TDDDO7 Real-time Systems
Lecture 9: Dependability & Design

Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linkdping University

:’;Q Two lectures

n Real-time Systems

This lecture and lecture 9:

Lecture 9:
« Fault prevention and design aspects

Treatment of faults

e Last lecture: We mentioned four
approaches for treating faults in
dependable systems

Reading: Section 5.1 &
5.3 of article by
Averzienis et al.

= This lecture:
1. Fault prevention
2. Fault removal O

Also article on
platform-
independent design

Huang et al,

30f35
Autumn 2013

System requirements

« Functional requirements

— Describe the main objectives of the system,
also referred to as correct service

« Extra-functional requirements
— Also called non-functional properties
— Cover other requirements than those
relating to main function, in particular
dependability attributes: the frequency and
severity of service failures
= Example non-functional requirements

— Timeliness, availability, energy efficiency

40f 3!
Autumn 2013

Basic approach

Design for timeliness:

= define end-to-end deadlines

= define deadlines for individual tasks

= ascertain (worst case)
execution/communication time for each
task/message

document assumptions/restrictions
Prove/show that implementation
satisfies requirements

n Real-time Systems

— S

Real-time Systems

Layers of design

Application modelling support

Programming environment support

System software support

kernels, communication protocols)

Hardware support

Fault prevention/removal

Where should we look to find

faults prior to operation?

Historical snapshots

e Hardware design
—1970"s Dedicated hardware
—19807s Micro computers & ASICS

—19907s High performance Micro
computers, FPGAs, MEMs
—2000 s SoCware

= Earlier predictable hardware is replaced
with components that are complex to
analyse (including cache, pipeline)

on Real-time Systems

Layers of design

System software support (kernels)

9of
Autumn 2013

10 of
Autumn 2013

Historical snapshots

= Scheduling principles
—1970"s Fixed priority scheduling
—1980"s Multiprocessor, Dynamic

—1990"s Incorporating shared
resources

—2000" s Load variations, adaptation
Multicore scheduling for real
= OS interfaces to optimise memory

management, prefetching instructions to
boost performance

Layers of design

Programming environment support

Real-time Systems

Real-time Systems

Autumn 2013

Historical snapshots

= Programming environments

—1970"s "High” level
programming

—19807s Real-time specific: Ada

—19907s OO0 languages,
languages with formal
semantics

—2000"s Software libraries, reuse

e Industry lecture: Reactive/actor-based!

Engineers: Fool me onc
shame on you — fi
twice, shame on

Software developers: Fool me N

times, who cares, this is
complex and anyway no on
expects software to work...

150735
Autumn 2013

Frequency of faults

10% @ Other
7% H Code
O Design

[0 Requirements

56%
27%

[Jim Cooling 2003, cited from DeMarco78]

Autumn 2013

Testing does not do ...

If a test fails, what was the cause?

= Undocumented assumptions on
operational conditions, external impact?

= Wrong program code?

Unexpected impact of OS functionality?
Hardware timing dependencies?

= Embedded test code affecting timing?

Platform-independent design

M—
Eliminating “butterfly effect”
means trying to isolate the
impacts of different layers

-

Back to basics

= define end-to-end deadlines
— Model the environment!

= define deadlines for individual tasks
— Specify system decomposition!

= ascertain (worst case)
execution/communication time for each
task/message

— Assume hardware/bus characteristics!
= document assumptions/restrictions
— Model, model, model!

= Prove/show that implementation satisfies
requirements

— Analyse models, then test implementation!

190f35

Autumn 2013

An engineering discipline

Using mathematics can never be wrong!

Non-digital hardware

Extensive simulations of coupled aircraft flight
dynamics and actuator dynamics

I L8 fmber 3o Covieem Do ot i i

=t

- F g r
N —— = i

[P. Krus, 2000]

= b I.. ks
E
£ g3 q i
i

Model-based development

In software-intensive systems:
= Models as “higher level” programs

* Ildea: use models to analyse the design,
automatically generate code from the
model!

= Adequate support for modularisation:
Well-tested libraries with well-defined
interfaces

Layers of design

Application modelling support

n Real-time Systems

Historical snapshots

« Application modelling & analysis tools

—19707s Sequential systems

—19807s Concurrent/Distributed
systems

—19907s Timed models, Combining
discrete & continuous, UML

—2000’s Incorporation in CASE tools

= 2012 crossroad: Domain-specific or Unified?

UML standard

< UML 2.0 models components with
required and provided interfaces

« Itself a follow up of modelling
techniques suggested in early 80’s, for
example: Ward & Mellor Diagrams

* Next two slides from an example
presented in [Heitmeyer and Mandrioli,
Wiley, 1996].

Power plant

< Transformation schemata for functional
part, dynamic monitoring part

Fuel tank

Temperature

Cool ShutDown

Pressure

safety

state fo—— = ===
Coolant

HighAlarm

Coolant tank Power request

Power production

Autumn 2013

Monitor state machine

HighAlarm
ShutDown OK
No Output
Normip
OK ModerateAlarm
OK No Output Cool
ModerateAlarm
Restart
| Alert | Cool
ModerateAlarm HighAlarm
Restart ShutDown
¢/ _HighAlarm

4‘—01:'1:_‘/ No Output

Autumn 2013

What do we want to do with mode
we create them?

Advances in 2000’s

= CASE tool design models for digital
hardware and software components,
and functional analysis by

—Simulations

and sometimes...

—Formal verification of functional
properties

—Semi-automatic code generation

Real-time Systems

Simulations of a model

Need a unique interpretation:

* The language should be platform-
independent

* The language should have an
operational semantics to enable
“execution” of the model

al-time Systems

Simulations

What do they show?

Formal techniques (proofs)

e Remove (design) faults that lead to
demonstrated bad things

— debugging the design

* Prove that specific bad things never
happen

e Can be automated, but suffer from
combinatorial explosion

Advanced techniques

e Smart data structures for efficient
representation of state space

= Smart deduction engines (satisfiability
checkers) that find proofs fast

= Smart abstractions of the design to
capture the essential properties

— Synchronous languages (e.g. Esterel,
Lustre), used for Airbus 320 software

L]

Adding time to UML

Has not been easy
No industry-wide tool support

Recent development: UML profile for Real-
time and Embedded Systems (MARTE)

Meta-models for a class of systems with
timing and perform%nce parameters

=
c

< Reading: handout on =

MARTE!

Historical snapshots

= 2012 crossroad: Domain-specific or Unified?

