
Undergraduate course on Real-time Systems
Linköping University

TDDD07 Real-time Systems

Lecture 3: Scheduling and

Resource sharing

Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linköping University

26 pages
Autumn 2017

Undergraduate course on Real-time Systems
Linköping University

2 of 26
Autumn 2017

Preparatory reading

• Background reading on deadlocks
(announced on the web, see Chapter in
Silberschatz, Galvin & Gagne)

• Specially important if you do not recall
the deadlock related notions as part of
your earlier OS course!
– Deadlock prevention, avoidance, detection
– Starvation

This lecture assumes you know these....

Undergraduate course on Real-time Systems
Linköping University

3 of 26
Autumn 2017

Recap from last lecture

• We looked at utilisation-based tests for
rate-monotonic scheduling (RMS)

• We looked at response time analysis for
RMS as an exact test

• The latter with Di replacing Ti will carry
over to deadline-monotonic scheduling,
where the length of relative deadline
decides the static priority

• Then we moved to dynamic priorities

Undergraduate course on Real-time Systems
Linköping University

4 of 26
Autumn 2017

Earliest deadline first (EDF)

• Online decision
• Preemptive
• Dynamic priorities

Policy: Always run the process that is
closest to its deadline

Undergraduate course on Real-time Systems
Linköping University

5 of 26
Autumn 2017

• Event that leads to release of process Pi
appears with minimum inter-arrival
interval Ti

• Each Pi has a max computation time Ci

• The process must be finished before its
relative deadline Di  Ti

• Processes are independent (do not share
resources other than CPU)

• EDF: The process with nearest absolute
deadline (di) will run first

Assumptions on process set

Undergraduate course on Real-time Systems
Linköping University

6 of 26
Autumn 2017

Consider following processes: P1 P2
WCET (Ci) 5 10
Deadline (Di = Ti) 20 12

Arrival times (ri) 0, 20,... 0, 12,...

0 10 15

...?

time20 25

Example (6)

Undergraduate course on Real-time Systems
Linköping University

7 of 26
Autumn 2017

For same task set: P1 P2
WCET (Ci) 5 10
Deadline (Di = Ti) 20 12
Arrival times (ri) 0, 20,... 0, 12,...

0 10 15 time20 25

...?Preemption

Compare to RMS

Undergraduate course on Real-time Systems
Linköping University

8 of 26
Autumn 2017

Theorem

A set of periodic tasks P1,...,Pn for
which Di = Ti is schedulable with EDF iff
U= C1/T1+...+Cn/Tn 

For Example 6:
C1/T1 + C2/T2 = 5/20 + 10/12 = 1,08!

Undergraduate course on Real-time Systems
Linköping University

9 of 26
Autumn 2017

Consider following task set: P1 P2
WCET (Ci) 2 4
Deadline (Di = Ti) 5 7

Is it schedulable?

U = 2/5 + 4/7 = 0,97

Yes!

Example (7)

Undergraduate course on Real-time Systems
Linköping University

10 of 26
Autumn 2017

EDF vs. RMS

• EDF gives higher processor utilisation
(Example 7 not schedulable with RMS!)

• EDF has simpler exact analysis for the
mentioned type of task sets

• RMS can be implemented to run faster
at run-time (if we ignore the time for
context switching)

[Deeper analysis of RMS and EDF
based on Buttazzo 2005 article!] $B

2 Bonus points!

Undergraduate course on Real-time Systems
Linköping University

11 of 26
Autumn 2017

Next…

• We remove the assumption that all
tasks are independent!

Undergraduate course on Real-time Systems
Linköping University

12 of 26
Autumn 2017

Sharing resources

• Assume that processes synchronise
using semaphores

• We schedule the processes with fixed
priorities but relax the independence
requirement

Undergraduate course on Real-time Systems
Linköping University

13 of 26
Autumn 2017

Priority Inversion

• A low priority process (P1) locks the
resource

• A high priority process (P2) has to wait
on the semaphore (blocked state)

• A medium priority process (P3)
preempts P1 and runs to completion
before P2!

