Safety-Critical Computer
Systems

Treatment of System Faults
Simin Nadjm-Tehrani
www.ida.liu.se/~snt

Safety-critical systems © Simin Nadjm-Tehrani, 2000 1

First some news...

e Groups formed and group
meetings planned

¢ Fault-tree+ installed, can be used
for testing and learning

¢ Last lecture/resource session:
discussions with Volvo

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Structure of safety-critical
systems

o2ian]-
e

Safety functions Safety functions

Safety-critical systems © Simin Nadjm-Tehrani, 2000 3

Overall safety lifecycle
(IEC 61508)

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Safety-critical systems © Simin Nadjm-Tehrani, 2000




Types of faults

e Transient

—e.g. electromagnetic radiation in
environment

e Intermittent
-e.g. loose wire
e Permanent
—e.g. design error, hardware defect

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Verification and validation

e Show that system behaviour is in
accordance to requirements
specification
- Inspections
- Testing
- Formal verification

e Show that requirements are
complete and consistent

Safety-critical systems © Simin Nadjm-Tehrani, 2000 8

On-line treatment of faults
(fault-tolerance)

¢ Fault detection
—by program or environment
e Fault containment with the help of
redundance in
- software
—-hardware
—data

Safety-critical systems © Simin Nadjm-Tehrani, 2000

From article in Edinburgh Review, 1824:
D. Lardner

"The most certain and effectual check upon error
which arise in the process of computation is to
cause the same computations to be made by
separate and independent computers*; and this
check is rendered still more decisive if their
computations are carried out by different
methods.”

* people who compute

Safety-critical systems © Simin Nadjm-Tehrani, 2000 10

'

System architecture

¢ Highly influences choice of
methods for incorporation of
redundancy

* Monolithic/Distributed systems

e Synchronous/Asynchronous
systems

Safety-critical systems © Simin Nadjm-Tehrani, 2000

Static Redundancy

To be used all the time (whether
errors showed up or not), justin
case...

-SW: N-version programming
-HW: Voting and masking
- Data: Parity bits, checksums

Safety-critical systems © Simin Nadjm-Tehrani, 2000 12




N-version programming

e Main problem: to get the different
versions to act differently at test
instances which are error-inducing

¢ Night/Leveson experiment:

—the only errors missed, were missed
by all 28 versions!

Safety-critical systems © Simin Nadjm-Tehrani, 2000 13

Dynamic Redundancy

Used when error has occured and
must be contained

- SW: recovery methods
- HW: switch to back-up modules
- Data: self-correcting codes

Safety-critical systems © Simin Nadjm-Tehrani, 2000 14

Error recovery

Backward:

¢ roll back the system to a safe state
which was reached before the
error appeared (when did error
appear? )

e restart with alternative module
(how is the result affected by
earlier module “s side effects?)

Safety-critical systems © Simin Nadjm-Tehrani, 2000 15

Error recovery

Forward:

¢ “fix the error” and continue as if
nothing happened

e redundacy lies where one fixes the
error

Safety-critical systems © Simin Nadjm-Tehrani, 2000 16

Distributed systems

e Introduce new complications
-no global clock
-richer fault models
—-network partitions

* Software replication and group
mechanisms
—transparency in treatment of faults

Safety-critical systems © Simin Nadjm-Tehrani, 2000 17

Exception management

e Every program should test for
validity range of its computations,
why exceptions?

e Mechanism to support recovery
models in programming languages

-e.g. Ada s exceptions support
backward error recovery via their
termination model

Safety-critical systems © Simin Nadjm-Tehrani, 2000 18




Static and dynamic
exceptions
¢ Is there a difference between
foreseen and unforeseen faults?

¢ For foreseeable faults, recover via
specific exception handlers, clean
up operations

¢ For unforeseen faults, achieve
graceful degradation

Safety-critical systems © Simin Nadjm-Tehrani, 2000 19

package Tenp_Control is
subtype Tenperature is integer range 0..100;
Sensor _Dead, Actuator_Dead: exception;

end Tenp_Control;
package body Tenp_Control is

procedure Set_Tenp(...) is
begi n
-- set new value for actuator
i f No_Response then
rai se Actuator_Dead
end if;
end Set_Tenp;

end Tenp_Control ;

function Read_Tenp return Tenperature is
begi n
-- read sensor val ue
if No_Response then
rai se Sensor_Dead
end if;
-- return the value
exception
when Constraint_Error =>
-- too high a tenperature
-- take appropriate action
end Read_Tenp;

end Tenp_Control ;

Safety-critical systems © Simin Nadjm-Tehrani, 2000 21

Safety-critical systems © Simin Nadjm-Tehrani, 2000 20
begi n
-- initialize
Set _Tenmp(...);

when Actuator_Dead =>
-- take sone action

end Tenp_Control ;

Safety-critical systems © Simin Nadjm-Tehrani, 2000 22




