
Challenges in the Verification of
Electronic Control Units

Werner Damm
OFFIS

R&D Division of Embedded Systems

Structure of Presentation

• Introduction
• Challenge 1: Variety of modeling languages
• Challenge 2: Learning curve for Requirement Capture
• Challenge 3: Integration with Verification Engines
• Challenge 4: Verification Technology for real-life models
• Challenge 5: Closing the bridge between models and

systems
• Conclusion

The challenge

 “... switching to reverse
caused the car to boost
backwards like a rocket
...”

 “ ... even pressing the
brake could not stop
the car...”

Cost,
Time,
Risk

Application
Complexity

Managing the unexpected under cost -
and timing - constraints

To capitalize on models

System

System model

Requirements
Use Cases

Implementation

Analysis

Modeling

Test

Iterative
Prototype *

Classical Verification Technology

• Designer / test
engineer follows
“typical” cases

• But problems stem
from unexpected
cases

• Sample scenario
– User plays with remote

control: on-off-on-off-...
– Door unlocking inhibited

after 10 rounds to prevent
overheating of electric
motor

– Prevents door from
being unlocked in crash

Electric
Motor

Car DriverClose

Enabled Disabled

Open

C
on

tro
lle

r

Our mission

• Automotive
– BMW, DaimlerChrysler,

GM, Opel, PSA, Siemens
AT

• Train Systems
– Adtranz, Deuta, Siemens

VT under negotiation

• Avionics
– Aerospatial, Alenia,

Britisch Aerospace,
DASA, Israeli Aircraft
Industry, Snecma

Helping to increase product quality by introducing
advanced validation techniques
into the development process

Model Checker

Advanced Verification Technology I

Requirements
Use Cases

System model

Implementation

• Extremely large state
spaces can be analyzed
completely in minutes
– For all combination of

inputs
– For all sequences of

combination of inputs
• 100% coverage with respect

to requirements
• Creates “golden device” /

reference model
Model Checker
formally proves
consistency of
Requirements and System model

Advanced Verification Technology II

Implementation

Requirements
Use Cases

Golden
Device

ATG -
Automatic
Testvector
Generation:
- input
- expected output

About FV

• The maturity level of the system
development process is highly
dependent on the application
domain

• focus of this work:
– automotive
– avionics
– train systems

• all hard real time
• all have safety critical

subsystems

• Process maturity level in
avionics extremely high

• SW quality is a process issue
– FV covers only very tiny

fraction of SW development
process

– disturbances caused by
introducing FV may easily
outweigh potential benefits

FV must be subordinate to general process considerations

FV must be interfaced with industry standard design tools

Challenge 1

Variety of modeling languages

About FM

• Wrong:
force developers to learn
formal methods

• Right:
make industry standard
design tools formal

• Case Tools used today in
automotive - avionics -
train systems
– Mathlab/Simulink + Stateflow
– MatrixX + Better State
– STATEMATE
– SCADE
– ASCET
– Rhapsody in MicroC
– Titus
– ObjectGeode (SDL)
– Rhapsody in C++ (UML)
– Telelogic Tau Suite

Design Views supported by
STATEMATE

STATEMATE

• Industry standard case tool
marketed by I-Logix Inc

• Activity Charts
– System Architecture
– Information Flow
– Environment

• State Charts
– visual real-time programming

language
– hierarchy
– orthogonal states
– algorithms

• Animation
• Simulation
• RP code generation
• documentation

• Widely used in automotive and
avionics, increasing usage in
train-systems

SCADE - Safety Critical Application Development
Environment

Synchronous data flow language for specification

and design of Reactive Real Time systems
(Graphical Frontend for LUSTRE)

Features:
· Editors (dataflow, state-machine,...)
· Simulator
· Code Generator for C and ADA
· Document Generator

Design Views Supported in
Rhapsody

Design Views Supported by Object
Geode

Problems

• Even within one front-end tool no or underspecified
relation between multiple views
– e.g. relation between scenarios and behavioural model

• Even within one modeling style different semantics
between different implementations
– e.g. the 100+x semantics of statecharts

• Even within one view in one tool underspecification
– e.g. handling of deferred events in UML

• Even within one view in one tool differences between
simulation semantics and code generation semantics
– e.g. timeouts

Problems (cont.)

