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Exercise from last time

• Questions and comments from last 
lecture
– Faster pace? 
– Language?
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Message from LiU
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This lecture

• Processes, threads, and their 
representation

• Concurrency and execution
• Communication
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• Synchronisation

• The mutual exclusion problem

Recall from last lecture

• A concurrent program consists of a set 
of autonomous computation processes 
(logically) running in parallel

• A process has its own thread of control 
and its own address space
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and its own address space
• Operating system may arbitrarily switch 

among processes and give control of the 
CPU to some process

Each process

• Is managed by the OS and has
– A process ID
– A record of its run-time data kept in the OS 

“process control block”  − PCB

Is allocated segments in the memory:
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• Is allocated segments in the memory:
– Code: the machine instructions it will run
– Data: global variables and memory allocated 

at run-time
– Stack: local variables and records of 

functions activated
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Process life cycle

Non-existing

Created
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Executing

Initialising Terminated

ReadyReady Waiting

Executing

Analogies

• Cooking recipe: program 
• Preparing a dish: running different 

instances of concurrent processes 
• Looking for ingredients: initialisation
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Programming for processes

• Typical real-time systems: Assembler, C
– Need support from OS to create, schedule 

and terminate tasks

• Languages with support for concurrent 
programming: Java  Ada
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programming: Java, Ada
– Have their own run-time system and can 

explicitly create processes

Program/process structure

• Static/Dynamic
• Nested/Flat

Not part of 
this course
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• Substantial differences between various 
languages wrt syntax, execution model, 
and termination semantics for nested 
processes

Threads (& tasks)

• Some modern operating systems allow a 
process to create (spawn) a number of 
parallel threads of control – in the same
address space

• Each process has its own stack
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Each process has its own stack
• Processes that run with a shared 

address space (code, data) are called 
light-weight processes or threads

• In this course we consider processes 
with one thread of control and use tasks 
interchangeably with processes

Logical parallelism

P1:

{while true do 
think;
talk

P2:

{while true do
sleep;
listen
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talk
}

listen
}

Which potential execution sequences (traces)?
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Context Switch

• Consider a program that consists of 
processes P1,…, P4

• An execution of the concurrent program 
may look like:
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time

P1

P4

P3

P2

Context switch

Keeping track of execution

• Each process in PCB has:
– Process state (which stage in life cycle)
– Program counter (where in its running code)
– Value of internal variables

Th  ll t d   

Undergraduate course TDDC47
Linköping

14 of 40
Autumn   2009 

– The allocated memory areas 
– Open files and other resources

This lecture

• Processes, threads, and their 
representation

• Concurrency and execution
• Communication
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• Synchronisation

• The mutual exclusion problem

Process communication

Data sharing:
• Output for one process may be input for 

another process
– Compute distance, and then compute incremental 

acceleration
Flow of control (synchronisation):
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• One process may only start after another one 
finished
– Update display only after all sensor values are 

received
• Sharing common resources

– No more than one process at a time may send a 
packet on a shared channel

Communication

• Two modes:
– Shared variables 
– Message passing

Process A Process A
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Process A Process A

Process B
Process B

Kernel Kernel

Shared

Basic operation

• Communication using shared variables

P1 P2
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Variable X

Writes to X Reads from XWrites to X Reads from X
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Problems?

• No! Since hardware memory can 
support atomic memory update, so that 
only one writes at a time

• But…
• Creates problems for more complex 
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• Creates problems for more complex 
shared data structures
– Update date, time and stock value 

• One process may write at a faster rate 
than the other process reads
– Register a call to a telecom server before serving it
– Is the call on the register the earliest unserved one? 

Even if server is overloaded?

Race condition

• Consider two processes P1 and P2 that are 
allowed to write to a shared data structure

• If the order of updating the data structure by 
respective processes can affect the outcome of 
the computation then the system suffers from 
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the computation then the system suffers from 
a race condition
– Analogy: Deposit 5000kr in the account, calculate 

accrued interest

• Process synchronisation is used to avoid race 
conditions

Decoupling from process rates

• Finite buffers

P1 P2
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P1 P2

Writes to buffer Reads from buffer

Finite buffer

Issues

• Must check that buffer is not full when 
writing to it

• Must check that buffer is not empty 
when reading from it
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• Must ensure that two processes do not 
write on one buffer position at the same 
time

synchronisation and 
shared data problems

General problems

• Conditional action
– Examples:

• Compute the interest when all transactions have 
been processed
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been processed
• Check that seats are available before booking

