
1

TDDC47 

Real-time and Concurrent 
Programming

Lecture 2: Processes and shared 
resources

Undergraduate course TDDC47
Linköping

Simin Nadjm-Tehrani
Real-time Systems Laboratory

Department of Computer and Information Science
Linköping university

40  pages
Autumn 2009

Exercise from last time

• Questions and comments from last 
lecture
– Faster pace? 
– Language?

Undergraduate course TDDC47
Linköping

2 of 40
Autumn   2009 

Message from LiU

Undergraduate course TDDC47
Linköping

3 of 40
Autumn   2009 

This lecture

• Processes, threads, and their 
representation

• Concurrency and execution
• Communication

Undergraduate course TDDC47
Linköping

4 of 40
Autumn   2009 

• Synchronisation

• The mutual exclusion problem

Recall from last lecture

• A concurrent program consists of a set 
of autonomous computation processes 
(logically) running in parallel

• A process has its own thread of control 
and its own address space

Undergraduate course TDDC47
Linköping

5 of 40
Autumn   2009 

and its own address space
• Operating system may arbitrarily switch 

among processes and give control of the 
CPU to some process

Each process

• Is managed by the OS and has
– A process ID
– A record of its run-time data kept in the OS 

“process control block”  − PCB

Is allocated segments in the memory:

Undergraduate course TDDC47
Linköping

6 of 40
Autumn   2009 

• Is allocated segments in the memory:
– Code: the machine instructions it will run
– Data: global variables and memory allocated 

at run-time
– Stack: local variables and records of 

functions activated



2

Process life cycle

Non-existing

Created

Undergraduate course TDDC47
Linköping

7 of 40
Autumn   2009 

Executing

Initialising Terminated

ReadyReady Waiting

Executing

Analogies

• Cooking recipe: program 
• Preparing a dish: running different 

instances of concurrent processes 
• Looking for ingredients: initialisation

Undergraduate course TDDC47
Linköping

8 of 40
Autumn   2009 

Programming for processes

• Typical real-time systems: Assembler, C
– Need support from OS to create, schedule 

and terminate tasks

• Languages with support for concurrent 
programming: Java  Ada

Undergraduate course TDDC47
Linköping

9 of 40
Autumn   2009 

programming: Java, Ada
– Have their own run-time system and can 

explicitly create processes

Program/process structure

• Static/Dynamic
• Nested/Flat

Not part of 
this course

Undergraduate course TDDC47
Linköping

10 of 40
Autumn   2009 

• Substantial differences between various 
languages wrt syntax, execution model, 
and termination semantics for nested 
processes

Threads (& tasks)

• Some modern operating systems allow a 
process to create (spawn) a number of 
parallel threads of control – in the same
address space

• Each process has its own stack

Undergraduate course TDDC47
Linköping

11 of 40
Autumn   2009 

Each process has its own stack
• Processes that run with a shared 

address space (code, data) are called 
light-weight processes or threads

• In this course we consider processes 
with one thread of control and use tasks 
interchangeably with processes

Logical parallelism

P1:

{while true do 
think;
talk

P2:

{while true do
sleep;
listen

Undergraduate course TDDC47
Linköping

12 of 40
Autumn   2009 

talk
}

listen
}

Which potential execution sequences (traces)?



3

Context Switch

• Consider a program that consists of 
processes P1,…, P4

• An execution of the concurrent program 
may look like:

Undergraduate course TDDC47
Linköping

13 of 40
Autumn   2009 

time

P1

P4

P3

P2

Context switch

Keeping track of execution

• Each process in PCB has:
– Process state (which stage in life cycle)
– Program counter (where in its running code)
– Value of internal variables

Th  ll t d   

Undergraduate course TDDC47
Linköping

14 of 40
Autumn   2009 

– The allocated memory areas 
– Open files and other resources

This lecture

• Processes, threads, and their 
representation

• Concurrency and execution
• Communication

Undergraduate course TDDC47
Linköping

15 of 40
Autumn   2009 

• Synchronisation

• The mutual exclusion problem

Process communication

Data sharing:
• Output for one process may be input for 

another process
– Compute distance, and then compute incremental 

acceleration
Flow of control (synchronisation):

