
Undergraduate course on Real-time Systems
Linköping University

TDDD07 Real-time Systems

Lecture 9: Dependability & Design

Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linköping University

35 pages
Autumn 2016

Undergraduate course on Real-time Systems
Linköping University

2 of 35
Autumn 2016

Two lectures

This lecture and part of lecture 9:

• Basic notions of dependability and redundancy
in fault-tolerant systems

• Fault tolerance:
– Relating faults/redundancy to distributed

systems from lectures 4-6
– Relating timing and fault tolerance

Lecture 9:
• Fault prevention and design aspects

Undergraduate course on Real-time Systems
Linköping University

3 of 35
Autumn 2016

Treatment of faults

• Last lecture: We mentioned four
approaches for treating faults in
dependable systems

• This lecture:
1. Fault prevention
2. Fault removal
3. Fault tolerance
4. Fault forecasting

Reading: Section 5.1 &
5.3 of article by
Avezienis et al.

Also one article on
platform-

independent design

Undergraduate course on Real-time Systems
Linköping University

4 of 35
Autumn 2016

System requirements

• Functional requirements
– Describe the main objectives of the system,

referred to as “correct service” earlier

• Extra-functional requirements
– Also called non-functional properties (NFP)
– Cover other requirements than those

relating to main function, in particular
dependability attributes: the frequency and
severity of acceptable service failures

• Example NFP
– Timeliness, availability, energy efficiency

Undergraduate course on Real-time Systems
Linköping University

5 of 35
Autumn 2016

Basic approach

Design for timeliness:

• define end-to-end deadlines
• define deadlines for individual tasks
• ascertain (worst case)

execution/communication time for each
task/message

• document assumptions/restrictions
• Prove/show that implementation

satisfies requirements

Undergraduate course on Real-time Systems
Linköping University

6 of 35
Autumn 2016

So, what is so hard about this?

Undergraduate course on Real-time Systems
Linköping University

7 of 35
Autumn 2016

Layers of design

Hardware support

System software support

(kernels, communication protocols)

Programming environment support

Application modelling support

Undergraduate course on Real-time Systems
Linköping University

8 of 35
Autumn 2016

Fault prevention/removal

Where should we look to find

faults prior to operation?

Undergraduate course on Real-time Systems
Linköping University

9 of 35
Autumn 2016

Historical snapshots

• Hardware design
–1970´s Dedicated hardware
–1980´s Micro computers & ASICS
–1990´s High performance Micro

computers, FPGAs, MEMs
–2000 ’s SoCware

• Earlier predictable hardware is replaced
with components that are complex to
analyse (including cache, pipeline)

Undergraduate course on Real-time Systems
Linköping University

10 of 35
Autumn 2016

Layers of design

Hardware support

System software support (kernels)

Programming environment support

Application modelling support

Undergraduate course on Real-time Systems
Linköping University

11 of 35
Autumn 2016

Historical snapshots

• Scheduling principles
–1970´s Fixed priority scheduling
–1980´s Multiprocessor, Dynamic
–1990´s Incorporating shared

resources
–2000´s Load variations, adaptation

Multicore scheduling
• OS interfaces to optimise memory

management, prefetching instructions to
boost performance

Undergraduate course on Real-time Systems
Linköping University

12 of 35
Autumn 2016

Layers of design

Hardware support

System software support (kernels)

Programming environment support

Application modelling support

Undergraduate course on Real-time Systems
Linköping University

13 of 35
Autumn 2016

Historical snapshots

• Programming environments
– 1970´s ”High” level

programming
– 1980´s Real-time specific: Ada
– 1990´s OO languages,

languages with formal
semantics

– 2000´s Software libraries, reuse

• Industry lecture: AUTOSAR components

Undergraduate course on Real-time Systems
Linköping University

14 of 35
Autumn 2016

Engineers: Fool me once,
shame on you – fool me

twice, shame on me

Undergraduate course on Real-time Systems
Linköping University

15 of 35
Autumn 2016

Software developers: Fool me N
times, who cares, this is

complex and anyway no one
expects software to work...

Undergraduate course on Real-time Systems
Linköping University

16 of 35
Autumn 2016

Frequency of faults

10%
7%

27%
56%

Other

Code

Design

Requirements

[Jim Cooling 2003, cited from DeMarco78]

Undergraduate course on Real-time Systems
Linköping University

17 of 35
Autumn 2016

Testing does not do ...

If a test fails, what was the cause?

• Undocumented assumptions on
operational conditions, external impact?

• Wrong program code?
• Unexpected impact of OS functionality?
• Hardware timing dependencies?
• Embedded test code affecting timing?

Undergraduate course on Real-time Systems
Linköping University

18 of 35
Autumn 2016

Platform-independent design

Eliminating “butterfly effect”
means trying to isolate the
impacts of different layers

Undergraduate course on Real-time Systems
Linköping University

19 of 35
Autumn 2016

Back to basics

• define end-to-end deadlines
– Model the environment!

