

Design for timeliness: define end-to-end deadlines define deadlines for individual tasks ascertain (worst case) execution/communication time for each task/message document assumptions/restrictions Prove/show that implementation satisfies requirements

Historical snapshots Programming environments -1970´s "High" level programming -1980´s Real-time specific: Ada -1990´s OO languages, languages with formal semantics -2000´s Software libraries, reuse Industry lecture: Reactive/actor-based!

If a test fails, what was the cause? Undocumented assumptions on operational conditions, external impact? Wrong program code? Unexpected impact of OS functionality? Hardware timing dependencies? Embedded test code affecting timing?

In software-intensive systems: • Models as "higher level" programs • Idea: use models to analyse the design, automatically generate code from the model! • Adequate support for modularisation: Well-tested libraries with well-defined interfaces

UML 2.0 models components with required and provided interfaces Itself a follow up of modelling techniques suggested in early 80's, for example: Ward & Mellor Diagrams Next two slides from an example presented in [Heitmeyer and Mandrioli,

Advances in 2000's

- CASE tool design models for digital hardware and software components, and functional analysis by
 - Simulations

Wiley, 1996].

and sometimes...

- Formal verification of functional properties
- Semi-automatic code generation

Lindergraduate course on Real-time Systems 29 of

Simulations of a model

Need a unique interpretation:

- The language should be platformindependent
- The language should have an operational semantics to enable "execution" of the model

Formal techniques (proofs)

- Remove (design) faults that lead to demonstrated bad things
 - debugging the design
- Prove that specific bad things never happen
- Can be automated, but suffer from combinatorial explosion

Undergraduate course on Real-time Systems

32 of 3

Advanced techniques

- Smart data structures for efficient representation of state space
- Smart deduction engines (satisfiability checkers) that find proofs fast
- Smart abstractions of the design to capture the essential properties
 - Synchronous languages (e.g. Esterel, Lustre), used for Airbus 320 software

Undergraduate course on Real-time Systems

Historical snapshots

Application modelling & analysis tools

– 1970´sSequential systems

- 1980 's Concurrent/Distributed

systems

– 1990's Timed models, Combining

discrete & continuous, UNL

2012 crossroad: Domain-specific or Unified?

Undergraduate course on Real-time Systems

34 of

Adding time to UML

- Has not been easy
- No industry-wide tool support
- Recent development: UML profile for Realtime and Embedded Systems (MARTE)
- Meta-models for a class of systems with timing and performance parameters

Reading: handout on MARTE!

Undergraduate course on Real-time Systems

35 of 3