Undergraduate course TDDC47
Linköping

16 of 40
Autumn   2009 

• One process may only start after another one 
finished
– Update display only after all sensor values are 

received
• Sharing common resources

– No more than one process at a time may send a 
packet on a shared channel

Communication

• Two modes:
– Shared variables 
– Message passing

Process A Process A

Undergraduate course TDDC47
Linköping

17 of 40
Autumn   2009 

Process A Process A

Process B
Process B

Kernel Kernel

Shared

Basic operation

• Communication using shared variables

P1 P2

Undergraduate course TDDC47
Linköping

18 of 40
Autumn   2009 

Variable X

Writes to X Reads from XWrites to X Reads from X



4

Problems?

• No! Since hardware memory can 
support atomic memory update, so that 
only one writes at a time

• But…
• Creates problems for more complex 

Undergraduate course TDDC47
Linköping

19 of 40
Autumn   2009 

• Creates problems for more complex 
shared data structures
– Update date, time and stock value 

• One process may write at a faster rate 
than the other process reads
– Register a call to a telecom server before serving it
– Is the call on the register the earliest unserved one? 

Even if server is overloaded?

Race condition

• Consider two processes P1 and P2 that are 
allowed to write to a shared data structure

• If the order of updating the data structure by 
respective processes can affect the outcome of 
the computation then the system suffers from 

Undergraduate course TDDC47
Linköping

20 of 40
Autumn   2009 

the computation then the system suffers from 
a race condition
– Analogy: Deposit 5000kr in the account, calculate 

accrued interest

• Process synchronisation is used to avoid race 
conditions

Decoupling from process rates

• Finite buffers

P1 P2

Undergraduate course TDDC47
Linköping

21 of 40
Autumn   2009 

P1 P2

Writes to buffer Reads from buffer

Finite buffer

Issues

• Must check that buffer is not full when 
writing to it

• Must check that buffer is not empty 
when reading from it

Undergraduate course TDDC47
Linköping

22 of 40
Autumn   2009 

• Must ensure that two processes do not 
write on one buffer position at the same 
time

synchronisation and 
shared data problems

General problems

• Conditional action
– Examples:

• Compute the interest when all transactions have 
been processed

Undergraduate course TDDC47
Linköping

23 of 40
Autumn   2009 

been processed
• Check that seats are available before booking

• Mutual exclusion
– Example:

• Two customers shall not be booked on the same 
seat

Analogies

Summary so far...
• Synchronisation

– Mash the potatoes once they are cooked

• Data sharing

Undergraduate course TDDC47
Linköping

24 of 40
Autumn   2009 

– Two sets of guests

• Mutual exclusion
– Two appliances cannot use the same 

electricity socket at the same time, e.g. 
toaster and electric kettle



5

This lecture

• Processes, threads, and their 
representation

• Concurrency and execution
• Communication

Undergraduate course TDDC47
Linköping

25 of 40
Autumn   2009 

• Synchronisation

• The mutual exclusion problem

Example

• Consider the two processes using a 
shared variable x initialised at 0:

P0 P1

[Garg 2005]

Undergraduate course TDDC47
Linköping

26 of 40
Autumn   2009 

{x= x+1 {x= x+1
} }

• What is the outcome of running them 
both to completion? It depends...

Machine instructions

LD R, x  // load register R from x
INC R    // increment register R
ST R, x  // store register R to x 

h h b l d

Undergraduate course TDDC47
Linköping

27 of 40
Autumn   2009 

• The program may then be compiled into 
many different interleavings

Non-atomic operation

P0: LD R, x  
P0: INC R

P1: LD R, x
P1: INC R

Undergraduate course TDDC47
Linköping

28 of 40
Autumn   2009 

P0: ST R, x
ST: R, x 

What is the value of x after this trace?

Atomic update

• To ensure single process update to a 
shared data area the application needs 
to manage the mutual exclusion 
problem!

