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TDDC47: Real-time and 

Concurrent Programming

Lecture 5: Real-time Scheduling (I)
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Evaluation actions

• After muddy cards:
– Made adjustments to schedule for a better 

synchronisation lecture-lesson 
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Recall: course overview

• The notion of Process and related concepts 
(3,5 lectures) 
– Resource sharing & Synchronisation 
– Deadlocks, livelocks, and starvation

• Real-time Resource allocation: scheduling (2,5)
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• Real-time communication networks (1)
• Fault management and dependability(1)
• Guest lecture from industry
• RE: Summary and on-demand question session

This lecture

• Introduction to Real-time systems 
• CPU as a resource: Scheduling

–Cyclic scheduling
–Rate monotonic scheduling
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Real-time processes

• In (desktop) operating systems 
scheduler’s role is to ensure that each 
process gets a share of the CPU  
– Lab2 in the course
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• With real-time systems it is not enough 
that processes get a share some time

The time that the result of the computation is 
delivered is as important as the result itself

• Predictability!

Predictable is not “fast”!

The film...
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Release time
Computation 
time

time

Deadline

What is meant by predictable?
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External event Reaction

Real-time systems: Can all processes

meet their deadlines?

Consider following processes:

Computation time  (Ci) 5 ms 10 ms
Deadline  (Di) 20 ms 12 ms

p1 p2

Order matters!
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p2 timep1t0

timep1p2t0

Deadlines

• Hard: Not meeting any deadline is a 
failure of the system

• Soft: It is desirable that deadlines are 
met  but OK if they are missed every 

How often?
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met, but OK if they are missed every 
now and then 

• Firm: It is OK that they are missed now 
and again, but after the deadline the 
result is of no use

Typical application area

• Vehicle electronics
–Power train and chassis
– Infotainment/telematics
–Body electronics

d fi i h 0
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• A modern car configuration has over 40 
ECUs, distributed over several buses

• Several applications share                           
each ECU that shares
the bus

Really good example
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This lecture

• Course overview
• Introduction to Real-time systems
• CPU as a resource: Scheduling

–Cyclic scheduling
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–Rate monotonic scheduling
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Scheduling

... is about allocating resources, 
specially the CPU time, among all 
computational processes such that 
the timeliness requirements are met.
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If all processes meet their deadlines
then the process set is schedulable.

Scheduling

• Performed off-line or on-line 
• With information available statically or 

dynamically
• Preemptive or non-preemptive
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• Preemptive or non-preemptive

Schedulability Test

• Sufficient
– if test is passed, then tasks are definitely 

schedulable
– if test is not passed, we don’t know 
Necessary
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• Necessary
– if test is passed, we don’t know
– if test is not passed, tasks are definitely not 

schedulable
• Exact test:

– sufficient & necessary at the same time

Which parameters?

Scheduling policy induces an order on 
executions using an algorithm and a set 
of parameters for the task set:

• Worst case execution time (WCET)
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• Worst case execution time (WCET)
• Deadline
• Release time
• ...

Process parameters

• How to find the maximum computation 
time for each process?

• How to determine deadlines?
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• When (how often) is a process released?

Release times

• Reading and reacting to continuous 
signals 
– Periodicity
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• Recognising/reacting to some aperiodic
events 
– Minimum inter-arrival time
 Sporadic processes
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Cyclic scheduling

• A schedule is created based on  
statically known and fixed parameters

• Off-line decision on which task runs 
when
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– When executing: Run the processes in pre-
determined order using a table look-up

• To run processes in the “right” 
frequency find 
– Minor cycle
– Major cycle

Consider following processes: P1 P2

Period(Ti)/Deadline 50 100
Worst case execution time (Ci) 10 30

Example (1)
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0 50 100 150 200 250

Note: repetition!

...

time

A cyclic executive

every_major_cycle do{

read all in_signals;

run_minor_cycle_1_processes;

wait_for_interrupt;

write all out_signals;
End of minor cycle
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...

read all in_signals;

run_minor_cycle_n_processes;

wait_for_interrupt;

write all out_signals;

}

End of minor cycle

No preemption!
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First try:
Minor cycle: greatest common devisor 
(sv. sgd)

Major cycle: least common multiplier 
(sv. mgn)

Finding Minor/Major Cycle
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(sv. mgn)

Example (2):
process A B C
period 20 40 60

...