• Real life applications typically require multiple tools
– e.g. hybrid controllers expressed in Statemate and MatrixX
– e.g. plant model in Matlab/Simulink and controller model in

Statemate
– e.g. specification model in Matlab/Simulink, code generation using

Scade
– e.g. specification model in Statemate and design in UML tool

• Today only limited support even for co-simulation
– e.g. detecting when plant state should trigger discrete transition

• Need to give semantic foundation to such combinations
– e.g. hybrid automata

Lines of Attack

• Deep background in formal semantics is a must
• Deep understanding of actual tool usage is a must

– focus on widely used modeling features
– let designers point to weak aspects of modeling tool
– let designers report on ambiguities

• Deep cooperation with tool developers is a must
• Develop reference semantics
• validate with tool provider
• validate with designers

SMI/SSL

Model-compilation

Verification
evidence

Test-bench C Synth.
VHDL

Verification
Test

generation
SynthesisCompile /

instrument

Requirement-compilation

TBA

SMI

Statemate, Rhapsody in C++
Scade, Stateflow, ASCET

VHDL

Sequence Charts
Timing Diagrams

An active object model

Giving meaning to UML

joint work with Bernhard Josko and Amir Pnueli

Anticipated application scenario

• Distributed implementation on network of ECUs
• Task: one active object grouped with a collection of

passive objects
• intertask communication typically asynchronous
• operation calls used for intertask communication to

bypass event queue, expected to be infrequent
• calls to primitive operations are executed in same thread

Model characteristics

• Single thread of control in each
active object
– complete serialization of

incoming operation calls and
events

– required to enhance
understandability and
verifiability

– hence support only protected
operation calls to triggered
operations

• each active objects comes
equipped with
– event queue
– queue of pending operation

calls

• run-to-completion semantics
– dispatch single event from

event queue
– evaluate state chart until stable

configuration is reached

• design decision: level of
interference
– can higher priority calls

preempt ongoing run to
completion steps?

– tradeoff between model
complexity and enhanced
responsiveness

– will explore both variants

Design issues

• The driver role
– object stable

• rests in piece
• waiting for work

– picks event from event queue
– thus triggering a new run-to-

completion step
– invoking operation calls
– driving its run-to-completion

• The callee role
– object executes operation call

on behalf of some other object
– helping some other guy to

complete its run-to-completion
step

• When do we allow objects to
switch from driver to callee
role?

• How do we decide whether to
dispatch a new event or to take
a call?

• Ready_Set of configuration:
– set of events and operation call

occurring as guards in
potentially enabled transitions

• What happens if selected
operation call is not in ready
set?

• What happens if dispatched
event is not in ready set?

Design decisions coarse grained
model

• No preemption of run to
completion steps
– new events or calls only taken

in stable configurations

• event dispatching strictly in
FIFO order
– dispatched events not in ready

set placed in “defer queue”

• selection policy purely based
on priorities, random choice in
case of ties

• selected operations not in
ready set return error value

Event _queue empty
no

stable

Process a
transition

Dispatch
event

No locally
enabled
transition

Accept
method call

Locally
enabled transition

Status Active Object Model

• Formal semantics of Active Object model
– addressing communication between multiple active objects
– deals with

• events
• primitive operations
• triggered operations
• protected operations
• UML statecharts
• dynamic object creation and deletion

• reference for ongoing integration of Rhapsody execution
model

• supports modeling of open systems

Challenge 2

Learning curve for Requirement Capture

Issues

• No penetration of formal methods if learning curve is too
high

• Writing requirements in formal logic only acceptable for
specialists

• Need to mock-up concepts familiar to designers
– watchdogs
– timing diagrams
– scenarios
– witnesses: can I reach a state, can I toggle an output, ...
– pure invariance properties
– predefined properties: no deadlock, no racing conditions, ...
– Libraries of paramatrized requirements: protocols, domain

specific, ...

