TDDC47

Real-time and Concurrent
Programming

Lecture 2: Processes and shared
resources

Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linkdping university

Exercise from last time

e Questions and comments from last
lecture

— Faster pace?
— Language?

Message from LiU

&

TACK

for att du hjalper till att halla LiU rent
genom att sldnga ditt skrép i en
papperskorg nara dig

This lecture

* Processes, threads, and their
representation

e Concurrency and execution
e Communication
= Synchronisation

= The mutual exclusion problem

Recall from last lecture

< A concurrent program consists of a set
of autonomous computation processes
(logically) running in parallel

* A process has its own thread of control
and its own address space

= Operating system may arbitrarily switch

among processes and give control of the
CPU to some process

= Is managed by the OS and has

« |Is allocated segments in the memory:

Each process

— A process ID

— A record of its run-time data kept in the OS
“process control block” — PCB

— Code: the machine instructions it will run

— Data: global variables and memory allocated
at run-time

— Stack: local variables and records of
functions activated

Process life cycle

‘

| Ready |—| Waiting |

i~

te course TDDCA7 70f40
Autumn 2009

Analogies

= Cooking recipe: program

* Preparing a dish: running different
instances of concurrent processes

» Looking for ingredients: initialisation

< Undergraduate course TDDC47

Linkoping

Programming for processes

» Typical real-time systems: Assembler, C
— Need support from OS to create, schedule
and terminate tasks
« Languages with support for concurrent
programming: Java, Ada

— Have their own run-time system and can
explicitly create processes

e TDDC47 90f40

Program/process structure

e Static/Dynamic
* Nested/Flat

Not part of

this course
&

» Substantial differences between various
languages wrt syntax, execution model,
and termination semantics for nested
processes

e TDDCA4T 100f 40

Autumn 2009

Autumn 2009

Threads (& tasks)

= Some modern operating systems allow a
process to create (spawn) a number of
parallel threads of control — in the same
address space

Each process has its own stack

* Processes that run with a shared
address space (code, data) are called
light-weight processes or threads

In this course we consider processes
with one thread of control and use tasks
interchangeably with processes

se TDDC4T 110f 40

Logical parallelism

P1: pP2:

{while true do {while true do
think; sleep;
talk listen

¥ ¥

Which potential execution sequences (traces)?

se TDDC4T

Autumn 2009

Context Switch

e Consider a program that consists of
processes P1,..., P4

« An execution of the concurrent program
may look like:

P2 : —
‘T3

P4 £

l))
P3 || Context switch f

te course TDDCA7

Keeping track of execution

e Each process in PCB has:
— Process state (which stage in life cycle)
— Program counter (where in its running code)
— Value of internal variables
— The allocated memory areas
— Open files and other resources

< Undergraduate course TDDC47 1401 40
Linkoping Autumn 2009

This lecture

e Processes, threads, and their
representation

= Concurrency and execution
= Communication
= Synchronisation

* The mutual exclusion problem

ourse TDDC4T

Process communication

Data sharing:
= Output for one process may be input for
another process

— Compute distance, and then compute incremental
acceleration

Flow of control (synchronisation):
= One process may only start after another one
finished

— Update display only after all sensor values are
received

= Sharing common resources

— No more than one process at a time may send a
packet on a shared channel

se TDDC4T

Communication

= Two modes:
— Shared variables
— Message passing

Process A [H— Process A
Process B [Shared
Process B

Kernel K Kernel

ourse TDDC4T 170f 40

Autumn 2009

Basic operation

= Communication using shared variables

N —

Reads from X

Writes to X I:I

Variable X

se TDDC4T

Problems?

No! Since hardware memory can
support atomic memory update, so that
only one writes at a time

But...

Creates problems for more complex
shared data structures

— Update date, time and stock value

One process may write at a faster rate
than the other process reads

— Register a call to a telecom server before serving it

— Is the call on the register the earliest unserved one?
Even if server is overloaded?

