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Two lectures 

This lecture and part of lecture 9: 

• Basic notions of dependability and redundancy 
in fault-tolerant systems

• Fault tolerance:
– Relating faults/redundancy to distributed 

systems from lectures 4-6
– Relating timing and fault tolerance

Lecture 9: 
• Fault prevention and design aspects
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Treatment of faults

• Last lecture: We mentioned four 
approaches for treating faults in 
dependable systems

• This lecture:
1. Fault prevention
2. Fault removal
3. Fault tolerance
4. Fault forecasting

Reading: Section 5.1 & 
5.3 of article by 
Avezienis et al.

Also one article on 
platform-

independent design
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System requirements

• Functional requirements
– Describe the main objectives of the system, 

referred to as “correct service” earlier

• Extra-functional requirements 
– Also called non-functional properties (NFP)
– Cover other requirements than those 

relating to main function, in particular 
dependability attributes: the frequency and 
severity of acceptable service failures

• Example NFP
– Timeliness, availability, energy efficiency
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Basic approach 

Design for timeliness:

• define end-to-end deadlines
• define deadlines for individual tasks 
• ascertain (worst case) 

execution/communication time for each 
task/message

• document assumptions/restrictions
• Prove/show that implementation 

satisfies requirements  
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So, what is so hard about this?
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Layers of design

Hardware support

System software support 

(kernels, communication protocols)

Programming environment support

Application modelling support
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Fault prevention/removal

Where should we look to find  

faults prior to operation?
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Historical snapshots

• Hardware design
–1970´s Dedicated hardware
–1980´s Micro computers & ASICS
–1990´s High performance Micro 

computers, FPGAs, MEMs
–2000 ’s      SoCware

• Earlier predictable hardware is replaced 
with components that are complex to 
analyse (including cache, pipeline)
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Layers of design

Hardware support

System software support (kernels)

Programming environment support

Application modelling support
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Historical snapshots

• Scheduling principles
–1970´s Fixed priority scheduling
–1980´s Multiprocessor, Dynamic
–1990´s Incorporating shared 

resources
–2000´s     Load variations, adaptation

Multicore scheduling
• OS interfaces to optimise memory 

management, prefetching instructions to 
boost performance
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Layers of design

Hardware support

System software support (kernels)

Programming environment support

Application modelling support
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Historical snapshots

• Programming environments
– 1970´s ”High” level 

programming
– 1980´s Real-time specific: Ada 
– 1990´s OO languages,               

languages with formal
semantics

– 2000´s Software libraries, reuse 

• Industry lecture: AUTOSAR components
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Engineers: Fool me once, 
shame on you – fool me 

twice, shame on me
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Software developers: Fool me N 
times, who cares, this is 

complex and anyway no one 
expects software to work...
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Frequency of faults

10%
7%

27%
56%

Other

Code

Design

Requirements

[Jim Cooling 2003, cited from DeMarco78]
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Testing does not do ...

If a test fails, what was the cause?

• Undocumented assumptions on 
operational conditions, external impact?

• Wrong program code?
• Unexpected impact of OS functionality?
• Hardware timing dependencies?
• Embedded test code affecting timing?
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Platform-independent design

Eliminating “butterfly effect” 
means trying to isolate the 
impacts of different layers
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Back to basics

• define end-to-end deadlines
– Model the environment!

• define deadlines for individual tasks
– Specify system decomposition!

• ascertain (worst case) 
execution/communication time for each 
task/message
– Assume hardware/bus characteristics!

• document assumptions/restrictions
– Model, model, model!

• Prove/show that implementation satisfies 
requirements  
– Analyse models, then test implementation!
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An engineering discipline

Using mathematics can never be wrong!
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Non-digital hardware  
Extensive simulations of coupled aircraft flight 
dynamics and actuator dynamics

[P. Krus, 2000]
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Model-based development

In software-intensive systems: 
• Models as “higher level” programs

• Idea: use models to analyse the design, 
automatically generate code from the 
model! 

• Adequate support for modularisation: 
Well-tested libraries with well-defined 
interfaces
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Layers of design

Hardware support

System software support (kernels)

Programming environment support

Application modelling support
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Historical snapshots

• Mathematical modelling & analysis tools
– 1970´s Sequential systems
– 1980´s Concurrent/Distributed 

systems
– 1990´s Timed models, Combining 

discrete & continuous, UML
– 2000’s Incorporation in CASE tools 

• 2012 crossroad: Domain-specific or Unified?
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UML standard 

• UML 2.0 models components with 
required and provided interfaces

• Family of modelling techniques that are 
a further development of languages in 
early 80’s, for example: Ward & Mellor 
Diagrams

• Next two slides from an example
[Heitmeyer and Mandrioli, Wiley, 1996]
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Power plant
• Transformation schemata for functional 

part  & dynamic monitoring part

Monitor

Compute 

safety

state

Coolant tank

Temperature

Pressure
compute 
power 
prodn

Fuel tank

Power request

Power production

Coolant

OK

ModerateAlarm

HighAlarm

Cool ShutDown

Restart

Continue

Power request

Power production



Undergraduate course on Real-time  Systems
Linköping University

27 of 35 
Autumn  2016

Monitor state machine

Normal

Alert

Off

HighAlarm

ShutDown

ModerateAlarm

Restart

ModerateAlarm

Cool

OK

No Output
ModerateAlarm

Cool

OK

No Output

HighAlarm

No Output

HighAlarm

ShutDown

OK

Restart
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What do we want to do with models once 
we create them?
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Advances in 2000’s

• Tools to model digital hardware and 
software components, support for 
functional analysis by
–Simulations

and sometimes…
–Formal verification of functional 

properties
–Semi-automatic code generation
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Simulations of a model

Need a unique interpretation:

• The language should be platform-
independent 

• The language should have (standard) 
operational semantics to enable 
“execution” of the model
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Simulations

What do they show?
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Formal techniques (proofs)

• Remove (design) faults that lead to 
demonstrated bad things
– debugging the design

• But also Prove that specific bad things 
never happen

• Can be automated, but suffer from 
combinatorial explosion
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Advanced techniques

• Smart data structures for efficient 
representation of state space

• Smart deduction engines (satisfiability 
checkers) that find proofs fast

• Smart abstractions of the design to 
capture the essential properties
– Synchronous languages (e.g. Esterel, 

Lustre), used for Airbus 320 software
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Historical snapshots

• Application modelling & analysis tools
– 1970´s Sequential systems
– 1980´s Concurrent/Distributed 

systems
– 1990´s Timed models, Combining 

discrete & continuous, UML
– 2000’s Incorporation in CASE tools 

• 2012 crossroad: Domain-specific or Unified?
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Adding time to UML

• Still in progress…
• No industry-wide tool support

• Recent development: UML profile for Real-
time and Embedded Systems (MARTE)

• Meta-models for a class of systems with 
timing and performance parameters

See case study paper 
Weissnegger et al.


