
Undergraduate course on Real-time Systems
Linköping University

TTIT62 Real-time Process Control

Lecture 6: Deadlock

Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linköping university

29 pages
Spring 2009

Undergraduate course on Real-time Systems
Linköping University

2 of 29
Spring 2009

Recall from last lecture

• The ICP prevents deadlocks (How?)

• Moreover, it prevents starvation (How?)

Undergraduate course on Real-time Systems
Linköping University

3 of 29
Spring 2009

In a real-time system liveness
is necessary – i.e. no presence of
deadlock, starvation or livelock.
If this can be guaranteed then the
system is live.

Motivation

But not sufficient…

Undergraduate course on Real-time Systems
Linköping University

4 of 29
Spring 2009

This lecture

• How immediate ceiling protocol prevents
deadlock and starvation?

• But first some general review of
deadlock related concepts...

Undergraduate course on Real-time Systems
Linköping University

5 of 29
Spring 2009

1. Mutual exclusion
Access to resource is limited to one (or a
limited number of) process(es) at a time

2. Hold & wait
There are processes that hold a resource
and wait for another resource(s) at the
same time

4 necessary conditions

Undergraduate course on Real-time Systems
Linköping University

6 of 29
Spring 2009

3. Voluntary release
Resources can only be released by a
process voluntarily

4. Circular wait
There is a chain of processes where each
process holds a resource that is required
by another resource

Undergraduate course on Real-time Systems
Linköping University

7 of 29
Spring 2009

Deadlock elimination

Repetition from OS course:

• Deadlock avoidance
• Deadlock prevention
• Deadlock detection and treatment

Undergraduate course on Real-time Systems
Linköping University

8 of 29
Spring 2009

...

...

...

...

...

...

Deadlock avoidance

Undergraduate course on Real-time Systems
Linköping University

9 of 29
Spring 2009

Deadlock prevention

...

...

...

...

...

...

...

Undergraduate course on Real-time Systems
Linköping University

10 of 29
Spring 2009

Detection and fixing

By building a dynamic resource
allocation graph to detect deadlocks

P1 P2

P3

P4

R1

R2

Undergraduate course on Real-time Systems
Linköping University

11 of 29
Spring 2009

rice

P1 P2

P3

P4

P5

Classic example

Undergraduate course on Real-time Systems
Linköping University

12 of 29
Spring 2009

process Philosopher;
loop

think;
<pick up left chopstick>
<pick up right chopstick>
eat;
<put down right chopstick>
<put down left chopstick>

end loop
end;

Undergraduate course on Real-time Systems
Linköping University

13 of 29
Spring 2009

• Avoidance
–e.g. using banker’s algorithm

• Prevention
–e.g. allocate all necessary resources at

once, before execution

Prevention/avoidance

Can lead to
starvation!

Undergraduate course on Real-time Systems
Linköping University

14 of 29
Spring 2009

Starvation

Starvation/lockout happens
if some process never gets hold of
the resources it needs despite the
fact that the resources are not
constantly engaged

Undergraduate course on Real-time Systems
Linköping University

15 of 29
Spring 2009

process Philosopher;
loop

think;
<pick up left and right
chopsticks if free>
eat;
<put down left and right
chopsticks>

end loop
end;

Undergraduate course on Real-time Systems
Linköping University

16 of 29
Spring 2009

P1 wants to eat, takes left & right stick
P3 wants to eat, takes left & right stick
P2 wants to eat, must wait
P1 releases left & right stick
P1 thinks
P1 wants to eat, takes left & right stick
P3 releases left & right stick
P3 thinks
P3 wants to eat, ...
...

Consider following scenario

Undergraduate course on Real-time Systems
Linköping University

17 of 29
Spring 2009

Now back to scheduling...

• Immediate ceiling protocol (ICP) is
deadlock preventing

...

...

...
...

...

...

...

Undergraduate course on Real-time Systems
Linköping University

18 of 29
Spring 2009

Moreover…

• ICP prevents starvation (How?)

Undergraduate course on Real-time Systems
Linköping University

19 of 29
Spring 2009

With no hard deadlines

• Banker’s Algorithm: Technique for
deadlock avoidance in presence of
sharing multiple resources

• Question: Do you want an example run
of Banker’s algorithm?

–Can be a topic for the resource
session

–Here is a few summary slides
Undergraduate course on Real-time Systems
Linköping University

20 of 29
Spring 2009

Banker’s algorithm

• Allocate multiple resources as and when
processes ask for it, but only:

–up to a predefined max value for each
process and resource

–provided that remaining resources
together with potential future releases
are enough for future allocations (up
to the max value)

Undergraduate course on Real-time Systems
Linköping University

21 of 29
Spring 2009

For n processes and m resources we need
following data structures:

Max: n × m matrix

Max[i,j] = k means that
process i requires max k elements of
resource type j

Implementation

Undergraduate course on Real-time Systems
Linköping University

22 of 29
Spring 2009

Allocation[i,j] = k means that
process i has already been allocated
k elements of resource type j

Available: m vector

Available[i] = k means that k
elements of resource type i are
available for allocation

Allocation: n × m matrix

Undergraduate course on Real-time Systems
Linköping University

23 of 29
Spring 2009

Requesti: m vector

process i:s request for resources

Notation:
Allocationi : the i-th row in
the Allocation matrix

State: instantiations of Allocation

...

......

......
...

Undergraduate course on Real-time Systems
Linköping University

24 of 29
Spring 2009

Banker’s algorithm

Input:
Matrix Max, vector Available,
a given state, and
Requesti from some process i

Output:
Yes + new state, or
No + unchanged state
(Requesti can not be allocated now)

Undergraduate course on Real-time Systems
Linköping University

25 of 29
Spring 2009

Algorithm:
1. Need := Max - Allocation;
2. Check if

Requesti ≤ Available
if not, return ”No”.

3. Pretend that resources in
Requesti are to be allocated,
compute new state.

Allocationi := Allocationi + Requesti
Needi := Needi - Requesti
Available := Available - Requesti

Undergraduate course on Real-time Systems
Linköping University

26 of 29
Spring 2009

4. Test if the new state is
is deadlock-avoiding, in which
case return ”Yes”.

Otherwise, return ”No” -
roll back to the old state.

...

...
...

...
...

...

Undergraduate course on Real-time Systems
Linköping University

27 of 29
Spring 2009

Testing for deadlock-avoidance

Start with a given Allocation
and check if it is deadlock-avoiding
According to the 3-step
algorithm below.

Undergraduate course on Real-time Systems
Linköping University

28 of 29
Spring 2009

Finish: n vector with Boolean
values (initially false)

Work : m vector denotes
the changing resource set as
the processes become ready and release
resources (initially Work := Available)

1. Check if there is some process i
for which Finishi = false and
for which Needi ≤ Work. If there is no such
process i, go to step 3.

Undergraduate course on Real-time Systems
Linköping University

29 of 29
Spring 2009

2. Free the resources that i has used to
get finished:
Work := Work + Allocationi
Finishi := true
continue from step 1.

3. If Finishi = true for all i then
the initial state is deadlock-avoiding,
otherwise it is not.