Safety
Requirements

Supporting
Views

1.Für einen Bahnübergang kann nur eine Anforderung von einem Zug kommen,
in dessen zugewiesenen Fahrweg der
 Bahnübergang liegt.
 2.Bei e inem eing leisigen Bahnübergang kann zu einem Zeitpunkt nur eine
Anforderung vorliegen.
 3.E in Bahnübergang darf nur befahren werden, wenn
 er die Stellanweisung quittiert hat (entspricht fernüberwachtem BÜ) oder
 der Zug die Meldung über die ordnungsgemäße Sicherung vom
Bahnübergang erhalten hat (entspricht ÜS bzw.
 Hp).
 4.Vor Erreichen des Bremswegabstands vom Bahnübergang muss der Zug
 die Meldung über die erfo lgte Sicherung des Bahnübergangs oder
 die Quittierung der Anforderung zur Sicherung (entspricht FÜ) erhalten
haben, sonst muss er eine Bremsung
 entsprechend der zuvor berechneten Bremskurve einleiten.
 5.Wenn ein technisch gesicherter Bahnübergang auf d ie Anweisung von einem
Zug n icht reagiert (antwortet), muss der Zug
 vor dem Bahnübergang zum Halten kommen.
 6.Die Sicherung eines Bahnübergangs darf erst wieder aufgehoben werden,
wenn der Bahnübergang vom Zug befahren
 und vollständig geräumt wurde oder der Zug die Anforderung zurücknimmt.
 7.Die Sicherung eines mehrg leisigen Bahnübergangs darf nur aufgehoben
werden, wenn keine Anforderung eines wei teren
 Zuges, der innerhalb der maximal zulässigen Annäherungszeit am
Bahnübergang ein trifft, vorliegt.
 8.Bei e iner Zeitüberschreitung kann die Sicherung eines Bahnübergangs nur
von der FFB-Zentrale aufgehoben werden.
 9.E ine Zeitüberschreitung muss der FFB-Zentrale mitgeteilt werden.
 10.Bei einer Dauereinschaltung kann die Sicherung eines Bahnübergangs nur
von der FFB-Zentrale aufgehoben werden.

A train
may only pass a

crossing if it is secured
 The barrier may only be

opened after the train
has passed
the crossing

Timing Diagrams

• graphical entry for safety,
functional and real-time
requirements

• library of typical requirement
patterns

 alarm safe

[10,50]

• functional test can be
generated from STDs

• specification models can
be verified against STDs

• sample safety requirements:
– never allow to open car when

driving
– never release weapon when on

ground
– when engine control switches

to manual, all valves must be
open

– the airbag must be blown up
5ms following an impact

– a train may only pass a
crossing if it is secured

A sample safety
requirement

... and its
formalization

A train may
only pass a
crossing if it is
secured

Activation
Condition

Condition on
interface
variables

Events

Ordering or
timing

constraint

System
Architecture

Supporting Views

Limitations of MSCs

• What MSCs say
– which instances
– possible scenarios
– possible

communication

• partial order on visible
events

• ... and can´t say
– in this use case the

system must follow
the scenario

– the instance will sent
the message

– the message will
arrive

– no other message
will be sent in
between

– failure to meet
condition is fatal

Activation Condition

Ordering
required

Failure to
meet

condition
is error

solid instance lines
entail progress
requirements

Real time
requirements

 Live Sequence Charts

• LSCs allow designers to distinguish between mandatory
and possible behaviour
– cold conditions provide exit mechanism,allow to split cases into

separate subcharts
– hot conditions allow to express forbidden situations
– existential charts show possible behaviour
– universal charts must be observed by all runs of the system
– activation conditions and precharts allow to characterize situations

when universal charts apply

Joint work with David Harel, Weizmann Institut of Sciences

functional test can be generated from LSCs
specification models can be verified against LSCs

Challenge 4

Verification Technology for real-life models

Formal Verification

• Formal verification techniques on the edge of becoming
accepted in real time / safety-critical embedded system
domains
– automotive, avionics, train systems, telecommunication, ...