< Undergraduate course TDDC47

Race condition

e Consider two processes P1 and P2 that are
allowed to write to a shared data structure

= If the order of updating the data structure by
respective processes can affect the outcome of
the computation then the system suffers from
a race condition
— Analogy: Deposit 5000kr in the account, calculate
accrued interest

« Process synchronisation is used to avoid race
conditions

Linkoping

Decoupling from process rates

« Finite buffers

Writes to buffer Reads from buffer

Finite buffer

Issues

e Must check that buffer is not full when
writing to it

* Must check that buffer is not empty
when reading from it

= Must ensure that two processes do not
write on one buffer position at the same
time

synchronisation and
shared data problems

General problems

e Conditional action

— Examples:
= Compute the interest when all transactions have
been processed
= Check that seats are available before booking

 Mutual exclusion

— Example:
* Two customers shall not be booked on the same
seat

Analogies

Summary so far...
* Synchronisation
— Mash the potatoes once they are cooked
e Data sharing
— Two sets of guests
* Mutual exclusion

— Two appliances cannot use the same
electricity socket at the same time, e.g.
toaster and electric kettle

This lecture

Processes, threads, and their
representation

Concurrency and execution
e Communication
Synchronisation

The mutual exclusion problem

< Undergraduate course TDDC47

Example

[Garg 2005]

= Consider the two processes using a
shared variable x initialised at O:

PO P1
{x= x+1 {x=x+1
by ¥

= What is the outcome of running them
both to completion?

It depends...

Machine instructions

LD R, x // load register R from x
INC R // increment register R
ST R, x // store register R to x

* The program may then be compiled into
many different interleavings

course TDDC4T

Non-atomic operation

PO: LD R, x
PO: INCR
P1: LD R, x
P1: INCR
PO: STR, x
ST: R, X

What is the value of x after this trace?

se TDDC4T

Atomic update

= To ensure single process update to a
shared data area the application needs
to manage the mutual exclusion
problem!

Mutual exclusion

= Consider n processes that need to exclude
concurrent execution of some parts of their
code

Process Pi

{

entry-protocol
critical-section

exit-protocol

non-critical-section

¥

 Fundamental problem to design entry and exit
protocols for critical sections

e TDDCA4T

290140
Autumn 2009

First attempt

process P1

loop

flagl = up

while flag2 == up do
nothing
(* busy waiting *)

critical-section

flagl = down

non-critical-section

end

< Undergraduate course TDDC47

Linkoping

process P2

loop

flag2 = up

while flagl == up do
nothing
(* busy waiting *)

critical-section

flag2 = down

non-critical-section

end

[Dijkstra 1965]

Second attempt

process P1
loop
while flag2 == up do
nothing
(* busy waiting *)
flagl = up
critical-section
flagl = down

non-critical-section
end

process P2
loop
while flagl == up do
nothing
(* busy waiting *)
flag2 = up
critical-section
flag2 = down

non-critical-section
end

Third attempt

process P1
loop
while turn == 2 do
nothing
Fxhiiov: wwnsd
\ LIUD_y wasnus
critical-sect
turn = 2

non-critical
section

end

nak)
1 Iu)
io

n

process P2
loop
while turn == 1 do
nothing
FXxhiiowv wnsdas
\ LIUD_y wasnus
critical-sect
turn = 1

non-critical
section

end

nak)
1 Iu)
io

n

Peterson’s algorithm

process P1

while flag2 == up and turn == 2 do

loop
flagl = up
turn = 2
nothing
end
critical-section
flagl = down

non-critical-section

end

Programming language support

= Implementing synchronisation and concurrency
with shared variables, using only sequential
programming constructs, is difficult and error
prone

e Java: Early versions used Suspend/Resume
constructs that led to race condition!

= Ada: built-in run-time support with explicit
task synchronisation entry points
(Rendezvous)

= Both have some support for defining
concurrent processes but none has support for
real-time in the core language

Autumn

Ada tasks: example

procedure Morning is
task Get_Breakfast;
task Take_Shower;

task body
Get_Breakfast is

begin
Make_Coffee;
Make_Toast;
Boil_Egg;
Eat_Breakfast;
end Get_Breakfast;

task body
Take_Shower is

begin
Use_Shower;
Dry_Hair;

end Take_Shower;

begin -- Morning
null;
end Morning;

Java threads: Example

public class Prepare Extends Thread

{
private int items;
public Prepare(int: Breakfast_items)

items = Breakfast_items

¥
public void runQ)
{
while(true)
Cooking.Make(items);
3
3

= Undergraduate course TDDC47
Linkoping

Java threads: Example

final int eggs = 1;

final int toast = 2;

final int coffee = 1;

Prepare P1 = new Prepare(eggs);
Prepare P2 = new Prepare(toast);
Prepare P3 = new Prepare(coffee);

Pl.start(Q);
P2_start();
P3.start();

duate course TDDCA47

Further reading?

* An equivalent reading material to book
chapters posted on the web can be
found in an electronically available book
from LiU Library through the ebrary
service

= It uses Java syntax to describe similar
code snippets

= Check out for the link on the literature
page on the course web if interested!

course TDDC4T 390f 40

Autumn 2009

Questions?

se TDDC4T 400740
Autumn 2009

