
1

TDDC47: Real-time and

Concurrent Programming

Lecture 5: Real-time Scheduling (I)

Undergraduate course on Real-time Systems
Linköping

1 of 45
Autumn 2010

Simin Nadjm-Tehrani
Real-time Systems Laboratory

Department of Computer and Information Science
Linköping University

Evaluation actions

• After muddy cards:
– Made adjustments to schedule for a better

synchronisation lecture-lesson

Undergraduate course on Real-time Systems
Linköping

2 of 45
Autumn 2010

Recall: course overview

• The notion of Process and related concepts
(3,5 lectures)
– Resource sharing & Synchronisation
– Deadlocks, livelocks, and starvation

• Real-time Resource allocation: scheduling (2,5)

Undergraduate course on Real-time Systems
Linköping

3 of 45
Autumn 2010

• Real-time communication networks (1)
• Fault management and dependability(1)
• Guest lecture from industry
• RE: Summary and on-demand question session

This lecture

• Introduction to Real-time systems
• CPU as a resource: Scheduling

–Cyclic scheduling
–Rate monotonic scheduling

Undergraduate course on Real-time Systems
Linköping

4 of 45
Autumn 2010

g

Real-time processes

• In (desktop) operating systems
scheduler’s role is to ensure that each
process gets a share of the CPU
– Lab2 in the course

Undergraduate course on Real-time Systems
Linköping

5 of 45
Autumn 2010

• With real-time systems it is not enough
that processes get a share some time

The time that the result of the computation is
delivered is as important as the result itself

• Predictability!

Predictable is not “fast”!

The film...

Undergraduate course on Real-time Systems
Linköping

6 of 45
Autumn 2010

2

Release time
Computation
time

time

Deadline

What is meant by predictable?

Undergraduate course on Real-time Systems
Linköping

7 of 45
Autumn 2010

External event Reaction

Real-time systems: Can all processes

meet their deadlines?

Consider following processes:

Computation time (Ci) 5 ms 10 ms
Deadline (Di) 20 ms 12 ms

p1 p2

Order matters!

Undergraduate course on Real-time Systems
Linköping

8 of 45
Autumn 2010

p2 timep1t0

timep1p2t0

Deadlines

• Hard: Not meeting any deadline is a
failure of the system

• Soft: It is desirable that deadlines are
met but OK if they are missed every

How often?

Undergraduate course on Real-time Systems
Linköping

9 of 45
Autumn 2010

met, but OK if they are missed every
now and then

• Firm: It is OK that they are missed now
and again, but after the deadline the
result is of no use

Typical application area

• Vehicle electronics
–Power train and chassis
– Infotainment/telematics
–Body electronics

d fi i h 0

Undergraduate course on Real-time Systems
Linköping

10 of 45
Autumn 2010

• A modern car configuration has over 40
ECUs, distributed over several buses

• Several applications share
each ECU that shares
the bus

Really good example

Undergraduate course on Real-time Systems
Linköping

11 of 45
Autumn 2010

This lecture

• Course overview
• Introduction to Real-time systems
• CPU as a resource: Scheduling

–Cyclic scheduling

Undergraduate course on Real-time Systems
Linköping

12 of 45
Autumn 2010

y g
–Rate monotonic scheduling

3

Scheduling

... is about allocating resources,
specially the CPU time, among all
computational processes such that
the timeliness requirements are met.

Undergraduate course on Real-time Systems
Linköping

13 of 45
Autumn 2010

If all processes meet their deadlines
then the process set is schedulable.

Scheduling

• Performed off-line or on-line
• With information available statically or

dynamically
• Preemptive or non-preemptive

Undergraduate course on Real-time Systems
Linköping

14 of 45
Autumn 2010

• Preemptive or non-preemptive

Schedulability Test

• Sufficient
– if test is passed, then tasks are definitely

schedulable
– if test is not passed, we don’t know
Necessary

Undergraduate course on Real-time Systems
Linköping

15 of 45
Autumn 2010

• Necessary
– if test is passed, we don’t know
– if test is not passed, tasks are definitely not

schedulable
• Exact test:

– sufficient & necessary at the same time

Which parameters?

