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Recall from last lecture

• The ICP prevents deadlocks (How?)

• Moreover, it prevents starvation (How?)
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In a real-time system liveness
is necessary – i.e. no presence of 
deadlock, starvation or livelock. 
If this can be guaranteed then the 
system is live.

Motivation

But not sufficient…
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This lecture

• How immediate ceiling protocol prevents 
deadlock and starvation?

• But first some general review of 
deadlock related concepts...
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1. Mutual exclusion
Access to resource is limited to one (or a 
limited number of) process(es) at a time

2. Hold & wait
There are processes that hold a resource 
and wait for another resource(s) at the 
same time

4 necessary conditions
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3. Voluntary release
Resources can only be released by a 
process voluntarily 

4. Circular wait
There is a chain of processes where  each 
process holds a resource that is required 
by another resource 
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Deadlock elimination 

Repetition from OS course:

• Deadlock avoidance
• Deadlock prevention
• Deadlock detection and treatment
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Deadlock avoidance
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Deadlock prevention

...

...
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Detection and fixing

By building a dynamic resource
allocation graph to detect deadlocks

P1 P2

P3

P4

R1

R2
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rice

P1 P2

P3

P4

P5

Classic example
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process Philosopher;
loop

think;
<pick up left chopstick>
<pick up right chopstick>
eat;
<put down right chopstick>
<put down left chopstick>

end loop
end;
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• Avoidance
–e.g. using banker’s algorithm

• Prevention
–e.g. allocate all necessary resources at 

once, before execution

Prevention/avoidance

Can lead to 
starvation!
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Starvation

Starvation/lockout happens 
if some process never gets hold of
the resources it needs despite the 
fact that the resources are not 
constantly engaged
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process Philosopher;
loop

think;
<pick up left and right
chopsticks if free>
eat;
<put down left and right 
chopsticks>

end loop
end;
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P1 wants to eat, takes left & right stick
P3 wants to eat, takes left & right stick
P2 wants to eat, must wait
P1 releases left & right stick
P1 thinks
P1 wants to eat, takes left & right stick
P3 releases left & right stick
P3 thinks
P3 wants to eat, ... 
...

Consider following scenario
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Now back to scheduling...

• Immediate ceiling protocol (ICP) is 
deadlock preventing

...

...

...
...

...

...

...
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Moreover…

• ICP prevents starvation (How?)
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With no hard deadlines

• Banker’s Algorithm: Technique for 
deadlock avoidance in presence of 
sharing multiple resources

• Question: Do you want an example run 
of Banker’s algorithm?

–Can be a topic for the resource 
session

–Here is a few summary slides
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Banker’s algorithm

• Allocate multiple resources as and when 
processes ask for it, but only:

–up to a predefined max value for each 
process and resource 

–provided that remaining resources 
together with potential future releases 
are enough for future allocations (up 
to the max value)
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For n processes and m resources we need 
following data structures:

Max: n × m matrix

Max[i,j] = k means that 
process i requires max k elements of  
resource type j

Implementation
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Allocation[i,j] = k means that 
process i has already been allocated
k elements of resource type j

Available: m vector

Available[i] = k means that k
elements of resource type i are
available for allocation

Allocation: n × m matrix
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Requesti: m vector

process i:s request for resources

Notation:
Allocationi : the i-th row in 
the Allocation matrix

State: instantiations of Allocation

...

......

......
...
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Banker’s algorithm

Input: 
Matrix Max, vector Available,
a given state, and
Requesti from some process i

Output:
Yes + new state, or
No  + unchanged state 
(Requesti can not be allocated now)
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Algorithm:
1.    Need := Max - Allocation;
2. Check if 

Requesti ≤ Available
if not, return ”No”.

3. Pretend that resources in 
Requesti are to be allocated, 
compute new state.

Allocationi := Allocationi + Requesti
Needi := Needi - Requesti
Available := Available - Requesti
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4. Test if the new state is
is deadlock-avoiding, in which 
case return ”Yes”. 

Otherwise, return ”No” -
roll back to the old state.

...

...
...

...
...

...
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Testing for deadlock-avoidance

Start with a given Allocation 
and check if it is deadlock-avoiding
According to the 3-step
algorithm below.
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Finish: n vector with Boolean 
values (initially false) 

Work : m vector denotes 
the changing resource set as
the processes become ready and release 
resources (initially Work := Available)

1. Check if there is some process i
for which Finishi = false and
for which Needi ≤ Work. If there is no such 
process i, go to step 3.
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2. Free the resources that i has used to 
get finished:
Work := Work + Allocationi
Finishi := true
continue from step 1.

3. If Finishi = true for all i then 
the initial state is deadlock-avoiding,
otherwise it is not.