Undergraduate course on Real-time Systems
Linköping University

14 of 26
Autumn 2017

How to avoid it?

• When P2 is blocked by P1 one raises the
priority of P1 to the same level as P2
temporarily

• Afterwards, when the semaphore is
released by P1, it goes back to its prior
priority level

• P3 can not interrupt P1 any more!

Undergraduate course on Real-time Systems
Linköping University

15 of 26
Autumn 2017

Priority inheritance

• Is transitive
• Can compute maximum blocking time

for each resource (high priority process
P2 is blocked only under the time that P1
uses the resource)

• As long as the resource is released!

• But … it does not avoid deadlock!

Undergraduate course on Real-time Systems
Linköping University

16 of 26
Autumn 2017

Example (8)

P1

P2

0 time

S1

S2 S1?

Preemption

Blocked

S2?

Blocked

Inheritance

SiHere denotes the process locks semaphore Si.

Let P1 have lower priority than P2.

Undergraduate course on Real-time Systems
Linköping University

17 of 26
Autumn 2017

Note that:
• blocked – when waiting due to a

resource (other than CPU)
• not dispatched or preempted -

when waiting for CPU

Terminology

Undergraduate course on Real-time Systems
Linköping University

18 of 26
Autumn 2017

Ceiling Protocols

e.g. Immediate priority Ceiling Protocol (ICP):

• A process that obtains a resource inherits the
resource’s ceiling priority - the highest priority
among all processes that can possibly claim
that resource

• Dynamic priority for a process is the max of
own (fixed) priority and the ceiling values of
all resources it has locked

• When a resource is released, the process
priority returns to the normal level (or to
another engaged resource’s ceiling)

Undergraduate course on Real-time Systems
Linköping University

19 of 26
Autumn 2017

Properties

• The blocking delay for process Pi is a
function of the length of all critical
sections
– We need to compute this (Bi) for each

process!
• Do not even need to use semaphores!
• A process is blocked max once by

another process with lower priority

Let’s prove that!

Undergraduate course on Real-time Systems
Linköping University

20 of 26
Autumn 2017

ICP & Deadlock-related issues

• The ICP prevents deadlocks (How?)

• ICP prevents starvation (How?)

Undergraduate course on Real-time Systems
Linköping University

21 of 26
Autumn 2017

1. Mutual exclusion
Access to resource is limited to one (or a
limited number of) process(es) at a time

2. Hold & wait
Processes hold allocated resources and wait
for another resource at the same time

Recall: Coffman conditions

Undergraduate course on Real-time Systems
Linköping University

22 of 26
Autumn 2017

3. Voluntary release
Resources can only be released by a
process voluntarily

4. Circular wait
There is a chain of processes where each
process holds a resource that is required
by another process

Coffman conditions

Undergraduate course on Real-time Systems
Linköping University

23 of 26
Autumn 2017

Recall: Resource allocation graphs

Recall from the OS course: A dynamic
snapshot of which resources are
allocated and which resources are wished

P1 P2

P3

P4

R1

R2

Undergraduate course on Real-time Systems
Linköping University

24 of 26
Autumn 2017

ICP & Deadlock

• The ICP prevents deadlocks (How?)

• We need to show that a set of n
processes using FP scheduling and ICP
cannot end up in a deadlock

• Use proof by contradiction!

Undergraduate course on Real-time Systems
Linköping University

25 of 26
Autumn 2017

ICP & Starvation

• Show that an arbitrary process that is waiting
will not wait for a resource indefinitely

• First, recall that it will not wait for a chain of
waiting processes indefinitely

• Second, show that waiting for a running
process is bounded by the combined impact of
interference and blocking, which can be
computed

• A process that waits indefinitely will only do so
if its response time is beyond its deadline

Undergraduate course on Real-time Systems
Linköping University

26 of 26
Autumn 2017

Questions?

