Safety-Critical Computer
Systems

Designing faults away
Simin Nadjm-Tehrani
www.ida.liu.se/~snt

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Recall from earlier...

¢ Faults may lead to failures
¢ Failures may cause hazards
e Hazards may jeoperdise safety

Thus:

e Removing/containing certain faults
enhances safety

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Redundancy

e Can be used to tolerate faults
e In space: HW/SW/Data

—Transient, intermittent or permanent
faults

e In time: Repeat the same
computation
- Transient faults

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Designing faults away

¢ Tolerating faults
- How can it be seen as a conceptual
part of program (system) design?
e Avoiding faults

- How can the potential for permanent
faults in programs (systems) be
reduced?

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Adding tolerance

e How to represent a fault-intolerant
system?

e What it means to add tolerance,
for which type of fault, which type
of method?

[Arora & Kulkarni 98, Gartner 99]

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Simple model

¢ Distributed reactive programs: a
set of processes each with a set of
variables representing local state

e Each process: a set of actions,
specified as guarded commands

Guard - Command
e Program P: P, [| P, []...]] P,

Safety-critical systems © Simin Nadjm-Tehrani, 2000




Guarded commands

¢ If the Boolean condition (the
guard) for an action is true, then
the action is enabled: it may take

place
-ready 0y<10 - x:=0;z:=1

e Fairness: if a guard is true
infinitely often the action will be
eventually taken

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Computations

e Each computation in the
distributed system: a potentially
infinite sequence of the
(distributed) states

¢ An interleaving of computations of
the individual processes

0:S5S,.., ...

Safety-critical systems © Simin Nadjm-Tehrani, 2000 8

Desired behaviours

e Behaviours: sets of computations
¢ Desired properties defined as sets
of computations:
—Safety (what should not happen)
- Liveness (what should happen)
e Specification S: a combination of
safety and liveness properties

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Correctness

e To show that P is correct wrt S

show that
set of computations forP O S

Safety-critical systems © Simin Nadjm-Tehrani, 2000 10

To add tolerance

e Must decide what fault classes to
tolerate

e How to detect them
e What action to take on detection

e Later: ensure that addition of
tolerance does not sacrifice
correctness

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Fault models

e Example: those leading to crash
failures
e Extend the program with fault

actions, and fault effects based on
the chosen fault model

Safety-critical systems © Simin Nadjm-Tehrani, 2000 12




Considering faults

Begim

var waii hooleamngtetrue ni t true

var upihodbesn métrirdenf*tto tdetect{error 6} det ect error *}
{*naoraratactians flons *}

up O—webit - send(m); wait := true

Il

up Owait Orec(a) - wait:= false
{* fault action *}

up - up:=false {* crash *}
end

Safety-critical systems © Simin Nadjm-Tehrani, 2000 13

Begi n

var wait: boolean init true
var up: boolean init true {* to detect error *}
{* nornmal actions *}

up O -wait - send(m); wait := true
Il

up Owait Orec(a) - wait:= false
[l

{* fault action *}

up - up :=false {* crash *}

Il

{* protection mechanism *}

-up - up:=true

end

Sefety-critical systems © Simin Nadjm-Tehrani, 2000 14

How does FT affect
computations?

* We formalise the effects of fault-
tolerance on program behaviour

o Let predicates over state variables
denote the set of states in which
the predicate holds

¢, x<100y<1 $,:x<1000y<10

Safety-critical systems © Simin Nadjm-Tehrani, 2000 15

Formalising fault-tolerance

A distributed program P tolerates
faults from a fault class F for an
invariant I iff there exists a
predicate T such that 3 conditions
apply:

-IOT

-Tisclosedin PandF

- P actions in T eventually lead to I

Safety-critical systems © Simin Nadjm-Tehrani, 2000 16

What does it mean?

—at any state where I holds, T holds
too

—starting from any state in T, if any P
or F actions are performed, the
resulting state isin T

—starting from any T state, every
sequence of P actions alone,
eventually reaches a state in I

Safety-critical systems © Simin Nadjm-Tehrani, 2000 17

Reachable system states

Safety-critical systems © Simin Nadjm-Tehrani, 2000 18




Fault-tolerance methods

Live Not live

Safe Masking Fail-safe

Not safe |Non-masking None

Safety-critical systems © Simin Nadjm-Tehrani, 2000 19

Current results

e Detectors essential for safety
properties
-in distributed settings not easy

e Correctors essential for liveness
properties

¢ Achieving both safety and liveness
(masking) difficult, even in non-
distributed setting

Safety-critical systems © Simin Nadjm-Tehrani, 2000 20

Designing faults away

e Tolerating faults
—How can it be seen as a conceptual
part of program (system) design?
¢ Avoiding faults

- How can the potential for permanent
faults in programs (systems) be
reduced?

Safety-critical systems © Simin Nadjm-Tehrani, 2000 21

Removing permanent faults

¢ 40% of medical systems which are
called in by FDA are due to
program errors

e In a typical application 35% of the
code is tested

¢ Is it possible to perform full testing
for critical subsystems?

Safety-critical systems © Simin Nadjm-Tehrani, 2000 22

State space

e Consider a model M with n Boolean
variables

e To decide whether M is correct wrt
specification S, we must check that
none of reachable states in M
contradicts S

* Potential state space size: 2".

Safety-critical systems © Simin Nadjm-Tehrani, 2000 23

State space search

e With 55 variables, at a test speed
of 1 MHz, it would (in worst case)
take over 1 billion years to visit

every state!
Vad

Safety-critical systems © Simin Nadjm-Tehrani, 2000 24




Other problems

e Testing heterogeneous systems
costly (hardware in the loop
simulations)

e Some systems can not be tested
(nuclear reactors, etc.)

e System must be tested again after
maintenance and adaptation to
new demands (air traffic control)

¢ Microsoft evolutionary model

Safety-critical systems © Simin Nadjm-Tehrani, 2000 25

Verification techniques

e Inspection

e Testing

¢ Simulation/animation
e Static analysis

e Formal verification

Safety-critical systems © Simin Nadjm-Tehrani, 2000

26

Combination of techniques

¢ Faults in the requirements
specification phase are 70 times
more costly to fix, if detected
during acceptance tests

e Can one find more errors at early
phases of development?

|:> Formal verification!

Safety-critical systems © Simin Nadjm-Tehrani, 2000 27

Inspections

¢ Find the fault directly instead of
finding the symptom (as in
testing)

¢ Require special training and
planning

¢ Inspections in groups eliminate
"false alarms”

Safety-critical systems © Simin Nadjm-Tehrani, 2000

28

A success story
e C130] Hercules safety-critical
program modules, 500k loc
e Upon sale - after all certification :-(

e Combination of inspections, static
analysis (formal verification)

e 70 man-years, 11590 anomalies
* 3% av anomalies safety-critical

Safety-critical systems © Simin Nadjm-Tehrani, 2000 29