• Mutual exclusion
– Example:

• Two customers shall not be booked on the same 
seat

Analogies

Summary so far...
• Synchronisation

– Mash the potatoes once they are cooked

• Data sharing
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– Two sets of guests

• Mutual exclusion
– Two appliances cannot use the same 

electricity socket at the same time, e.g. 
toaster and electric kettle
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This lecture

• Processes, threads, and their 
representation

• Concurrency and execution
• Communication
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• Synchronisation

• The mutual exclusion problem

Example

• Consider the two processes using a 
shared variable x initialised at 0:

P0 P1

[Garg 2005]
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{x= x+1 {x= x+1
} }

• What is the outcome of running them 
both to completion? It depends...

Machine instructions

LD R, x  // load register R from x
INC R    // increment register R
ST R, x  // store register R to x 

h h b l d
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• The program may then be compiled into 
many different interleavings

Non-atomic operation

P0: LD R, x  
P0: INC R

P1: LD R, x
P1: INC R
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P0: ST R, x
ST: R, x 

What is the value of x after this trace?

Atomic update

• To ensure single process update to a 
shared data area the application needs 
to manage the mutual exclusion 
problem!
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Mutual exclusion

• Consider n processes that need to exclude 
concurrent execution of some parts of their 
code

Process Pi
{
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{
entry-protocol

critical-section
exit-protocol
non-critical-section
}

• Fundamental problem to design entry and exit 
protocols for critical sections 
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First attempt

process P1 
loop
flag1 = up
while flag2 == up do

nothing 
(* b iti *)

process P2 
loop
flag2 = up
while flag1 == up do

nothing 
(* b iti *)
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(* busy waiting *)
critical-section
flag1 = down
non-critical-section
end

(* busy waiting *)
critical-section
flag2 = down
non-critical-section
end

[Dijkstra 1965]

Second attempt

process P1 
loop

while flag2 == up do
nothing 
(* busy waiting *)

fl 1

process P2 
loop

while flag1 == up do
nothing 
(* busy waiting *)

fl 2
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flag1 = up
critical-section
flag1 = down
non-critical-section

end

flag2 = up
critical-section
flag2 = down
non-critical-section

end

Third attempt

process P1 
loop
while turn == 2 do
nothing 
(*busy waiting*)

process P2 
loop
while turn == 1 do
nothing 
(*busy waiting*)
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(*busy waiting*)
critical-section
turn = 2
non-critical 
section

end

(*busy waiting*)
critical-section
turn = 1
non-critical 
section

end

Peterson’s algorithm

process P1
loop

flag1 = up
turn = 2
while flag2 == up and turn == 2 do 
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nothing
end
critical-section
flag1 = down
non-critical-section

end

Programming language support

• Implementing synchronisation and concurrency 
with shared variables, using only sequential 
programming constructs, is difficult and error 
prone

• Java: Early versions used Suspend/Resume 
constructs that led to race condition!

Undergraduate course TDDC47
Linköping

35 of 40
Autumn   2009 

constructs that led to race condition!
• Ada: built-in run-time support with explicit 

task synchronisation entry points 
(Rendezvous)

• Both have some support for defining 
concurrent processes but none has support for 
real-time in the core language

Ada tasks: example

procedure Morning is
task Get_Breakfast;
task Take_Shower;

task body 
Get_Breakfast is

task body 
Take_Shower is

begin
Use_Shower;
Dry_Hair;
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begin
Make_Coffee;
Make_Toast;

Boil_Egg;
Eat_Breakfast;

end Get_Breakfast;

end Take_Shower;

begin -- Morning

null;
end Morning;
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Java threads: Example 

public class Prepare Extends Thread
{
private int items;
public Prepare(int: Breakfast_items)
{
items = Breakfast_items
}
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}
public void run()
{

while(true)
{

Cooking.Make(items);
}

}
}

Java threads: Example

final int eggs = 1;

final int toast = 2;
final int coffee = 1;
Prepare P1 = new Prepare(eggs);

Prepare P2 = new Prepare(toast);
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Prepare P2 = new Prepare(toast);
Prepare P3 = new Prepare(coffee);
. . .

P1.start();
P2.start();

P3.start();

Further reading?

• An equivalent reading material to book 
chapters posted on the web can be 
found in an electronically available book 
from LiU Library through the ebrary
service
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service
• It uses Java syntax to describe similar 

code snippets
• Check out for the link on the literature 

page on the course web if interested!
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Questions?