• define deadlines for individual tasks
– Specify system decomposition!

• ascertain (worst case)
execution/communication time for each
task/message
– Assume hardware/bus characteristics!

• document assumptions/restrictions
– Model, model, model!

• Prove/show that implementation satisfies
requirements
– Analyse models, then test implementation!

Undergraduate course on Real-time Systems
Linköping University

20 of 35
Autumn 2016

An engineering discipline

Using mathematics can never be wrong!

Undergraduate course on Real-time Systems
Linköping University

21 of 35
Autumn 2016

Non-digital hardware
Extensive simulations of coupled aircraft flight
dynamics and actuator dynamics

[P. Krus, 2000]

Undergraduate course on Real-time Systems
Linköping University

22 of 35
Autumn 2016

Model-based development

In software-intensive systems:
• Models as “higher level” programs

• Idea: use models to analyse the design,
automatically generate code from the
model!

• Adequate support for modularisation:
Well-tested libraries with well-defined
interfaces

Undergraduate course on Real-time Systems
Linköping University

23 of 35
Autumn 2016

Layers of design

Hardware support

System software support (kernels)

Programming environment support

Application modelling support

Undergraduate course on Real-time Systems
Linköping University

24 of 35
Autumn 2016

Historical snapshots

• Mathematical modelling & analysis tools
– 1970´s Sequential systems
– 1980´s Concurrent/Distributed

systems
– 1990´s Timed models, Combining

discrete & continuous, UML
– 2000’s Incorporation in CASE tools

• 2012 crossroad: Domain-specific or Unified?

Undergraduate course on Real-time Systems
Linköping University

25 of 35
Autumn 2016

UML standard

• UML 2.0 models components with
required and provided interfaces

• Family of modelling techniques that are
a further development of languages in
early 80’s, for example: Ward & Mellor
Diagrams

• Next two slides from an example
[Heitmeyer and Mandrioli, Wiley, 1996]

Undergraduate course on Real-time Systems
Linköping University

26 of 35
Autumn 2016

Power plant
• Transformation schemata for functional

part & dynamic monitoring part

Monitor

Compute

safety

state

Coolant tank

Temperature

Pressure
compute
power
prodn

Fuel tank

Power request

Power production

Coolant

OK

ModerateAlarm

HighAlarm

Cool ShutDown

Restart

Continue

Power request

Power production

Undergraduate course on Real-time Systems
Linköping University

27 of 35
Autumn 2016

Monitor state machine

Normal

Alert

Off

HighAlarm

ShutDown

ModerateAlarm

Restart

ModerateAlarm

Cool

OK

No Output
ModerateAlarm

Cool

OK

No Output

HighAlarm

No Output

HighAlarm

ShutDown

OK

Restart

Undergraduate course on Real-time Systems
Linköping University

28 of 35
Autumn 2016

What do we want to do with models once
we create them?

Undergraduate course on Real-time Systems
Linköping University

29 of 35
Autumn 2016

Advances in 2000’s

• Tools to model digital hardware and
software components, support for
functional analysis by
–Simulations

and sometimes…
–Formal verification of functional

properties
–Semi-automatic code generation

Undergraduate course on Real-time Systems
Linköping University

30 of 35
Autumn 2016

Simulations of a model

Need a unique interpretation:

• The language should be platform-
independent

• The language should have (standard)
operational semantics to enable
“execution” of the model

Undergraduate course on Real-time Systems
Linköping University

31 of 35
Autumn 2016

Simulations

What do they show?

Undergraduate course on Real-time Systems
Linköping University

32 of 35
Autumn 2016

Formal techniques (proofs)

• Remove (design) faults that lead to
demonstrated bad things
– debugging the design

• But also Prove that specific bad things
never happen

• Can be automated, but suffer from
combinatorial explosion

Undergraduate course on Real-time Systems
Linköping University

33 of 35
Autumn 2016

Advanced techniques

• Smart data structures for efficient
representation of state space

• Smart deduction engines (satisfiability
checkers) that find proofs fast

• Smart abstractions of the design to
capture the essential properties
– Synchronous languages (e.g. Esterel,

Lustre), used for Airbus 320 software

Undergraduate course on Real-time Systems
Linköping University

34 of 35
Autumn 2016

Historical snapshots

• Application modelling & analysis tools
– 1970´s Sequential systems
– 1980´s Concurrent/Distributed

systems
– 1990´s Timed models, Combining

discrete & continuous, UML
– 2000’s Incorporation in CASE tools

• 2012 crossroad: Domain-specific or Unified?

Undergraduate course on Real-time Systems
Linköping University

35 of 35
Autumn 2016

Adding time to UML

• Still in progress…
• No industry-wide tool support

• Recent development: UML profile for Real-
time and Embedded Systems (MARTE)

• Meta-models for a class of systems with
timing and performance parameters

See case study paper
Weissnegger et al.

