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This lecture

• We will continue with presentation on 
Semaphores

• We move on to the next level of 
abstraction: Monitors
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• We will return to the analysis of the 
methods based on busy waiting: 
Peterson’s algorithm

Solving ME with semaphore

var mutex: semaphore; 
(* initially 1 *)
process Pi;
loop

wait(mutex);
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critical_section;
signal(mutex);
non_critical_section;

end
end Pi;

Recall: Properties

• Semaphore variable is always initialised 
as non-negative

• Wait and Signal are implemented as 
atomic operations
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• Which process to wake up among all 
suspended ones is not specified

Spin locks

• When busy waiting is used to implement 
semaphore operations

• This was the original definition of wait & 
signal introduced by Dijkstra :

≤
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wait(s): while s ≤ 0 do nothing;

s = s-1

signal(s): s = s+1

Properties

• Wait and Signal are implemented as 
atomic operations

• Semaphore is always initialised as non-
negative
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• Which process to wake up among all 
suspended ones is not specified
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How to implement?

process P1;

…

wait(s)

…

process P2;

…

wait(s)

…

process P3;

…

wait(s)

…
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signal(s)

…

end;

signal(s)

…

end;

signal(s)

…

end;

Queue of suspended processes:

Semaphores vs. Busy waiting

• For long critical sections, semaphores 
more efficient in using CPU 

• Better code organisation, less errors?
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• What about reasoning about 
correctness, issues with deadlock and 
starvation?

• We will come back to these…

This lecture

• We will continue with presentation on 
Semaphores

• We move on to the next level of 
abstraction: Monitors

Undergraduate course TDDC47
Linköping

9 of 25 
Autumn   2010 

• We will return to the analysis of the 
methods based on busy waiting: 
Peterson’s algorithm

What is a monitor?

• A programming abstraction consisting of: 
– Data structure on which programmer can 

define operations – to be run one at a time
– Condition variables for synchronisation

Undergraduate course TDDC47
Linköping

10 of 25 
Autumn   2010 

• Encapsulates shared data that several 
processes can operate upon

• In addition: automatic mutual exclusion 
• Pre object-orientation!

[Hoare 74]

Condition variables

• Declared as special synchronisation variables:
Condition X;

• With two designated operations:
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Wait(X): suspend the calling process

Signal(X): if there are suspended 
processes on this variable, wake one up

Overview

Shared data

Condition variables X, Y
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Initialisation code

Operations on

Shared data
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Properties

• wait and signal can be called within 
any of the operations 

Note:
• The condition variable has no values 
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• The condition variable has no values 
assigned to it

• The queue associated with it is the main 
synchronisation mechanism

• Different semantics from semaphore 
operations for wait and signal

Process queues

Queue of processes 

wanting to execute 

some monitor

operation

Shared data

Condition variables X, Y

 f  
X:

queue for 
processes waiting 
for X
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Initialisation code

queue for 
processes waiting 
for Y

Y:

Operations on

Shared data
Use wait/signal

operations on condition

variables

How does it work?

Process P1

…

wait(X)

Process P4
P P2
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…

signal(X)

Process P2

…

time

t

Which process to run at time t?

Options

• Original Hoare monitor: let the woken 
up process (P1) continue

What if there are several 
processes waiting on X?
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P1 has to check for 
condition X when woken  

up!

• Pragmatic solution (Java): let the 
signalling process continue, and wake 
up P1 once P4 is suspended/exits 

Example: Bounded buffer

(* in some language that supports monitors *)

monitor BoundedBuffer;
Buf: array [0..SizeOfBuffer] of integer;
Base, Top: integer;
Count: integer;
NotFull, NotEmpty: condition;

ti A d(E i t )
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operation Append(E: integer);
...
end Append;
operation Take(var E: integer);
...
end Take;
begin
<initialize> (* set Base,Top,Count to 0 *)
end BoundedBuffer;

Operation Append

operation Append (E: integer);
begin
if Count == SizeOfBuffer + 1 then
wait(NotFull);
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Buff[Top] = E;
Top = (Top + 1) mod SizeOfBuffer;
Count = Count + 1;
signal(NotEmpty)
end Append;
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Operation Take

operation Take (var E: integer);
begin
if Count == 0 then
wait(NotEmpty);
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E = Buff[Base];
Base = (Base + 1) mod SizeOfBuffer;
Count = Count - 1;
signal(NotFull)
end Take;

Producer-Consumer problem

process Producer;

var Current: 
integer;

begin

loop

process Consumer;

var Current: 
integer;

begin

loop
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loop

Produce(Current);

Append(Current)

end

end Producer;

loop

Take(Current);

Consume(Current)

end

end Consumer;

Summary

• Monitors have the same power as 
semaphores but are at a higher level of 
abstraction 
– Exercise: Try implementing producer-

consumer solution with semaphores!
• Monitor has different mechanisms for 
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• Monitor has different mechanisms for 
handling synchronisation and for data 
communication

• Mutually exclusive access to data 
automatic, but matching waits and 
signals still a problem!

This lecture

• We will continue with presentation on 
Semaphores

• We move on to the next level of 
abstraction: Monitors
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• We will return to the analysis of the 
methods based on busy waiting: 
Peterson’s algorithm

Peterson’s algorithm

process P1
loop

flag1 = up
turn = 2
while flag2 == up and turn == 2 do 
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nothing
end
critical-section
flag1 = down
non-critical-section

end
How do we show that it actually works?

Recall: last lecture

• How does one argue about correctness 
of Peterson’s algorithm?

• Will show that 
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–Processes respect mutual exclusion
–A process will not be waiting to enter 

its critical section indefinitely
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Questions?


