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1 Introduction

An increasingly important class of distributed applications require end-to-end
support for various stringent Quality of Service (QoS) guarantees. Applications
like telecommunication systems, multimedia systems (video-conferencing), dis-
tributed command and control systems, interactive simulations, and avionics,
rely on QoS aspects like bandwidth, latency, jitter, dependability, timeliness [14].

On the other hand, the need for flexible designs, rapid development of new
applications based on reuse of existing modules and COTS, and distributed
system development based on multiple platforms and programming languages,
has led to a need for technologies based on open achitectures and standards.

A major such effort is the well-established standard supporting distributed
objects via Common Object Request Broker Architecture (CORBA) [21]. It is
obvious that any research around methods to build distributed systems with
real-time or dependability properties can not ignore the above needs and trend.
In particular, the above mentioned class of distributed applications would greatly
benefit from a CORBA system with or without a dedicated Object Request Bro-
ker (ORB) which supports real-time (RT) or fault-tolerance (FT) requirements.
In this report we review the case for the real-time aspect, as well as its extension
towards QoS. The fault-tolerance issues are naturally discussed within the dis-
tributed systems research community, as a major part of the area of middleware
design. A separate report would be needed to cover the area of fault-tolerant
middleware design.

Here we consider the ways that a CORBA based architecture can be en-
riched with mechanisms to deal with real-time. This can in principle be done
in three different ways. The first, paragmatic approach, is to add new modules
which directly affect (steer) the real-time behaviour of objects in between the
CORBA (ORB) layer and the operating system. This approach denoted by the
interceptor technique, has obvious advantages from an industry point of view.
One does not have to change an ORB or an application module but only do
some “diversion” in between.



The second approach is the more tailor-made technique: designing a specific
ORB which is specifically equipped with primitives to enforce real-time. This
is the approach taken by several influential research groups, but has the disad-
vantage that makes the strict separation of the application and the middleware
somewhat diluted. In order to enforce hard real-time requirements in an ap-
plication, several modules such as scheduling mechanism, priority policy, etc.
are fixed within the ORB. However, the benefits of open systems in terms of
independence form the platform and the underlying development environments
are preserved.

The third approach is to add a layer on top of the ORB, “in between”
the application and the middleware. More precisely, it means separating the
application’s functional code from the specification of its requirements. The
QoS requirements for an application, for example, can be used to automatically
generate parameters for local objects whose task is to manage system resources
so that the QoS requirements can be met.

In this report we provide a short survey of several works in the area of
real-time CORBA, illustrating each of the above approaches by at least one
representative. Since a large number of publications in the last few years have
been devoted to explain the details of each method, we believe there is a need
for a short survey which captures the fundamental aspects of each method, and
provides a quick exposure to the area. It is not claimed that this survey is a
complete survey of all the works in the area, but classes of similar works are
well-represented.

In 1995 a special interest group (SIG) was formed within OMG with the goal
of extending the CORBA standard with support of RT applications. Their def-
inition of RT-CORBA: “RT-CORBA deals with the expression and enforcement
of real-time constraints on end to end execution in a CORBA system” [18]. In
this report we look back at the characteristics needed for introducing real-time
in CORBA architectures and explain how the choices in the recent Standard
were influenced. We further explain some recent activities which are likely to
influence future extensions towards more dynamic solutions to support QoS.

The paper is organised as follows. Section 2 is a high-level overview of
the CORBA architecture. In section 3 we present the characteristics needed
by a CORBA system in order to support real-time specification and enforce-
ment. Section 4 presents two of the implementations on which much of the
RT-CORBA specification relies. In section 5 we present the RT CORBA 1.0
specification and the proposal received by OMG for dynamic scheduling support
in RT CORBA. Section 6 is devoted to two of the frameworks for specifying and
enforcing application-centered QoS in a CORBA environment. Section 8 briefly
presents some of the latest research and section 9 concludes the report.

2 CORBA Overview

The Object Management Group (OMG) is an international industry consortium
that promotes the theory and practice of object oriented software development.
Their goal is to provide a common architectural framework, across heteroge-
neous hardware platforms, programming languages, and operating systems, for
inter-communication of application objects [21].

An object oriented approach was chosen because of the need for components



that interact with each other through well known interfaces. Through encapsula-
tion reusability and security of the different components are enhanced. Modular
production of software is supported, developers can assemble applications from
COTS components, which in turn leads to shorter development cycles.

OMG performs no development by itself. The approach is to issue Requests
For Proposals (RFP), which solicit specifications of components to fit into a
broad Object Management Architecture (OMA). Members then propose, review
and adopt specifications. Once a specification is adopted the different imple-
mentations must comply to the specification. The following section presents the
main components of the CORBA Architecture [12, 21, 3].

2.1 The OMA

The Object Request Broker (ORB), the Core part of OMA, is the communication
bus for Objects. The technology adopted for the ORB is known as Common
Object Request Broker Architecture (CORBA). It specifies a framework for com-
municating objects. It allows to transparently invoke operations on distributed
objects spanning different:

e programming languages - C, C++, Java, Ada, Smalltalk, Cobol
e operating systems - Win32, Linux, Solaris, RT-OSes hardware platforms

e communication protocols and interconnections - TCP/IP, FDDI, IPX /SPX,
ATM, Ethernet

Also it automates tasks like object registration, location and activation, request
multiplexing/demultiplexing, error handling, parameter marshaling/demarshaling
and operation dispatching.

The Object Services are domain independent interfaces to sets of objects
which perform fundamental, domain-independent functions. Examples of Ob-
ject Services:

e Naming - allows clients to find objects by name

e Trader - allows clients to find objects by the services provided

FEvent - allows the notification of named events

Life Cycle - manages the creation/destruction of objects

Persistence - makes objects live longer than servants
e Transactions - allows the construction of atomic collection of calls
e Concurrency Control - allows objects to be locked by clients

The Common Facilities and Domain Interfaces are services which are also
horizontally linked like Object Services, but they are oriented towards user ap-
plications respectively specific application domains. The Application Interfaces
are interfaces developed specifically for a given application and thus not stan-
dardized.