• Pre-requisite
– increasing level of process maturity
– model based process

• FV seen to reduce time to market and cost
• FV seen as an enabler in the certification process

Problems

• Fully automatic approaches must be capable of coping
with “natural” design units
– complete “simple” ECUs in automotive
– key functionality of complex ECUs/LRUs

• real life models are infinite state
– floats, unbounded integers, parametrization, ...

• Verification technologies only useful if diagnostic
information can be lifted back to original modeling
language
– must be able to show reasons why requirement not fulfilled

Lines of attack

• Need plurality of verification
techniques

• optimize for different use cases
– try to avoid full exploration of

state space

• debugging: try to find faults
– employ under-approximation
– optimize verification heuristics

for early error detection
– ex1: VIS invariance checking

mode
– ex2: bounded model checking

• employ both BDD-based and
SAT based verification engines

• certification: verify safety
properties
– use over-approximation
– use inductive reasoning
– use heuristics for constructing

invariants

• support component based
designs

• support large scale verification
by reasoning on properties of
components of design

• support overall verification task
management

Model Checking of Hybrid
Controllers

J. Bohn, T. Bienmüller, H. Brinkmann, W. Damm, H. Hungar
OFFIS

 O.Grumberg
Technion

ECU Implementation

ECU
StateMate MatrixX

@alpha

Master Module

+

Slave Modules

E
n
v
i
r
o
n
m
e
n
t

Scope of the Method

ECU

continuousdiscrete

TestingFirst-Order MC

Model Checking

history bounded continuous computations

LEVEL

ALARM
VALVE

SENSOR

ControllerControled System

Operator

Level

Sampling rate determined

LEVEL

ALARM
VALVE

SENSOR

ControllerControled System

Operator

Level

If the level grows too fast within two cycles,
then set ALARM within one cycle

ALARM

WATCH DOG

LEVEL

LEVEL-x > th

= x

TRUE

<=2

<=1

LEVEL

ALARM
VALVE

SENSOR

ControllerControled System

Operator

Level

N O

AC

LEVEL_OLD

LEVEL

Combinational
Logic

MX

STM

c1 c2

c3

c5 c6

c4

cj ≡ LEVEL_OLD - LEVEL >/< thj

LEVEL = LEVEL_OLD

f

ECU Operation

level = f(level,sensor,valve)

valve = . . . b(level) . . .
alarm = . . . th(level - level_old) . . .
level_old = level
 . . .

level

continuous

discretestep

main loop

Property Dependence

step n-1

step n

step n+1

step n+2

step n+2

level = x

level-x > th

alarm = true

window
length 3

Essential: number of relevant continuous computations bounded inside window

Finite length
implies

bounded number
of computations

Realization I

• 1st order Modelchecker
– user determines which data-items are to be treated symbolically
– BDD based
– computes on the fly codenames for substitution instances of all

relevant propositions
• finite window property only necessary for property driven elaboration

degree

– “1st-order BDD engine” to deal with e.g. existential quantification
– automatic constraint generation for codenames
– prototype available
– implementation as extension of VIS scheduled jointly with Fabio

Somenzi

Realization II

• Discrete
– preprocesser on SMI level:

• can be used in conjunction with both standard BDD-based and SAT
based engines

• can be used for debugging and certification

– replaces computations on floats by codenames for relevant
properties on SMI level

– restricted to linear computations on floats with bounded memory
– concretization of error path uses linear constraint solver
– ongoing evaluation

Industrial Application (BMW)

Break Management System

MatrixXStateMate

@alpha

Master Module

+

Slave Modules

C
a
r

thresholds and simple functions on continuous values
⇒ simple version of first-order MC applicable

Comparison FoMC vs manual
abstraction BMW application

�

��

���

���

���

���

���

���

���

MANUAL AUTOMATIC

ABSTRACTION�S

&3-�GEN�+�S

"$$�.ODES�+

&3-�STATE�BITS

&3-�INPUTS

MODEL�CHECKING�S

Verification support at OFFIS

VIS (BDD-based)