Undergraduate course TDDC47
Linköping

29 of 40
Autumn   2009 

Mutual exclusion

• Consider n processes that need to exclude 
concurrent execution of some parts of their 
code

Process Pi
{

Undergraduate course TDDC47
Linköping

30 of 40
Autumn   2009 

{
entry-protocol

critical-section
exit-protocol
non-critical-section
}

• Fundamental problem to design entry and exit 
protocols for critical sections 



6

First attempt

process P1 
loop
flag1 = up
while flag2 == up do

nothing 
(* b iti *)

process P2 
loop
flag2 = up
while flag1 == up do

nothing 
(* b iti *)

Undergraduate course TDDC47
Linköping

31 of 40
Autumn   2009 

(* busy waiting *)
critical-section
flag1 = down
non-critical-section
end

(* busy waiting *)
critical-section
flag2 = down
non-critical-section
end

[Dijkstra 1965]

Second attempt

process P1 
loop

while flag2 == up do
nothing 
(* busy waiting *)

fl 1

process P2 
loop

while flag1 == up do
nothing 
(* busy waiting *)

fl 2

Undergraduate course TDDC47
Linköping

32 of 40
Autumn   2009 

flag1 = up
critical-section
flag1 = down
non-critical-section

end

flag2 = up
critical-section
flag2 = down
non-critical-section

end

Third attempt

process P1 
loop
while turn == 2 do
nothing 
(*busy waiting*)

process P2 
loop
while turn == 1 do
nothing 
(*busy waiting*)

Undergraduate course TDDC47
Linköping

33 of 40
Autumn   2009 

(*busy waiting*)
critical-section
turn = 2
non-critical 
section

end

(*busy waiting*)
critical-section
turn = 1
non-critical 
section

end

Peterson’s algorithm

process P1
loop

flag1 = up
turn = 2
while flag2 == up and turn == 2 do 

Undergraduate course TDDC47
Linköping

34 of 40
Autumn   2009 

nothing
end
critical-section
flag1 = down
non-critical-section

end

Programming language support

• Implementing synchronisation and concurrency 
with shared variables, using only sequential 
programming constructs, is difficult and error 
prone

• Java: Early versions used Suspend/Resume 
constructs that led to race condition!

Undergraduate course TDDC47
Linköping

35 of 40
Autumn   2009 

constructs that led to race condition!
• Ada: built-in run-time support with explicit 

task synchronisation entry points 
(Rendezvous)

• Both have some support for defining 
concurrent processes but none has support for 
real-time in the core language

Ada tasks: example

procedure Morning is
task Get_Breakfast;
task Take_Shower;

task body 
Get_Breakfast is

task body 
Take_Shower is

begin
Use_Shower;
Dry_Hair;

Undergraduate course TDDC47
Linköping

36 of 40
Autumn   2009 

begin
Make_Coffee;
Make_Toast;

Boil_Egg;
Eat_Breakfast;

end Get_Breakfast;

end Take_Shower;

begin -- Morning

null;
end Morning;



7

Java threads: Example 

public class Prepare Extends Thread
{
private int items;
public Prepare(int: Breakfast_items)
{
items = Breakfast_items
}

Undergraduate course TDDC47
Linköping

37 of 40
Autumn   2009 

}
public void run()
{

while(true)
{

Cooking.Make(items);
}

}
}

Java threads: Example

final int eggs = 1;

final int toast = 2;
final int coffee = 1;
Prepare P1 = new Prepare(eggs);

Prepare P2 = new Prepare(toast);

Undergraduate course TDDC47
Linköping

38 of 40
Autumn   2009 

Prepare P2 = new Prepare(toast);
Prepare P3 = new Prepare(coffee);
. . .

P1.start();
P2.start();

P3.start();

Further reading?

• An equivalent reading material to book 
chapters posted on the web can be 
found in an electronically available book 
from LiU Library through the ebrary
service

Undergraduate course TDDC47
Linköping

39 of 40
Autumn   2009 

service
• It uses Java syntax to describe similar 

code snippets
• Check out for the link on the literature 

page on the course web if interested!

Undergraduate course TDDC47
Linköping

40 of 40
Autumn   2009 

Questions?