2.2 The Object Model

For the specification of the OMA, OMG has defined an Object Model. The OMG
Object Model defines common object semantics for specifying the externally
visible characteristics of objects in a standard and implementation-independent
way. This object model is an example of a classical object model, where a client
sends a message(request) to an object. A message identifies an object and zero
or more actual parameters. A distinguished first parameter is required, which
is the operation to perform. CORBA provides a very abstract view of objects.
An object is visible only through operations defined by an interface and invoked
using an object reference. The Object Reference is an object name that reliably
denotes a particular object. An Interface is a set of possible operations that
a client is able to request from an object. It is specified in OMG Interface
Definition Language (IDL). IDL is a declarative language and is neutral with
regard to different programming languages and networks. From IDL definitions
it is possible to map CORBA objects into the different programming languages.
This is done by an IDL Compiler. An Operation is an identifiable entity that
denotes a service that may be requested. The signature of an operation consists
of:

e The specification of parameters. Parameters are characterized by mode
and type. The parameters can be in (passed from client to server), out
(from server to client) or inout (both). The type of a parameter can be
basic, constructed and object reference. CORBA 2.3.3 introduced value
types which try to emulate the semantic of objects passed by value.

e The specification of a result. The result is a distinguished out parameter.

e The specification of exceptions that may be raised. The exceptions may
carry specific information.

e The specification of additional contextual information

e The indication of execution semantics. Initially the execution semantics
were only at-most-once (the default request-reply blocking invocation) and
best-effort (the one-way invocation without replay). The CORBA mes-
saging specification extended the model.

An Interface can also contain Attributes. Attributes are logically equivalent to
declaring a pair of accessor functions, one for reading the value of an attribute,
one for writing it. Attributes may be read-only.

Concerning the three ingredients of the object-oriented paradigm, CORBA
fully supports encapsulation, does not support polymorfism, and inheritance is
restricted to interfaces only (since implementation is no concern). It provides
no overriding of operations.

2.3 CORBA ORB Architecture
There are eight components which build the CORBA ORB architecture [12]:

ORB CORE - provides the mechanism for transparently communicating client
requests to target object implementations. It simplifies distributed pro-
gramming by decoupling the client from the details of method invocation,



the requests appear as local procedure calls. The ORB is responsible for
finding the server objects, delivering the request and returning the result.

ORB Interface - provides various helper functions for both client and objects,
like storing object references into strings or creating argument lists for
dynamic invocations.

CORBA IDL stubs and skeletons - are the mediators between the client
respectively server and the ORB. They are created automatically by an
IDL compiler. Stubs provide the Static Invocation Interface (SII), which
is strongly typed. The stubs receive the client’s request and marshal it
into transport-level format. The skeletons demarshal the request and do
the upcall to the server implementation.

Dynamic Invocation Interface - if there is no knowledge at compile time of
the object interface, the DII is used to directly build the request, usually
with information from the Interface Repository, bypassing a stub.This is
also the only way to do deferred synchronous invocations.

Dynamic Skeleton Interface - isthe DII counterpart on the server side. The
DSI delivers requests to an object implementation that has no compile
time knowledge of the object interface it is implementing. Dynamic or
static, stubs and skeletons are fully interoperable.

Object Adapter - is responsible to assist the ORB in activating objects and
delivering requests to objects. It associates servants to objects and builds
object references. Different kind of adapters can be used to provide for
different policies for object activation, granularity, lifetime.

Interface repository - provides run-time information about IDL interfaces
and also additional information associated with interfaces, for example
the type library.

Implementation repository - stores information used to find and activate
servants and additional information associated with servers.

2.4 ORB Interoperability

The major flaw of CORBA 1.0 was not providing a standard for interoperabil-
ity between ORBs. So CORBA 2.x specified a single wire format to be used
as lingua franca for bridging between Environment Specific Inter-ORB Proto-
cols (ESIOP). This is the General Inter-ORB Protocol (GIOP) with Internet
Inter-ORB Protocol (IIOP) being the mapping of GIOP on TCP/IP. In the
end vendors chose to implement native GIOP/IIOP to prevent bridging be-
tween domains. The GIOP specification consists of the specification of the
Common Data Representation (CDR), which is the formatting of data on the
transport protocol, specification of the Message Formats, and the requirement
for a connection-oriented protocol.



3 Requirements for a RT CORBA System

The CORBA design principle is to hide most of the underlying, lower-level op-
erating system and communication resources from the user, to provide a trans-
parent way to do method invocations. This policy separates the application
programmer from low level management, which makes CORBA well suited for
best-effort quality of service requirements, but not for RT, deterministic appli-
cations.

Schmidt et al. [14] give the following reasons why conventional CORBA
implementations are not suited for real-time applications:

o Lack of QoS specification interfaces. Clients cannot specify end-to-end
QoS requirements. There is no way for clients to indicate the relative
priorities, deadlines, importance of their requests to the ORB. Or the
period of their invocations. Likewise there are no interfaces for allowing
applications to specify admission control policies.

e Lack of QoS enforcement. Conventional ORBs do not provide end-to-
end QoS enforcement. Most ORBs transmit, schedule and dispatch client
requests in FIFO order. FIFO strategies can lead to unbounded priority
inversions, for example when a lower level request blocks a higher level
request for an indefinite period of time. Likewise conventional ORBs do
not allow the specification of priorities for threads that process requests
and do not provide fine grained control of servant execution. Mostly they
provide ad hoc allocation of resources.

e Lack of real-time programming features. No standard language mappings
exist in CORBA 2.x to transmit client requests asynchronously and it does
not support timed operation invocations.

e Lack of performance optimization. Conventional ORBs incur significant
latency and throughput [6] overhead as well as many priority inversions
and sources of non-determinism. These overheads stem from: non-optimized
presentation layers that touch and copy data excessively, internal buffering
strategies that produce non-uniform behavior for different message sizes,
inefficient demultiplexing and dispatching algorithms, long chains of intra-
ORB calls, lack of integration with underlying operating system (OS) and
network QoS mechanisms.

