Hybrid Systems

PhD Course, Spring 2001 Inger Klein, Simin Nadjm-Tehrani

Hybrid systems

© Simin Nadjm-Tehrani, 2001

Organisation and planning

Course page

www.control.isy.liu.se/~inger/hybrid_course

- Course goals, litterature, web resources, schedule, examination details, etc
- Period: April-June '01
- Examiners:
 - Inger Klein (ISY) and Simin N-T (IDA)

Hybrid systems

© Simin Nadjm-Tehrani, 2001

Course idea

- To get an overview of the wide and complex area of hybrid systems
- For research students, in both computer science and automatic control
- To get "deep" knowledge in one direction and shallow in others
- Your expectations?

Hybrid systems

© Simin Nadjm-Tehrani, 2001

Examination

- Seminar presentation of one technical paper, 45 minutes, Not easy!
- Active participation: at least one question formulated before the seminar
- Demo of tool: optional extra point

Hybrid systems

© Simin Nadjm-Tehrani, 2001

This lecture

- What are the main motivations for research in this area?
- Computer science perspective
- Control engineering perspective

Hybrid systems

© Simin Nadjm-Tehrani, 2001

Instances of hybrid systems

- Physical systems with discrete structural changes
- Composition of a physical system and discrete (state) controllers
- Combination of the two

Hybrid system

© Simin Nadjm-Tehrani, 2001

Different instances • Where does the complexity lie? - Multi-mode controllers • e.g. non-linear plant - Controllers with complex structure • e.g. Asynchronous, hierarchical control - Combination of the two

Simplest models

- Computer scientists:
 - discrete states and one continuous variable: timed models!
- Control theorists:
 - continuous state and one discrete (input) variable: selector, characteriser and effector static mapping

© Simin Nadjm-Tehrani, 2001

Applications

Not always match these!!!

© Simin Nadjm-Tehrani, 2001

Computer science perspective

- Typical problem: Verification
 - a bad state is never reached
 - a good state is reachable within a certain time bound
- How to solve the infinite space search problem?
- Which approximations?

© Simin Nadjm-Tehrani, 2001

Computer science perspective

- Well-formedness of the models:
 - Can we exclude the Zeno phenomenon?
 - are models compositional?
 - can we refine the models and keep the verified properties?
 - Can we compose the models and keep (some) verified properties?

© Simin Nadjm-Tehrani, 2001

"Easiest" approximation Controller Characterizer Effector Discrete model of the plant Plant Hybrid systems © Simin Nadjm-Tehrani, 2001

Complexity barriers

- Even for simplest approximations (constant slope integrators) verification problems undecidable
- Non-algorithmic methods need deep knowledge of applications

Hybrid systems

© Simin Nadjm-Tehrani, 2001

Other approaches

- Restrict dynamics of the plant
- Impose conservative approximations, e.g. convex hull
- Applicability?

Hybrid systems

© Simin Nadim-Tehrani 2001

Next ...

• Control engineers perspective

Hybrid systems © Simin Nadjm-Tehrani, 2001