Scheduling policy induces an order on
executions using an algorithm and a set
of parameters for the task set:

• Worst case execution time (WCET)

Undergraduate course on Real-time Systems
Linköping

16 of 45
Autumn 2010

• Worst case execution time (WCET)
• Deadline
• Release time
• ...

Process parameters

• How to find the maximum computation
time for each process?

• How to determine deadlines?

Undergraduate course on Real-time Systems
Linköping

17 of 45
Autumn 2010

• When (how often) is a process released?

Release times

• Reading and reacting to continuous
signals
– Periodicity

Undergraduate course on Real-time Systems
Linköping

18 of 45
Autumn 2010

• Recognising/reacting to some aperiodic
events
– Minimum inter-arrival time
 Sporadic processes

4

Cyclic scheduling

• A schedule is created based on
statically known and fixed parameters

• Off-line decision on which task runs
when

Undergraduate course on Real-time Systems
Linköping

19 of 45
Autumn 2010

– When executing: Run the processes in pre-
determined order using a table look-up

• To run processes in the “right”
frequency find
– Minor cycle
– Major cycle

Consider following processes: P1 P2

Period(Ti)/Deadline 50 100
Worst case execution time (Ci) 10 30

Example (1)

Undergraduate course on Real-time Systems
Linköping

20 of 45
Autumn 2010

0 50 100 150 200 250

Note: repetition!

...

time

A cyclic executive

every_major_cycle do{

read all in_signals;

run_minor_cycle_1_processes;

wait_for_interrupt;

write all out_signals;
End of minor cycle

Undergraduate course on Real-time Systems
Linköping

21 of 45
Autumn 2010

...

read all in_signals;

run_minor_cycle_n_processes;

wait_for_interrupt;

write all out_signals;

}

End of minor cycle

No preemption!

Undergraduate course on Real-time Systems
Linköping

22 of 45
Autumn 2010

First try:
Minor cycle: greatest common devisor
(sv. sgd)

Major cycle: least common multiplier
(sv. mgn)

Finding Minor/Major Cycle

Undergraduate course on Real-time Systems
Linköping

23 of 45
Autumn 2010

(sv. mgn)

Example (2):
process A B C
period 20 40 60

...

0 12020

Iterative construction

• Off-line analysis in order to fix the
schedule might be iterative
–Each process Pi is run as if strictly

periodic (i.e. should be completed
once every Ti)

Undergraduate course on Real-time Systems
Linköping

24 of 45
Autumn 2010

once every Ti)
–Place the processes in minor cycle and

major cycle until repetition appears
–Check: Will the schedule work with

the natural periods and computation
times?

5

When does it work?

• All processes should be run at least as
often as every (original) Ti

• All processes fit in their minor cycles

Undergraduate course on Real-time Systems
Linköping

25 of 45
Autumn 2010

• Otherwise, change the parameters!

• Which parameters can we change?

Easy to find minor/major cycle

Recall example 2:
process A B C

Harmonic processes

Undergraduate course on Real-time Systems
Linköping

26 of 45
Autumn 2010

process A B C
period 20 40 60

...

0 12020

But the tasks may not fit

What if periods are not harmonic?

Undergraduate course on Real-time Systems
Linköping

27 of 45
Autumn 2010

Next try...

• In either case we need to
– change the periods
– recall that all processes should be run at

least as often as every (original) Ti

Undergraduate course on Real-time Systems
Linköping

28 of 45
Autumn 2010

• Place the processes in new minor cycle
and major cycle until repetition appears

process A B
period 75 100

Alternative 1:
Choose minor cycle as greatest
common divisor and move processes

Example (3.1)

Undergraduate course on Real-time Systems
Linköping

29 of 45
Autumn 2010

common divisor, and move processes
backwards in time when they clash.