In a later paper, Schmidt et.al. evaluate the real-time performance of several
ORBs (MT-Orbix, CORBAplus, miniCOOL and TAO) by different benchmarks.
They conclude with a list of recommendations, on how non-determinism can be
decreased and priority inversion limited [15]. We will return to this in section 4.1.

3.1 Requirements for Real-Time ORB Endsystems

For a CORBA System to be suited for real-time applications it is necessary to
let the client specify the QoS needed and that the ORB and underlying system
are able to enforce the QoS parameters specified by the applications.

Wolfe et al. [19] outline different requirements for a RT CORBA System
to meet the needs of real-time applications QoS. These requirements fall under



two main categories: Requirements on the operating environment (operating
system and networks) and requirements on the CORBA run-time system. We
will enumerate them as they appear in the article [19].

Operating environment requirements:

o Synchronized Clocks. All the clocks on nodes in a domain should be syn-
chronized within a bounded skew of each other.

e Bounded Message Delay. The underlying communication mechanism should
ensure a worst-case message delay between the nodes.

e Priority based Operating Environment Scheduling and Queuing. All com-
ponents used in the underlying CORBA environment should support pri-
ory based scheduling and queuing. this scheduling should be pre-emptive
where possible.

e Operating Environment Priority Inheritance. All components used in the
CORBA environment that synchronize tasks by blocking one task for an-
other should implement priority inheritance.

CORBA Run-time System requirements:

e Time Type. CORBA standard should specify a standard type for absolute
time and relative time.

o Transmittal of Real-time Method Invocation Information. RT-CORBA
should allow the following information to be transmitted from the client
to the server together with the method invocation: deadline, importance,
earliest start time, latest start time, period and other QoS requirements.
This information is likely to be needed to enforce real-time constraints in
the server node.

e Global Priority. The ORB should establish priorities for all executions.
These should be global across the ORB. This means that priorities should
be set in a consistent way, so they make sense relative to each other.

e Priority queuing of all CORBA Services.
e Real-time Events.

e Priority Inheritance. All RT CORBA level software that queues one task
while the other is executing should use priority inheritance, or a form of
priority ceiling protocol.

e Real-Time Exceptions. The CORBA exception handling mechanism should
be extended to include Real-time exceptions (e.g. missed deadline).

e Documented Ezecution Times. The standard should specify that vendors
must publish worst case bounds for their products.

e ORB Guarantee. If a client specifies a certain QoS the ORB should be
able to either guarantee it or raise an exception.



Likewise, Schmidt et.al., in addition to similar requirements as the ones
presented before, identify the following requirements for a high performance
real-time ORB [14], which address the more low-level, implementation (opti-
mization) features of an ORB:

e Efficient and predictable real-time communication protocols and protocol
engines. This means a connection and a concurrency architecture that
minimize priority inversion and a transport protocol that enables efficient,
predictable and interoperable processing and communication across ORB
endsystems.

o Efficient and predictable demultiplering and dispatching of the incoming
requests. This is possible by reducing the multilayered demultiplexing and
dispatching scheme of conventional ORBs through techniques like active
demultiplexing or perfect hashing.

o Efficient and predictable presentation layer. ORB presentation layer con-
versions transform application-level typed data into a portable format
(CDR). Common case optimization can be applied.

e Efficient and predictable memory management. Data copying is consum-
ing a significant amount of resources. Likewise using dynamic memory al-
location produces locking overhead and can also induce non-determinism
through heap fragmentation.

4 RT CORBA Development

In this section we describe two of the research projects that have provided much
of the foundation on which the RT CORBA standard is based.

4.1 TAO at Washington University

The Ace ORB (TAO) is a high performance, real-time ORB developed at Wash-
ington University at St. Louis. Their objective is to find patterns and perfor-
mance optimizations that provide for building a high performance, real-time
ORB. This ORB was targeted to support hard real-time systems using an a
priori static scheduling. Later the Scheduling Service was modified to suit also
dynamic environments. The key components of TAO [14] are as follows.

Real-time I/O subsystem TAO’s real-time I/O subsystem extends support
for RT into the OS. Although some general purpose operating systems now
support RT scheduling, they do not provide a RT I/O subsystem. TAQ’s I/O
subsystem assigns priorities to RT I/O threads so that the schedulability of the
application can be enforced. At the core of the I/O subsystem lies a network
interface consisting of one or more ATM Port Interface Controllers.

Efficient and predictable ORB Cores To address a reliable, deterministic
inter-ORB communication TAQO’s ORB Core supports:



o A priority based concurrency architecture. TAO ORB Core can be con-
figured according to the following concurrency policies: thread/priority,
thread pool, thread/connection and single thread. In the scope of these
policies operations can execute with one of the following models - Client
propagated model - at the priority at which the client invoked the opera-
tion and Server sets model - at the priority of the thread in the server’s
core that received the operation.

o A priority based connection architecture. The server ORB pre-establishes
different connections for different levels of priority. To get a certain level
of priority (thread priority) the client simply connects to the respective
connection. This approach is well suited for static rate monotonic schedul-
ing.

e A Real-time inter-ORB protocol (RIOP). An application that implements
dynamic QoS characteristics, or which requires that priority is propagated
from the client to the server, can transfer QoS information as a Tagged
Component in the Message Context. ORBs that do not support RIOP
simply ignore the header. In addition to this RIOP is designed to map
GIOP on different networks (e.g. ATM network).

Efficient and predictable Object Adapters An Oobject Adapter (OA)
demultiplexes incoming requests to servants, which have to locate the right
skeleton, which has to find the right operation to call. This layered demulti-
plexing can lead to priority inversions. TAQ’s RTOA uses perfect hashing and
active demultiplexing [11] to dispatch operations in constant time regardless of
number of servants, skeletons, and operations defined in IDL interfaces.

Efficient Stubs and Skeletons and Memory Management Stubs and
skeletons are responsible with marshaling and demarshaling of typed opera-
tion parameters, an activity which is a major bottleneck for high-performance
systems. TAO optimizes performance by reduced use of dynamic memory (prob-
lematic due to heap fragmentation and locking on heap allocation), reduced data
copying between ORB layers, and reduced function call overhead (inline-ing).
Also there is a choice between compiled stubs and skeletons, which are faster,
and interpreted ones which are smaller.