SAT based engine

LINSOLVE+

E
rr

or
-p

at
h

re
co

ns
tr

uc
tio

n

discrete

abstraction

elaboration

slicing

Compositional Reasoning

D
ep

en
de

nc
y

m
an

ag
em

en
t

V
er

ifi
ca

tio
n

m
an

ag
er

Model-Checking Engine

ACTIVATE_CRASH:

CS:

KLR:

KL15:

CHART_CRASH_ISIN: buffer

CRASHED:

ZV_ZS:

FAL TRU FALSE

FALSE TRU FALSE TRU FAL TRU FALSE

FAL TRUE FALSE TRU FALSE

FALSE

NOTA BER NOTA

FALSE

FALSE

←

←

←

←

→

←

6)35!,):!4)/.�/&

#/5.4%2�%8!-0,%

34!4%-!4%

MODEL�OF�35$

2%15)2%-%.4

LSC/STM Verification Environment Verification Results Automotive

• One-sweep
verification

• under no attack
will steering be
locked when
ignition is on

�

��

���

���

���

���

���

%-& %,6

STATE�BITS

INPUT�BITS

&3-�GEN�S

-#�TIME�S

Verification Results Avionics

• One-sweep verification of
SMS using abstraction

• under no attack will SMS
release weapon without pilot
consent

�

���

���

���

���

����

����

��STORES ���STORES

STATE�BITS

INPUT�BITS

&3-�GEN�S

-#�TIME�S

BAE - Stores Management System

Verification Results Train System

�

��

���

���

���

���

���

���

���

���

4RAIN�0� 8ING�0� 3YSTEM�0�

STATE�BITS

ABS�STATE�BITS

MC�TIME�S

P1

The train only passes secure
railway Xings

P2

The barrier will only be
opened, once the train has
passed the Xing, unless the
driver or central maintenance
control grants permissionJoint work with Adtranz

STATEMATE FV Today

• Substantial number of industrial
trials on models in
– automotive
– avionics
– train systems

• PIPP version available from I-
Logix
– tight integration with

Statemate
– robustness checks

• non determinism
• racing conditions

– write-write conflicts
– read-write conflicts

– Easy to use standard
analysis:

• drive to state
• drive to configuration
• toggle output
• drive to property

– optimizations
– support for generic activity

charts
• PIPP partnerships with key

automotive companies
• product marketed by I-Logix

Q2/2001
• incorporation of LSCs

Challenge 5

Closing the bridge between models and systems

FV & ATG are complimentary

• Verification of
– functional
– safety
– timing

requirements
• purely model based

– abstracts from target HW
– abstracts from RTOS
– only abstract timing

• complete coverage
– early detection of design errors
– early detection of integration

errors based on virtual V

• largely automatic
• early phases of V

• Bridge between (verified)
models and real system
– unit test
– ECU test
– subsystem integration test
– system integration test

• Testing can take into account
– real time
– distribution
– RTOS

• Test vectors can be generated
automatically

• ATG can re-use same
requirements and models used
for FV

FV ATG

Evaluation results first prototype
ATG technology

• BMW and GM supplied
industrial trials

• first prototype
– test-sequences can drive

simulation model
– integration with dSpace HIL

environment at BMW

• state coverage between 75%
and 85% with test-
sequences generated in
minutes

• detected critical output that
could not be driven

• ongoing cooperation with GM
and BMW

Front-End

User-Interface

Back-End

Kernel

SMI/
SSL

Statemate

ATG Kernel

Test
Vectors

Interfacing HIL/SIL Monitor
Report
Gen.

Test
Management

Test Goal
Selection

Back
animatio

n

Report/
Error
Path

LSCRhapsody ToolX

Conclusion

• Range of verification
techniques required to
cover full range of
industrial applications
– abstraction
– bounded MC
– BDD based engines
– Sat based engines
– linear programming
– 1st order modelchecking
– symmetry reduction
– inductive reasoning
– system verification based

on compositional reasoning

• Semantic-based integration of
range of commercial front end
tools from different vendors

• Statemate verification
technology in use by early
adaptors

• Product offerings based on
presented technology about to
enter market
– STM FV Q2/2001

• looking now for early adaptors
for ATG technology for
Statemate and Rhapsody

