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Abstract 
 
This paper presents how state consistency among 
distributed control nodes is maintained in the presence of 
faults. We analyze a fault tolerant semi-synchronous 
architecture concept of a Distributed Flight Control 
System (DFCS). This architecture has been shown robust 
against transient faults of continuous signals through 
inherent replica consistency [1]. This approach 
necessitates neither atomic broadcast nor replica 
determinism. Here, we extend the analysis of replica 
consistency property to confirm robustness against 
transient faults in discrete signals in presence of a single 
permanent fault in a control node. The paper is based on 
a case study on JAS 39 Gripen, a modern fourth 
generation multi purpose combat aircraft, presently 
operating with a centralized FCS. Our goal is to design 
the DFCS fault management mechanisms so that the 
distributed treatment of faults corresponds to the existing 
non-distributed FCS. In particular, fault management 
mechanisms not existing in the present centralized system 
but only in the distributed system are considered. 
 
1. Introduction 
 

The consistency problem in distributed replicas is a 
well-known problem in aerospace control systems. 
Already the SIFT project [2] recognized and solved the 
problem with exact voting. In this paper we revisit the 
consistency issue in the context of a very different 
hardware architecture. The theoretical approach for 
redundancy management of fault tolerant (FT) systems 
often calls for exact bit-wise consensus [3]. To achieve 
this the distributed nodes need to be strictly synchronized, 
and important primitives, such as membership agreement 
and atomic broadcast, are needed. For example the MARS 
system [4], with similar underlying hardware architecture, 
relies on a membership service. Many algorithms have 
been developed to realize these primitives. However, 
protocols supporting membership agreement designed to 
increase dependability can exhibit brittleness against 
transient faults, and for example, increase the risk of 
excluding a correct node [5].  

Synchronous communication is excellent to ensure 
predictability in the time domain and enforce real-time 
requirements, but strict synchrony works against 
tolerating different views of the system state in the 

distributed nodes. In the distributed architecture, we have 
looked into a semi–synchronous approach where nodes 
can be temporarily inconsistent during short periods, but 
converge to the same view within a bounded time. With 
inherent replica consistency we mean that the nodes 
might not be exact replicas, continuous signals can be 
slightly different in the value domain and the mode status 
or discrete signals can be inconsistent during short, well-
defined, time intervals. The synchronization demands can 
in this way be relaxed and the system made more robust 
because inconsistency among the actuator nodes will be 
tolerated during short periods. This conceptual solution 
has a great impact on the DFCS fault handling 
mechanisms. Similar treatment of faults in presence of 
partial synchrony can also be implemented as a 
middleware service [6]. But this paper concentrates on 
application level fault tolerance that was desired in the 
given aerospace context. 

The adopted approach reduces overhead due to 
consensus at communication level, and allows well-
known scheduling techniques for centralized nodes to be 
applied to the distributed nodes. Additionally, our semi-
synchronous approach opens up for software diversity.  

From early simulations presented in [1] it is found that 
the inherent replica consistency approach works well with 
continuous signals. However, the challenge is manifested 
when decisions due to discrete signals are to be taken. 
Hence, we must carefully analyze that the consistency 
property of system status is upheld among the distributed 
nodes.  

In this paper we present an analysis of the consistency 
of the distributed control system in presence of faults and 
discrete mode changes. Using properties of the selected 
architecture, we present arguments that the system can 
reconfigure and keep its desired control properties in 
presence of faults. In particular, that whenever one control 
surface is disengaged due to a major fault, the other 
actuators reconfigure simultaneously within a maximum 
time represented as a well-defined number of periodic 
cycles. These arguments form the sketch of a proof that 
can be formalized in future works. 

Note that the architecture for realizing a distributed 
flight control system has been defined earlier and is not 
motivated in this paper. This paper takes the architecture 
as given and studies its inherent replica consistency in 
relation to a class of faults and discrete mode changes. 

The analysis is built up in two stages. First, we 
consider the overall safety requirements of the aircraft. 



These are then stated in terms of desired properties of a 
distributed flight controller, especially upon discrete 
mode changes. For example, prescribing that a distributed 
controller acts in a similar way to the centralized one, 
when a major fault causes a flight control surface to 
disengage. The requirement on the DFCS is (informally) 
formulated in terms of safety and bounded response 
properties after this first stage of study.  

In the second stage, a careful analysis and listing of 
possible transient and permanent faults in every 
component of the architecture shows that no potential 
combination of these faults violates the requirements 
stated above. 

Note that design faults are excluded from the class of 
permanent faults studied here. Several methods to reduce 
design faults, including formal verification are 
incorporated in the development process of safety-critical 
software and electronics under consideration here [7]. 

The paper is divided into 6 sections. Next section 
presents the hardware architecture, and Section 3 outlines 
the system structure and fault model followed by the 
DFCS fault management mechanisms in Section 4. 
Maintaining consistency in presence of faults is analyzed 
in section 5, and section 6 concludes the paper.  
 
2. The Distributed FCS Architecture 
 

The multi-role aircraft JAS 39 Gripen has seven 
primary and three secondary control surfaces, all 
controlled by the FCS. In the distributed architecture, the 
critical sensor nodes and the bus are duplicated, while the 
seven actuator nodes are simplex, one at each primary 
control surface, see Figure 1. The reasons for studying a 

distributed solution compared to a centralized one are 
beyond the scope of this paper, but among the reasons one 
can mention: less weight, use of new technology in 
intelligent sensor and actuator nodes giving rise to 
redundant computational resources that can be used up 
this way, and finally fewer components leading to lower 
risk of breakdowns. 