TAO’s Real-time Scheduling Service The TAO real-time scheduling ser-
vice was initially designed for static, offline scheduling, on a single CPU, but was
later extended to permit distributed, dynamic scheduling. We will briefly ex-
plain the features of the Scheduling Service as described in the literature [5, 14].

TAO uses the concept of RT_Operation to identify an operation defined in
CORBA IDL which has its own timing requirements specified in terms of the
attributes of a RT_Info IDL struct. The attributes contained in the RT _Info
specify information like worst-case execution time, the period of this operation
invocation, criticality, importance, and dependency on other operations.

The off-line part of the Scheduling Service stores the RT Info in a repository
of RT Info descriptors to be used at run-time. Then it constructs operation
dependency graphs (from the dependency information of RT Info) and identi-
fies threads of execution by examining the terminal nodes of the graph. Each



thread is identified by an active RT_Operation, which means an RT_Operation
that does not depend on another RT _Operation call to be executed. Then it
calculates each thread’s execution time as a sum of all traversed operations
and the threads period as the minimum period of all non-zero periods of the
traversed operations. Based on this information and on the scheduling policy
used, it assesses schedulability for the thread set. Initially the Dependency_Info
and the Ezecution_Time for each operation had to be gathered manually but
the Scheduling Service was extended to allow configuration runs to gather this
information and populate the RT Info structure.

At run-time, on the server side, the service uses two mechanisms to provide
schedulability. First, it sets up a number of queues which are used for dispatch-
ing operations and the priority of the thread which serves each queue, second,
it determines the dispatching prioritisation of each queue. By different ways of
using the information from the RT _Info structure to assign operations to differ-
ent queues and their position inside the queue, different scheduling policies can
be implemented. Mapping for rate-monotonic, earliest deadline first, minimum
laxity first and maximum utility first are presented.

TAO also provides a RT Event Service which can be used in conjunction
with the Scheduling Service to determine dispatching ordering and preemption
strategies.

4.2 RT CORBA at University of Rhode Island

Researchers at University of Rhode Island have developed a prototype of RT
CORBA that is designed to support expression and enforcement of dynamic
end-to-end timing constraints within a CORBA system. It shows a best-effort
behavior and uses an earliest deadline first within importance scheduling scheme.
The system was built as an augmentation to Orbix from Iona Technologies.
The components of the real-time CORBA system are implemented as a Real-
Time Daemon process and library code. The RT Daemon coordinates dynamic
aspects of the system as changing global priorities, time synchronization and
supporting RT Events.The Key Components of the system [20] are:

Global Time Service For expressing timing constraints in a distributed sys-
tem, a common global notion of time must be supported. Clients and servers
can call it to get the current time.

Latency Service This service allows clients and servers to determine various
latency bounds in the system. For example, a specification of 98% means that
the returned latency is greater than the actual latency 98% of the time. The
Latency Service uses three methods to provide latency bounds: Estimated La-
tencies - which are a priori measurements and very fast; Measured Latencies -
the Service measures the latency by background calls and requires high over-
head; Analytical Latencies - the server uses network parameters (like SNMP) to
calculate latencies.

Specification of Real-Time Constraints In a Timed Distributed Method
Invocation (TDMI) a client expresses real-time constraints on a CORBA method
invocation as attributes of a RT_Environment structure. A RT_Environment
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structure contains attributes that include importance, deadline, period and is
specified in IDL. The RT CORBA run-time system attaches the RT _Environment
structure to all executions that result from client’s TDMI request. For example
the RT_Environment structure is sent as a last argument on a remote operation
invocation. Also URI RT CORBA augments the CORBA exception mecha-
nism to handle real-time exceptions (e.g. it raises an exception of the type
RT_Exception when the TDMI has not returned before its deadline).

Global Priority Service and Distributed Scheduling The dynamic schedul-
ing is done by establishing a global priority for all executions in the system. Each
client communicates its RT parameters to the Global Priority Service and re-
ceives a global dynamic priority. The priority is dynamic because it can change
during the lifetime of the activity. For example when a TDMI arrives on a
server the deadline for the execution on the sever should pessimistically allow
the message delivery from the server to client and the clock skew between nodes.
The GPS uses an Earliest Deadline First Within Importance algorithm to assign
priorities. The RT-Daemon on each node maps the dynamic priority onto local
OS priority. Additionally the RT-Daemon enforces aging of global priorities so
that it remains consistent with the EDF scheduling.

Real-Time Event Service Real-time events are important in a distributed
system as means for synchronization and enforcement of real-time constraints.
This RT CORBA system implements a RT Fvent service that delivers the time
when events occurred and prioritizes the delivery of events depending on the
global priority of the producer, or of the consumer, or of both.

Real-Time Concurrency Control Service CORBA 2.x provides a Con-
currency Control Service to control consistent access to distributed resources.
This system includes a Real-Time Concurrency Control Service that implements
priority inheritance. When a TDMI holds a lock and blocks a higher priority
TDMI it inherits the latter priority. Transitive blocking is avoided by not al-
lowing a child activity to be created under a lock, which means that an activity
can only hold locks on one resource at a time.

5 Real-Time CORBA Specification

5.1 RT-CORBA Specification 1.0

The Final Joint Revised Submission to RT CORBA 1.0 [2] was received by
OMG in March 1999 and is part of the new CORBA 3.0 standard which will
be available in 2000. RT CORBA is defined as an extension to CORBA 2.2
(formal/98-12-01) and Messaging Service specification (orbos/98-05-05). We
will recognize many ideas from the systems presented earlier.

The goal of the specification is to support meeting real-time requirements by
facilitating end-to-end predictability of activities in the system and by providing
support for management of resources. The specification is sufficiently general to
span hard and soft real-time, but does not currently address dynamic scheduling.
Also, RT CORBA assumes fixed priority based scheduling in the underlying
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operating system. The thread as provided by the underlying OS represents the
schedulable entity.

