0),(1,0),(0,1),(1,1),(0,2),(1,2),...

which is isomorphic to w.

w-21S
(0,0),(1,0),(2,0),(3,0),...,(0,1),(1,1),(2,1),(3,1), ...

which is isomorhic to w + w.

Hence,w -2=w+w#2- -w=uw.
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Properties of ordinal arithmetic

For all ordinals «, 3, ~:

® o0+0=04+a=«
w+1#1+4+w
a-1=1-a=«
WHtw=w-2#2-w=uw

If 5 £A£0thena < a+ (3
Ifa < Bthena++v < [B+7
fa< gtheny+a<~v+0
(a+B)+y=a+(F+7)
(a-B)-y=a-(B-7)

® o o o o ® o b
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Ascending ordinal powers

Consider a function f: A — A on a complete lattice (A, <).
The (ascending) ordinal powers of f are

fole) =z
fori(x) = f(f*(x)) for successor ordinals a + 1
fx) = Voo fO(x) for limit ordinals a

When x equals L we write f* instead of f*(L).
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Descending ordinal powers

8

@) =

fotl(z) = f(f*)) for successor ordinals a + 1
fx) = Apeo fP(x) for limit ordinals a
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Principles of induction
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Standard inductions

Standard induction derivation rule:
Vn € N (P(n) = P(n+1))
Vn € N P(n) |

P(0)

Applies to any well-ordered set isomorphic to w.

expanding reality

Strong mathematical induction

¥n € N (P(0) A ... A P(n) = P(n+1))

P(0)
Vn € N P(n)

or more economically

Vn € N (P(0) A ... A P(n — 1) = P(n))
Vn € N P(n) |
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Well-founded induction
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Inductive definition

An inductive definition of A consists of three statements
#® one or more base cases, B, saying that B C A,

#® one or more inductive cases, saying schematically that
if r € Aand R(z,y), then y € A,

#® an extremal condition stating that A is the least set
closed under the previous two.

Let R(X) :={y | 3= € X, R(z,y)}. Then A is the least set X
such that
BC Xand R(X) C X, thatis, BUR(X)C X

(A, R) is typically well-founded (or can be made well-

founded) with minimal elements B.




Well-founded induction principle

Let (A, <) be a well-founded set and P a property of A.

1. If P holds of all minimal elements of A, and
2. whenever P holds of all = such that = < y then P holds

of v,
then P holds of all z € A.

Well-founded induction principle Il

As a derivation rule:
Vye AVee A(z <y= P(x)) = P(y))
Vo € A P(x) |
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Transfinite induction

Transfinite induction principle

Let P be a property of ordinals, then P is true of every
ordinal if

® Pistrue of O,
® P istrue of a + 1 whenever P is true of «,

® Pistrue of 5 whenever (5 is a limit ordinal and P is true
of every a < (3.




Transfinite induction I

Theorem Let (A, <) be a complete lattice and assume that
f: A — Ais monotonic. We prove that f* < f**+1 for all
ordinals «.

Lemma Let (A, <) be a complete lattice and assume that
f: A— Ais monotonic. If B C A then

fNB) 2V A{f(z) |z € B}.
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