...
Drawbacks?

time0 25 100 150

Jitter control

• Many applications need to minimise
jitter in reading data from sensors or
producing output to actuators

Undergraduate course on Real-time Systems
Linköping

30 of 45
Autumn 2010

6

process A B
period 75 100

Alternative 2:
Run process B more often than necessary

Example (3.2)

Undergraduate course on Real-time Systems
Linköping

31 of 45
Autumn 2010

Run process B more often than necessary,
e.g. once every 75 time units.

time

...

0 75

minor cycle
Drawbacks?

process A B
period 75 100

Alternative 3:
A mix of the last two

Example (3.3)

Undergraduate course on Real-time Systems
Linköping

32 of 45
Autumn 2010

minor cycle
Drawbacks?

time0 50

...

Schedulability test

• Sum of processes’ execution times
(WCET) in each minor cycle is less than
the cycle’s length, and processes run at
the ”right” frequency

Undergraduate course on Real-time Systems
Linköping

33 of 45
Autumn 2010

If succeeded:
• the schedule, whose length corresponds

to the major cycle, is repeated for all
executions

If they don’t fit?

• Break some process that does not fit
into two or more processes and run the
different parts in different minor cycles

Creates new

Undergraduate course on Real-time Systems
Linköping

34 of 45
Autumn 2010

Drawbacks?

Creates new
processes out of the

old one!

What if dependent?

• So far we assumed all processes are
independent

• Dependence can be due to sharing

Undergraduate course on Real-time Systems
Linköping

35 of 45
Autumn 2010

resources or computation precedence
requirements

• In either case, the fixed order has to
respect dependencies

Summary

• Cycles can be hard to determine and
can become looong ...

• Very inflexible

Undergraduate course on Real-time Systems
Linköping

36 of 45
Autumn 2010

• Can lead to high processor utilisation
• Long WCET can create problems
• Sporadic processes are run periodically

7

• Simple at run-time
• No overheads for context switching
• Processes can exchange data without

But...

Undergraduate course on Real-time Systems
Linköping

37 of 45
Autumn 2010

g
the need for explicit (dynamic)
synchronisation

Run-time behaviour

Try to work out:
• What is the deadline for each process?
• How does one know that processes

meet their deadlines?

Undergraduate course on Real-time Systems
Linköping

38 of 45
Autumn 2010

• What happens if they don’t?

Better methods needed

For:
• Processes with long WCET
• Sporadic events
• Processes with long period but short

Undergraduate course on Real-time Systems
Linköping

39 of 45
Autumn 2010

g p
deadline

• Dealing with overruns

Priority-based scheduling

• A preemptive method where the priority
of the process determines whether it
continues to run or it is disrupted

Undergraduate course on Real-time Systems
Linköping

40 of 45
Autumn 2010

”Most important process first!”

RMS

Rate Monotonic Scheduling:
• On-line
• Preemptive

Undergraduate course on Real-time Systems
Linköping

41 of 45
Autumn 2010

• Priority-based with fixed (static)
priorities

Priorities

• Each process has a period Ti that is the
shortest interval between its release
times

Undergraduate course on Real-time Systems
Linköping

42 of 45
Autumn 2010

• Processes are assigned priorities
dependent on length of Ti

– The shorter Ti the higher the priority

8

Example (4)

P1 P2 P3

Period (Ti) 20 50 30

Undergraduate course on Real-time Systems
Linköping

43 of 45
Autumn 2010

Period (Ti) 20 50 30
WCET (Ci) 10 10 5
Priority high low medium

Consider following scenario:

arrival time process
0 P1, P2, P3
20 P1
30 P3
40 P1
50 P2

Undergraduate course on Real-time Systems
Linköping

44 of 45
Autumn 2010

50 P2
60 P1, P3

0 10 20 30 40 50 60 80 90

...preemption

time

Schedulability test

Theorem: (sufficient condition)

For processes RMS will guarantee their

Undergraduate course on Real-time Systems
Linköping

45 of 45
Autumn 2010

For n processes, RMS will guarantee their
schedulability if the total utilisation
U = C1/T1 + ... + Cn/Tn
does not exceed the guarantee level
G = n (2 1/n -1)