Activity An activity is the design concept used for the end-to-end flow of in-
formation between client and server and should be end-to-end predictable. But
this abstract entity is represented by concrete units: the running thread on the
client, the request in memory, the message within the transport protocol, the
thread in the server and back. So, in order to assure the end-to-end predictabil-
ity, RT-CORBA defines standard interfaces and policies to manage:

e processing resources
e communication resources
® memory resources

In the remaining part we will make a short overview of the specification. A
more detailed presentation can be found elsewhere [2, 13].

Priority Systemm RT CORBA allows the application to determine the prior-
ity of its threads. At any time a thread has a global CORBA priority and a
native priority which is the mapping of the global priority on different operating
systems. The RT-ORB also offers an interface for mapping global to native and
back.

Priority Model The priority model offers two policies of specifying the pri-
ority according to which an invocation is processed on the server. The first
way is client-propagated, that means the priority is transported from the client
to server in the message context of invocation. The second is server-declared,
the server object specifies the priority at which it processes client requests, the
priority is specified for all the methods provided by the server and is exported
in the Interoperable Object Reference (IOR) of the server.

Thread Pools Through the pre-allocation of threads, programmers can re-
duce priority inversions by ensuring that there are enough threads and by avoid-
ing dynamic thread creation/destruction. Server applications can specify the
number of static threads (created initially), the maximum number of dynamic
threads, and the default priority of the threads. An Object Adapter is associ-
ated only with one thread pool so it might be useful to have threads at different
priorities in a thread pool. That’s why thread pools with lanes were specified.
For each lane the number of static and dynamic threads and their priority can
be specified. Also thread pools can specify the number or size of the requests
to be buffered if there are no threads available.

RT CORBA Mutexes To ensure a consistent resource allocation, RT CORBA
specifies a locality constrained mutez interface so that the applications can use
the same mutex implementation as the ORB. The mutex implementation has
to offer simple priority inheritance or some form of priority ceiling protocol.
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Explicit Binding In CORBA 2.x the application had no control over the
connections between clients and servers. Now there are two mechanisms avail-
able. First, clients are allowed to pre-establish connections. Priority banded
connections allow clients to specify explicit priorities (bands) for each network
connection and to select the appropriate connection based on the thread that
made the request. Second, clients are allowed to specify a connection as pri-
vate connection, it means that the requests sent on that connection are not
multiplexed, and a second request has to wait for the reply for the first.

Selecting and Configuring Protocols RT CORBA offers two policies to
specify the communication protocol used between clients and servers. Using the
ServerProtocolPolicy the server specifies what kind of protocols are available and
different protocol attributes. The server exports its protocol preferences inside
its IOR. When a client establishes a connection it uses the ClientProtocolPolicy.
When no ClientProtocolPolicy is available the ORB chooses a protocol depend-
ing on the protocols from the server IOR and the protocols supported by the
client ORB.

Invocation Timeouts Developers can specify timeouts on invocations to
bound the time a client is blocked in waiting for a reply. It uses one of the
timeouts specified by the Messaging Specification.

Scheduling Service RT CORBA 1.0 also specifies a global scheduling service.
The service provides an abstraction layer to hide the RT CORBA scheduling pa-
rameters. It uses names for objects and activities. At run-time the application
uses the scheduling service by acting on these names. What are the corre-
sponding low level parameters and how to coordinate these named activities
and objects is determined at the design time of the scheduling service.

5.2 Dynamic Scheduling

The Dynamic Scheduling Specification is intended to define the Real-Time
CORBA 1.0 fixed priority extensions that are required for a system governed
by a dynamic scheduling doctrine. This subsection is based on the initial sub-
mission received by OMG [1]. A revised submission has been recently received.

Scheduling doctrines which define thread eligibility as a function of both
thread characteristics (e.g. fixed priority) and current system characteristics
(e.g. loading) are regarded as dynamic, and extensions to the RT CORBA 1.0
are required to implement them. This submission presents techniques which are
usable without modification of the current generation of real-time OS priority
based dispatching systems.

The approach to dynamic scheduling is the following: To select which thread
is to be dispatched, the RTOS considers the priority of the thread and whether
it is ready-to-run. Activities waiting for IO, held in dispatch or mutex related
queues, or waiting for synchronous messages to complete are not ready-to-run.
The dynamic scheduling extensions allow a Dynamic Schedulerto manipulate
when threads are or are not ready-to-run. The specification defines:

e an interface between the ORB and the scheduler which is used by the
ORB to inform the scheduler about request/reply message processing
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e a pluggable module for the ORB that permits a “Dynamic Scheduler”
object to provide the queuing functions used within the ORB

e a user extendible scheduling parameter to be associated with the schedula-
ble entity (the thread) in the same manner CORBA 1.0 associates priority
with threads

The Scheduler::PermissionToProceed interface provides methods for appli-
cations and ORB components to both inform the scheduler about loading and
scheduling parameter characteristics and for the scheduler to control the execu-
tion progress.

The methods intended for usage by the ORB require the ORB to pass to the
scheduler information related to the servant and method being targeted, and
the scheduling parameter associated with the request. Policies associated with
the request specify whether the ORB should ask permission during;:

e client request processing
e during server up-call processing
e not at all

For example, by blocking the request on the client side, the usage of the trans-
port mechanism can be managed.

The methods intended to be used by applications provide the scheduler with
information related to activity workload demand and scheduling parameters.
Since the calls to this interface are synchronous the scheduler can use them to
control the runability of the calling threads.

The Scheduler::QueueServices interface provides an interface for an ORB
plug-in for supporting pushing and popping requests and activities (threads)
into a queue provided and managed by the scheduler. It can be used either
when resources are unavailable at ORB request up-call or at mutex processing.
Application can use the interface also for other synchronization purposes.

The scheduler has three processing phases:

e acquiring information about the system by ORB and applications calling
operations on the two interfaces,

e determine an activity dispatch schedule,

o affecting which threads are available for the RTOS to dispatch, by re-
sponding to PermissionToProceed or by popping requests or threads out
of the queue.