0 12020

Iterative construction

• Off-line analysis in order to fix the 
schedule might be iterative
–Each process Pi is run as if strictly 

periodic (i.e. should be completed 
once every Ti)
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once every Ti)
–Place the processes in minor cycle and 

major cycle until repetition appears
–Check: Will the schedule work with 

the natural periods and computation 
times?  
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When does it work?

• All processes should be run at least as 
often as every (original) Ti

• All processes fit in their minor cycles
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• Otherwise, change the parameters!

• Which parameters can we change?

Easy to find minor/major cycle

Recall example 2:
process A B C

Harmonic processes
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process A B C
period 20 40 60

...

0 12020

But the tasks may not fit 

What if periods are not harmonic?
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Next try...

• In either case we need to
– change the periods
– recall that all processes should be run at 

least as often as every (original) Ti
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• Place the processes in new minor cycle 
and major cycle until repetition appears

process A B
period 75 100

Alternative 1:
Choose minor cycle as greatest
common divisor  and move processes

Example (3.1)
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common divisor, and move processes
backwards in time when they clash. 

...
Drawbacks?

time0 25 100 150

Jitter control

• Many applications need to minimise 
jitter in reading data from sensors or 
producing output to actuators 
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process A B
period 75 100

Alternative 2:
Run process B more often than necessary  

Example (3.2)
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Run process B more often than necessary, 
e.g. once every 75 time units.

time

...

0 75

minor cycle
Drawbacks?

process A B
period 75 100

Alternative 3:
A mix of the last two

Example (3.3)
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minor cycle
Drawbacks?

time0 50

...

Schedulability test

• Sum of processes’ execution times 
(WCET) in each minor cycle is less than 
the cycle’s length, and processes run at 
the ”right” frequency
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If succeeded:
• the schedule, whose length corresponds 

to the major cycle, is repeated for all 
executions

If they don’t fit?

• Break some process that does not fit 
into two or more processes and run the 
different parts in different minor cycles

Creates new 
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Drawbacks?

Creates new 
processes out of the 

old one!

What if dependent?

• So far we assumed all processes are 
independent

• Dependence can be due to sharing 
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resources or computation precedence 
requirements

• In either case, the fixed order has to 
respect dependencies

Summary

• Cycles can be hard to determine and 
can become looong ...

• Very inflexible
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• Can lead to high processor utilisation
• Long WCET can create problems
• Sporadic processes are run periodically
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• Simple at run-time
• No overheads for context switching
• Processes can exchange data without 

But...
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g
the need for explicit (dynamic) 
synchronisation

Run-time behaviour

Try to work out:
• What is the deadline for each process?
• How does one know that processes 

meet their deadlines?
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• What happens if they don’t?

Better methods needed

For:
• Processes with long WCET
• Sporadic events
• Processes with long period but short 
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g p
deadline

• Dealing with overruns

Priority-based scheduling

• A preemptive method where the priority 
of the process determines whether it 
continues to run or it is disrupted
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”Most important process first!”

RMS

Rate Monotonic Scheduling: 
• On-line
• Preemptive
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• Priority-based with fixed (static) 
priorities

Priorities

• Each process has a period Ti that is the 
shortest interval between its release 
times 
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• Processes are assigned priorities 
dependent on length of Ti

– The shorter Ti the higher the priority
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Example (4)

P1      P2     P3

Period (Ti) 20      50      30
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Period (Ti) 20      50      30
WCET (Ci) 10      10        5
Priority high    low  medium

Consider following scenario:

arrival time process
0 P1, P2, P3
20 P1
30 P3
40 P1
50 P2
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50 P2
60 P1, P3

0       10        20       30       40        50       60                  80      90

...preemption

time

Schedulability test

Theorem: (sufficient condition)

For processes  RMS will guarantee their 
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For n processes, RMS will guarantee their 
schedulability if the total utilisation 
U =  C1/T1 + ... + Cn/Tn
does not exceed the guarantee level
G = n (2 1/n -1)


