TTIT62 Real-time Process Control

Lecture 6: Deadlock
Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linkdping university

Recall from last lecture

e The ICP prevents deadlocks (How?)

= Moreover, it prevents starvation (How?)

Motivation

In a real-time system liveness
is necessary — i.e. no presence of
deadlock, vation or livelock.

n Real-time Systems

=] Linkoping University

This lecture

< How immediate ceiling protocol prevents
deadlock and starvation?

= But first some general review of
deadlock related concepts...

4 necessary conditions

1. Mutual exclusion
Access to resource is limited to one (or a
limited number of) process(es) at a time

2. Hold & wait
There are processes that hold a resource
and wait for another resource(s) at the
same time

3. Voluntary release
Resources can only be released by a
process voluntarily

4. Circular wait

There is a chain of processes where each
process holds a resource that is required
by another resource

Real-time Systems




Deadlock elimination

Repetition from OS course:

e Deadlock avoidance
= Deadlock prevention
e Deadlock detection and treatment

Deadlock avoidance

0.

A

C ~ Underara on Real-time Systems
Ml =7 Linioping University

Deadlock prevention

//() -

. w5y Undergraduat on Real-time Systems
=] Linkoping Uni

Detection and fixing

By building a dynamic resource
allocation graph to detect deadlocks

Classic example

e 10029
Ml & LhisinaUnive

Spring 2009

Spring 2009

process Philosopher;

loop
think;
<pick up left chopstick>
<pick up right chopstick>
eat;
<put down right chopstick>
<put down left chopstick>

end loop

e on Real-time Systems 120f29

Spring 2009




Prevention/avoidance

= Avoidance
—e.g. using banker’s algorithm

e Prevention

—e.g. allocate all necessary resources at
once, before execution

Can lead to
starvation!

Starvation

Starvation/lockout happens

if some process never gets hold of
the resources it needs despite the
fact that the resources are not
constantly engaged

process Philosopher;
loop
think;
<pick up left and right
chopsticks if free>
eat;
<put down left and right
chopsticks>
end loop
end;

Now back to scheduling...

Consider following scenario

P1 wants to eat, takes left & right stick
P3 wants to eat, takes left & right stick
P2 wants to eat, must wait

P1 releases left & right stick

P1 thinks

P1 wants to eat, takes left & right stick
P3 releases left & right stick

P3 thinks

P3 wants to eat, ...

< Immediate ceiling protocol (ICP) is
deadlock preventing

O

oo o
RS o
O e

Moreover...

« ICP prevents starvation (How?)




With no hard deadlines

e Banker’s Algorithm: Technique for
deadlock avoidance in presence of
sharing multiple resources

e Question: Do you want an example run
of Banker’s algorithm?

—Can be a topic for the resource
session

—Here is a few summary slides

Banker’s algorithm

= Allocate multiple resources as and when
processes ask for it, but only:

—up to a predefined max value for each
process and resource

—provided that remaining resources
together with potential future releases
are enough for future allocations (up
to the max value)

Implementation

For n processes and m resources we need
following data structures:

Max: n x m matrix

Max[i,j] = k means that
process 1 requires max k elements of
resource type j

Request;: m vector

process i:s request for resources
Notation:
Allocation; : the i-th row in
the Allocation matrix

State: instantiations of Allocation

Allocation: n x m matrix

Allocation[i,j] = kmeans that
process i has already been allocated
k elements of resource type j

Available: m vector ‘

Available[i] = kmeans that k
elements of resource type i are
available for allocation

Banker’s algorithm

Input:

Matrix Max, vector Available,

a given state, and

Request; from some process i
Output:

Yes + new state, or

No + unchanged state

(Request; can not be allocated now)

e on Real-time Systems

240f29
Spring 2009



Algorithm:
1. Need := Max - Allocation;
2. Check if
Request; <Available
if not, return "No”.
3. Pretend that resources in
Request; are to be allocated,
compute new state.

Allocation; := Allocation; + Request;
Need; :-= Need; - Request;
Available := Available - Request;

Testing for deadlock-avoidance

Start with a given Allocation

and check if it is deadlock-avoiding
According to the 3-step

algorithm below.

2. Free the resources that i has used to

get finished:
Work := Work + Allocation;
Finish; = true

continue from step 1.

3. If Finish; = true for all i then
the initial state is deadlock-avoiding,
otherwise it is not.

4. Test if the new state is
is deadlock-avoiding, in which
case return ”Yes”.

Otherwise, return "No” -
roll back to the old state.

Finish: n vector with Boolean
values (initially false)

Work : m vector denotes

the changing resource set as

the processes become ready and release
resources (initially Work := Available)

1. Check if there is some process i

for which Finish; = false and

for which Need; < Work. If there is no such
process i, go to step 3.