This means that the scheduler is able to perform its scheduling activities at the
frequency at which the applications use the two provided Interfaces. The pro-
posal also discusses implementation possibilities for some scheduling doctrines
(e.g. rate monotonic, earliest deadline first, least laxity first, maximum accrued
utility).
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5.3 Remarks about the specification

The goal of CORBA is to provide a high-level environment for the program-
mer, which is able to make transparent method invocations without concern
for location, operating system, hardware and communication mechanism. By
providing the developer with handles on managing resources and on enforcing
predictability, RT-CORBA sacrifices some of the general purpose character of
CORBA by supporting development of RT-Systems.

Also we can see that there are no IDL definitions for entities like RT activities
or QoS parameters, which means that this specification offers the developer the
possibility to enforce RT constraints, but it puts no restriction on how it is done.

O’Ryan et al.[10] evaluate the implementation of TAO with respect to CORBA
2.x and CORBA 3.0 specifications. Besides the interesting configuration and
benchmarking results, some shortcomings of CORBA 3.0 are also revealed:

e There is no standard API to control how thread pools are associated with
explicitly bound connections

e There is no standard API that would allow a server application to control
how the ORB associates a thread of a pre-specified priority to read from
I/O. Thus the thread that performs I/O could be different of the thread
processing the request which could lead to priority inversions.

In that paper they present the way these shortcomings were treated in the TAO
ORB, as well as an extension for specifying policies for controlling communica-
tion protocol buffer limits and flushing.

6 Application-level QoS

RT CORBA 1.0 recognized the need to let the application developer specify non-
functional, low-level requirements to the RT CORBA system. The positive side
is that now CORBA allows for end-to-end predictability. The negative side is
that programmers have to go low-level again, assigning all the needed resource
control parameters themselves. In a way this is solved by the RT-CORBA
Scheduling Service, which offers the use of names for activities and real time
objects. How the Scheduling Service interprets these names and acts on the
low-level parameters is defined at design time. But this may lead to inflexible
systems and to less reusable code because of the tight binding between the
application and its scheduler.

In order to fully support fundamental middleware/CORBA requirements
like:

e high-level programming which fast development cycles and
e reusability of code, use of commercial off the shelf (COTS)

there is a need for an architecture in which the programmers of different com-
ponents are able to specify also non-functional requirements - QoS in a more
abstract, application-centric way. To make the code reusable the architecture
has to provide a consistent way to specify and enforce the different QoS require-
ments. Among others, this means a uniform translation of application level QoS
into operating system and network level parameters.
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Another aspect of interest is adaptability, especially in open, dynamic envi-
ronments. RT QoS applications are usually fragile, since they depend so much
on the environment conditions. This means they are not suited for different
environments or for environments where system conditions vary a lot. In order
to avoid this, components should adopt an adaptive behavior. They should take
into account changes in the environment and have some knowledge about their
structure, to be able to adapt at run-time and provide the needed QoS. In the
rest of this section we will present two approaches to solve this problem.

6.1 Quality of Objects Architecture

The Quality of Objects (QuO) architecture is a CORBA QoS architecture devel-
oped at BBN Systems and Technology, and described by Zinky et.al. [22]. The
goal of QuO is to let the application specify the desired QoS in an application-
centered way, and by monitoring system and environment conditions to adapt
in the best way to deliver the expected QoS.

In QuO the object is the entity responsible for guaranteeing the end-to-end
QoS. A part of the object’s implementation is moved into the client’s address
space. Thus, the distributed information needed for providing QoS is gathered
and processed on the client node by the object delegate (client side proxy).
The advantages of this solution is that there is almost no delay between object
delegate and client. Also the delegate cannot fail independent of the client.

6.1.1 Specifying QoS in QuO

The specification of QoS is done with help of a set of IDL-like languages, which
together form the Quality Description Language (QDL), as follows.

The Contract Description Language CDL is used to define the expected
usage patterns and the QoS requirements an object should obey. A contract is
defined in terms of different level QoS regions of operation. To help the applica-
tion adapt to different system conditions QuO supports multiple behaviors for
a functional interface, each of these behaviors is bound to a region. The regions
of operation are specified as a predicate over multiple system properties. In this
way the client and object have to adapt only when there is a transition between
regions, and not every time a system property changes. A negotiated region is
defined in terms of the system conditions in which both client and server will
try to operate. Different negotiated regions correspond to different modes of
operation. Within a negotiated region there may be many reality regions which
are defined in terms of client usage and object delivered QoS that are actu-
ally measured by the QuO runtime system. The reality regions are the ones
that specify which actions need to be taken to keep the client-server as long as
possible in the chosen negotiated region.

The Structure Description Language SDL defines the internal structure
of an Object and its delegates on the client side. SDL is a data-flow description
of the object. Each method of an object would have its own SDL description.
Based on the SDL, at run-time different paths through the object may be taken
to provide the necessary QoS.
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The Connection Setup Language CSL is used to specify the components
of a QuO application and how they are instantiated, initialized and connected
with each other [8].

The Real-time Specification Language RSL is part of the QDL family,
and has been developed to deal with application-level, real-time requirements
in the case of periodic sensor/actuator systems [8].

6.1.2 Monitoring and adapting

An object delegate is not a monolithic object, it is built by a web of sub-objects.
Some of the objects implement the functional interface. Others implement the
contract, these are region objects and implement the object’s behavior in the
different reality regions. And a third category implement system properties, the
system condition objects are objects who provide uniform interfaces to different
system resources, mechanisms and managers.

Also, the object delegate on the client side is composed of layers of delegate
objects, so each layer is able to mask out some variance of system conditions for
the layer above. In this way the client implementation deals only with high-level,
application-centric system conditions.

Each layer of delegate objects exports a negotiated region to the layer above.
It uses different techniques to mask changing conditions (e.g. by changing poli-
cies, changing processing algorithms) and maintain the QoS it provides for the
layer above. When it cannot do it anymore it propagates information upward
to signal a change in the reality region. Each party tries to adapt and if it
cannot it indicates a change in expectations. This triggers a renegotiation of
the negotiated region between the client and the object.

There are observed and non-observed [8] system condition objects. Value
changes in the observed system conditions automatically trigger contract reeval-
uation, which could result in an active region change. The non-observed ones
do not propagate a change in their state but provide their value on demand, for
example when a contract is reevaluated due to a method call or an event from
a observed system condition.

