
1

TDDC47

Real-time and Concurrent
Programming

Lecture 3: Mutual exclusion (cont’d)
& monitors

Undergraduate course TDDC47
Linköping

& monitors
Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linköping University

25 pages
Autumn 2010

This lecture

• We will continue with presentation on
Semaphores

• We move on to the next level of
abstraction: Monitors

Undergraduate course TDDC47
Linköping

2 of 25
Autumn 2010

• We will return to the analysis of the
methods based on busy waiting:
Peterson’s algorithm

Solving ME with semaphore

var mutex: semaphore;
(* initially 1 *)
process Pi;
loop

wait(mutex);

Undergraduate course TDDC47
Linköping

3 of 25
Autumn 2010

critical_section;
signal(mutex);
non_critical_section;

end
end Pi;

Recall: Properties

• Semaphore variable is always initialised
as non-negative

• Wait and Signal are implemented as
atomic operations

Undergraduate course TDDC47
Linköping

4 of 25
Autumn 2010

• Which process to wake up among all
suspended ones is not specified

Spin locks

• When busy waiting is used to implement
semaphore operations

• This was the original definition of wait &
signal introduced by Dijkstra :

≤

Undergraduate course TDDC47
Linköping

5 of 25
Autumn 2010

wait(s): while s ≤ 0 do nothing;

s = s-1

signal(s): s = s+1

Properties

• Wait and Signal are implemented as
atomic operations

• Semaphore is always initialised as non-
negative

Undergraduate course TDDC47
Linköping

6 of 25
Autumn 2010

• Which process to wake up among all
suspended ones is not specified

2

How to implement?

process P1;

…

wait(s)

…

process P2;

…

wait(s)

…

process P3;

…

wait(s)

…

Undergraduate course TDDC47
Linköping

7 of 25
Autumn 2010

signal(s)

…

end;

signal(s)

…

end;

signal(s)

…

end;

Queue of suspended processes:

Semaphores vs. Busy waiting

• For long critical sections, semaphores
more efficient in using CPU

• Better code organisation, less errors?

Undergraduate course TDDC47
Linköping

8 of 25
Autumn 2010

• What about reasoning about
correctness, issues with deadlock and
starvation?

• We will come back to these…

This lecture

• We will continue with presentation on
Semaphores

• We move on to the next level of
abstraction: Monitors

Undergraduate course TDDC47
Linköping

9 of 25
Autumn 2010

• We will return to the analysis of the
methods based on busy waiting:
Peterson’s algorithm

What is a monitor?

• A programming abstraction consisting of:
– Data structure on which programmer can

define operations – to be run one at a time
– Condition variables for synchronisation

Undergraduate course TDDC47
Linköping

10 of 25
Autumn 2010

• Encapsulates shared data that several
processes can operate upon

• In addition: automatic mutual exclusion
• Pre object-orientation!

[Hoare 74]

Condition variables

• Declared as special synchronisation variables:
Condition X;

• With two designated operations:

Undergraduate course TDDC47
Linköping

11 of 25
Autumn 2010

Wait(X): suspend the calling process

Signal(X): if there are suspended
processes on this variable, wake one up

Overview

Shared data

Condition variables X, Y

Undergraduate course TDDC47
Linköping

12 of 25
Autumn 2010

Initialisation code

Operations on

Shared data

3

Properties

• wait and signal can be called within
any of the operations

Note:
• The condition variable has no values

Undergraduate course TDDC47
Linköping

13 of 25
Autumn 2010

• The condition variable has no values
assigned to it

• The queue associated with it is the main
synchronisation mechanism

• Different semantics from semaphore
operations for wait and signal

Process queues

Queue of processes

wanting to execute

some monitor

operation

Shared data

Condition variables X, Y

 f
X:

queue for
processes waiting
for X

Undergraduate course TDDC47
Linköping

14 of 25
Autumn 2010

Initialisation code

queue for
processes waiting
for Y

Y:

Operations on

Shared data
Use wait/signal

operations on condition

variables

How does it work?

Process P1

…

wait(X)

Process P4
P P2

Undergraduate course TDDC47
Linköping

15 of 25
Autumn 2010

…

signal(X)

Process P2

…

time

t

Which process to run at time t?

Options

• Original Hoare monitor: let the woken
up process (P1) continue

What if there are several
processes waiting on X?

Undergraduate course TDDC47
Linköping

16 of 25
Autumn 2010

P1 has to check for
condition X when woken

up!

• Pragmatic solution (Java): let the
signalling process continue, and wake
up P1 once P4 is suspended/exits

Example: Bounded buffer

(* in some language that supports monitors *)

monitor BoundedBuffer;
Buf: array [0..SizeOfBuffer] of integer;
Base, Top: integer;
Count: integer;
NotFull, NotEmpty: condition;

ti A d(E i t)

Undergraduate course TDDC47
Linköping

17 of 25
Autumn 2010

operation Append(E: integer);
...
end Append;
operation Take(var E: integer);
...
end Take;
begin
<initialize> (* set Base,Top,Count to 0 *)
end BoundedBuffer;

Operation Append

operation Append (E: integer);
begin
if Count == SizeOfBuffer + 1 then
wait(NotFull);

Undergraduate course TDDC47
Linköping

18 of 25
Autumn 2010

Buff[Top] = E;
Top = (Top + 1) mod SizeOfBuffer;
Count = Count + 1;
signal(NotEmpty)
end Append;

4

Operation Take

operation Take (var E: integer);
begin
if Count == 0 then
wait(NotEmpty);

Undergraduate course TDDC47
Linköping

19 of 25
Autumn 2010

E = Buff[Base];
Base = (Base + 1) mod SizeOfBuffer;
Count = Count - 1;
signal(NotFull)
end Take;

Producer-Consumer problem

process Producer;

var Current:
integer;

begin

loop

process Consumer;

var Current:
integer;

begin

loop

Undergraduate course TDDC47
Linköping

20 of 25
Autumn 2010

loop

Produce(Current);

Append(Current)

end

end Producer;

loop

Take(Current);

Consume(Current)

end

end Consumer;

Summary

• Monitors have the same power as
semaphores but are at a higher level of
abstraction
– Exercise: Try implementing producer-

consumer solution with semaphores!
• Monitor has different mechanisms for

Undergraduate course TDDC47
Linköping

21 of 25
Autumn 2010

• Monitor has different mechanisms for
handling synchronisation and for data
communication

• Mutually exclusive access to data
automatic, but matching waits and
signals still a problem!

This lecture

• We will continue with presentation on
Semaphores

• We move on to the next level of
abstraction: Monitors

Undergraduate course TDDC47
Linköping

22 of 25
Autumn 2010

• We will return to the analysis of the
methods based on busy waiting:
Peterson’s algorithm

Peterson’s algorithm

process P1
loop

flag1 = up
turn = 2
while flag2 == up and turn == 2 do

Undergraduate course TDDC47
Linköping

23 of 25
Autumn 2010

nothing
end
critical-section
flag1 = down
non-critical-section

end
How do we show that it actually works?

Recall: last lecture

• How does one argue about correctness
of Peterson’s algorithm?

• Will show that

Undergraduate course TDDC47
Linköping

24 of 25
Autumn 2010

–Processes respect mutual exclusion
–A process will not be waiting to enter

its critical section indefinitely

5

Undergraduate course TDDC47
Linköping

25 of 25
Autumn 2010

Questions?