At run-time, QuO provides a Run-Time Kernel that coordinates contract
reevaluation and provides run-time QuO services.

The design of QuO also intends to provide reusability and automatic gen-
eration of the code. By providing a layered architecture for object delegates,
clients can use high-level system conditions. This should improve the reusabil-
ity of the client code. QuO also offers system condition object from an already
implemented collection. In the same way as an IDL compiler, a QDL compiler
would generate a big part of the code used in object delegates.

6.2 ERDOS QoS Architecture

Sydir et al. [16] describe a QoS driven resource management scheme called End-
to-End Resource Management For Distributed Systems (ERDoS) for supporting
end-to-end QoS in a CORBA environment.

In order to provide a complete QoS driven middleware layer, the ERDoS
system incorporates a QoS-driven resource manager into the CORBA ORB
and Object Adapter. It includes algorithms to:
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e decompose end-to-end application-oriented QoS into middleware, OS and
network parameters. In supporting this task they defined a QoS tazon-
omy to capture the various facets of QoS in a consistent manner. QoS
parameters are expressed in terms of different units at different layers of
the system,

¢ allocate computing, storage and communication resources to applications,
e schedule application on these shared resources,
o gracefully degrade applications QoS when load exceeds capacity.

For capturing the information needed by the previously presented algorithms
ERDoS uses the following models:

The Resource Model captures information about the individual resources.
Resources represent the smallest grouping of hardware over which the resource
manager has control.

The System Model captures information about the structure of the system.
It describes the layout of the system resources by using a hierarchical structure.
(e.g. different subsystems can be managed by different management schemes)

The Logical Application Stream Model (LASM) captures the structure
of the application. The LASM can be represented as a graph in which the
nodes represent application components and the edges represent the data flow.
Each component represents a service which transforms the functional data and
its associated QoS. The end-to-end QoS of the application is a composition of
these individual QoS transformations. A service can be realized by one ore more
Logical Realizations of Service (LRoS) or Logical Units of Work (LUoW). Each
LRoS is represented also by a graph of data flow through lower-level services
which are realized by other LRoSs and LUoWs. The LUoW is a piece of appli-
cation which is realized entirely on a single resource, and when it is instanced on
a resource it is referred as a Physical Unit of Work (PUoW) and has a resource
demand model attached. The resource demand model describes the resource
usage requirements depending on the QoS of incoming data and the desired
outgoing QoS. At run-time the resource manager composes the application by
choosing which LRoSs and PUoWs should realize a service.

The Application Invocation Model (AIM) contains the information that
the user supplies when invoking a QoS application. It includes the desired values
of the QoS parameters, and information on their relative importance in the form
of a benefit function. The system uses this information to choose the QoS which
maximizes benefit and to provide graceful degradation when resources are not
sufficient.

At run-time a client of a QoS application invokes a top level LRoS, which
represents the entire end-to-end application, and provides it with the AIM pa-
rameters. Then, based on the LASM information of the available LRoSs and
LUoWs, the ORB composes the application, allocates its PUoW to resources
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and schedules them in order to provide the best QoS achievable. In the com-
position phase the ORB communicates with the potential PUoW through a
negotiation interface and chooses the ones which provide the better aggregated
QoS. Basically this interface provides two negotiation functions: one gets an
output_gos based on an input_gos and a resource_demand, the other gets a re-
source_demand based on an input_qos and an output_gos.

ERDoS also extends IDL to capture the LASM of the different LRoS and
LUoW available in the system, information which is stored in the implementa-
tion repository and is used at run-time to compose the application. Also the
ERDoS IDL-compiler generates code for stubs, wrappers and skeletons for the
different PUoW used.

The authors also relate their work to BBN’s QuO and emphasize on the fact
that this solution addresses the QoS problem for entire end-to-end server appli-
cations, not only for a client-server connection, and that a central manager for
all the activities in the system is more suited to enforce a consistent scheduling
policy.

6.3 Comparing QuO and ERDoS

The big difference between these two systems is the localization of the QoS
decision maker. On one side we have ERDoS centralized global resource man-
ager, who has to find a suitable scheme for all the QoS applications in the
system, applications which have to comply with the manager. On the other
side we have QuO clients and objects, the decision making is per application
basis and is taken locally on the client node. The client can provide decision
making to adapt to the currently measured conditions and the QuO solution is
non-obtrusive to the ORB.

It seems that ERDoS is more suited for somehow closed systems, inside
an ERDoS ORB domain, with a centralized QoS scheme that provides better
coordination between services. QuO is more suitable for large, decentralized
domains where local adaptability is the answer.

7 Other approaches

In this section we describe a few other approaches to real-time or QoS treatment.
In particular, we briefly describe the interceptor approach mentioned in the
introduction to the report [9].

The interceptor approach can be seen as a more general approach than the
ones described so far (but also a more low-level implementation-deriven ap-
proach). It is more general in the sense that several “deficiencies” of current
CORBA systems can be overcome by interceptors: non-application components
which can alter the behaviour of the application without changing the code or
the code of the ORB. For example, Narasimhan et.al. propose that intercep-
tors be used not only to achieve real-time scheduling, but also for several other
purposes: profiling and monitoring, as protocol adaptors for protocols other
than ITOP, for enhancement of security, and fault-tolerance via object replica-
tion. Paradoxically, the interceptor proposed for scheduling purposes (which is
supposed to influence the time at which a method for an object is executed)
is nothing more than a library interpositioning mechanism for thread creation,
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thread release, and thread management via existing operating systems such as
Solaris or other POSIX based operating systems.

At University of Rhode Island recent research involves a static scheduling
method for their RT CORBA system, with deadline monotonic global priority
assignment and the Distributed Priority Scheduling Protocol for concurrency
control [4]. They present a new algorithm for mapping potentially many global
priorities on few local priorities, the Lowest Overlap First Priority Mapping
algorithm. They also extended PERTS to generate global and local priorities
using the previous scheme.

Le Tien et al. [17] are building a “lightweight distributed processing scheme”
to support end-to-end QoS in middleware. They do not claim to introduce
new concepts in the field of QoS but want to adapt proven solutions to object
environments (CORBA). Their scheme is based on two dedicated objects:

The Micro QoS Manager is an application dependent object, in fact it should
be generated by a special IDL compiler from the applications QoS specified in
IDL. Tt is responsible for resource reservation, QoS monitoring and renegoti-
ation. It creates the QoS contract which represents the mapping of QoS as
specified by the application in parameters, and understood by the The Object
Resource manager (OR-Manager) and a resource graph which represents the
resource processing order. The OR-Manager is an object which controls a phys-
ical resource. It includes policies for resource reservation, admission control and
resource scheduling and takes an active part in the request processing.

End-to-end QoS management is provided by the cooperation of Micro QoS
Manager with a set of OR-managers. In the admission phase the client sends
the request parameters to the associated Micro QoS Manager. The Micro QoS
Manager builds the contract, and finds a OR-managers which can provide the
needed QoS for each of the elements in the resource graph. In the processing
phase the Micro QoS Manager provides monitoring of OR managers (can lead
to dynamic renegotiation). The developing of the system seems to be in a fairly
incipient phase.

Kalogeraki et al. [7] present a scheduling algorithm to support the execution
of tasks in a soft real-time distributed object system. The System Model consists
of a Global Scheduler which is responsible for computing the initial laxities of
the tasks based on information provided by the programmer. As new tasks enter
the system the Global Scheduler uses current system information collected by
a Resource Manager to distribute objects onto processors in order to provide
a balanced load on the processors, migrating objects when necessary. A task
consists of a sequence of object invocations. The laxity of a task is carried
from one processor to another with the object invocation. A Local Scheduler is
responsible for maintaining a local ordered list (schedule) for the objects. The
scheduling algorithm uses the lazity of the task and the importance of the object
to the task. It schedules a more important object before a less important one if
the laxity indicates that both will meet their deadlines. The authors emphasize
that the usage of laxity and importance allows for a system-wide scheduling
strategy that requires only local computations, and that a low importance object
does not delay a high importance task. However it is not quite clear how the local
schedule list is reordered with the arrival of a new task, and which objects are
dropped in overload cases. A profiler on each processor measures the execution
times(for a better laxity calculation) and resource utilization and supplies this
information to the Resource Manager.
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8 Current research directions

Loyall et al. [8] present the collaboration between the TAO and the QuO
projects to provide a “top-down” adaptable policy-driven perspective coupled with
a “bottom-up” real-time driven perspective. The enhancements that QuO brings
to the TAO RT ORB are twofold:

First, the applications can specify higher level aspects of QoS (timeliness)
requirements, and also can specify tradeoffs between requirements. These are
mapped into lower level requirements and mechanisms, which are enforced by
TAOQ’s real-time infrastructure.

Second, QuO provides application-adaptive mechanisms to the system. For
example, the scheduling in the system is performed on a global basis conforming
to an a priori chosen policy, which can be changed only with time-costly mode-
changes. But individual applications may want to react to changing conditions,
for example they may want to yield some resources, or they may want to find
alternative solutions.

As an example is given TAQ’s Real-time Event Service which has QuO del-
egates inserted between suppliers and consumers. The delegates can change
the frequency, priority and type of events. Since the Event Service is used in
scheduling this can provide adaptation without reconfiguring the enforcement
mechanisms. This is also presented as a way to implement migration of pro-
cessing. Delegates on the supplier or on the consumer side can relieve the other
side by taking over some of the data processing.

In our opinion little work has been done to fully evaluate the suggested
approaches by performing analysis, i.e. to illustrate that the goals set out were
achieved. In particular, it is not clear what are the overheads associated with the
additional features to achieve real-time or QoS guarantees (to the extent that
it can be provided by the architecture). Neither is it determined which trade-
offs exist in the choice of one scheduling or resource management mechanism
against another. Our work plans to study the performance and utilisation trade-
offs when achiving real-time or a given level of QoS — in particular, in the context
of the three main approaches mentioned in the report.

Another major track of activity is to study the real-time and fault-tolerance
trade-off when both services are added. This could also be extended to real-time
and security trade-offs.

9 Conclusion

The goal of this report was to provide a short overview over problems encoun-
tered when incorporating real-time into CORBA-based applications, and some
solutions to overcome these.

We began by identifying the characteristics of a CORBA architecture with
support for end-to-end predictability, and two of the CORBA RT systems which
provide some solutions for implementing these requirements.

In the current specification of RT CORBA, OMG provided interfaces by
which programmers can specify low-level requirements for OS and network re-
sources. They chose not to specify IDL extensions for RT specification to give
the developers freedom about the way to implement the desired behavior. As
additional help the specification defines the interface for a Scheduling Service

21



which can be constructed to hide the low level parameters behind “names” for
real-time activities and objects.

While this may be enough for closed, static systems it is not enough for
large dynamic systems in which different application co-exist and system con-
ditions can have a high variation. The solution is to provide frameworks which
let the client specify the non-functional (QoS) requirements in a high-level,
application-centric way. To be feasible, the mapping of these QoS requirements
into low-level parameters has to be done in a consistent, well-defined way. The
solutions oscillate between local adaptability schemes and centralized system-
wide managers for enforcing the needed QoS. Two of the solutions presented
offer a comprehensive QoS taxonomy, the measurements of different parameters
to provide adaptation, and a layered architecture from high level to low level.

The presented solutions have to be regarded from the perspective of reusabil-
ity of code, use of commercially available components (COTS), quick develop-
ment of software by shielding the programmer from low-level mechanisms, re-
quirements which motivated the development of middleware. Though CORBA
2.x offered a uniform way to specify functional requirements, this was not enough
for some applications to which the timeliness of the result is as important as
its value. So, RT CORBA specifications provide support for enforcing non-
functional requirements. However, the specification does not provide a com-
mon, high-level way to specify them. Therefore systems like QuO and ERDoS
are being built with the aim to let the programmer specify non-functional re-
quirements as easily and at the same high level as the functional ones.
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