Each primary control surface can operate in one of two 
modes, the normal mode (fault free) and the streamlining 
mode (in presence of permanent faults). During normal 
mode the FCS controls the surface. In streamlining mode 
the surface is free to follow the aerodynamic forces 
affecting it. In this mode the surface will not add any lift 
force and will therefore have minor impact on the 
movement of the aircraft. The aircraft is well controllable 
and able to perform safe landing even when one primary 
control surface is streamlining.  

Hardware replication (sensor and cockpit nodes, bus) 
is added to the system in order to meet the safety 
requirements with regards to permanent faults. This 
implies that no transient faults should lead to hardware 
losses. We will come back to this issue when considering 
the requirements imposed on the DFCS. 

All control software of today’s centralized flight 
control system is replicated at all seven actuator nodes in 
the distributed configuration, hence achieving a massive 
redundancy (seven redundant control computers 
compared to three of today’s). The actuator nodes 
redundantly calculate all control commands and exchange 
them over the broadcast bus. Hence, each actuator has its 
own result plus the other actuators’ results for 
comparison.  
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Figure 1 Sensor and Actuator Nodes of the Distributed FCS. 



The communication between the distributed nodes is 
synchronized using Time Division Multiple Access 
(TDMA) according to protocols as e.g. TTP/C, FlexRay 
or TT-CAN, while the actuator nodes are semi-
synchronous but inherently replica consistent. Below we 
will show how the consistency among distributed control 
nodes in presence of various faults can and will be 
maintained using inherent replica consistency. 

 
3. System Structure and Fault Model 
 

In the distributed FCS illustrated in Figure 1, all 
control and logic is allocated to the actuator nodes as well 
as fault handling mechanisms. The sensors can be viewed 
as data sources. Consequently, the following reasoning 
concerns the actuator nodes and their functions.  
 
3.1. The actuator functions 
 

The actuator, depicted in Figure 2, has one digital part 
(a computer) and one electro-mechanical part including 
servo and control surface. The digital part can experience 
both transient and permanent faults, whereas the electro-
mechanical part experiences only permanent ones.  

The digital part is divided into six functions that will 
be further discussed below: Interface, Sensor input 
Adaptation and Fault Handling (AFH), Control Law 
Computation (CLC), Voter, Monitoring, and Loop 
Closure. In the distributed case, the CLC is identical to 
the present central FCS, and Monitoring and AFH are 
similar (but not identical). Hence, our goal is to verify that 

changes to the design, including the inherent replica 
consistency concept, lead to adequate fault handling with 
specific emphasis on the added Voter component. 
Potential design changes in the loop closure and the 
electro-mechanical part will not be discussed below.  

We now describe the digital functions in each box in 
more detail. The dataflow denoted by numbered arrows 
will be described in next section. 

Interface. The main purpose of the interface is to deal 
with the incoming and outgoing messages on the bus, in 
effect implementing the TDMA protocol. Messages of 
particular interest in a TDMA round are the incoming 
sensor signals and the exchange of actuator messages.  

Adaptation and Fault Handling (AFH). Here, 
adaptation of sensor signals are performed as well as 
detection and handling of faulty sensors. Knowledge of 
system and sensor’s behavior is used to pinpoint a faulty 
sensor with high coverage.  

Control Law Computation (CLC). This unit 
implements algorithms that perform stability and control 
computations. They change depending on which flight 
phase (e.g. landing, start etc.) the aircraft is currently 
performing. The JAS 39 Gripen aircraft can operate in 
nine different phases, one at a time. Depending on actual 
operating phase the CLC can operate in different modes, 
e.g. the pilot can choose to engage modes for holding the 
aircraft at a certain altitude, automatic aiming etc, in this 
paper we focus on the fault handling modes. In particular, 
the reconfigured modes, to compensate a streamlining 
surface, might be selected in the CLC. 
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Figure 2 Simplified View of an Actuator. 

 



Voter. The voter is a key element for the fault 
handling mechanisms of the DFCS and its purpose is 
twofold. First, for the continuous signals the voter 
algorithm selects one out of seven command words in 
each TDMA round by taking the mean value. In this way, 
faulty values are detected and masked, and erroneous 
command words are prevented from propagating to a 
control surface. Second, for the discrete signals, i.e. mode 
status, the algorithms will assure mode changes to be 
synchronous and the actuators states consistent via exact 
(majority) voting and deferring the decision one cycle.  

Monitoring. This component monitors the behavior of 
both the digital part and the electro mechanical part (using 
the control surface’s position sensor, S in Fig. 2). It emits 
the Alive Signal that prevents the control surface from 
streamlining. As long as the monitoring qualifies the node 
as being healthy it issues the Alive Signal but if the node 
is not qualified the Alive Signal is not issued and the 
servo streamlines the control surface. The monitor 
function is equally important, as the Voter to achieve 
required FT, but is left out at this stage where focus is on 
consistency of the distributed Voters. (Monitor, Voter and 
Interface programs are checked by checksum calculation 
and coded variables for fault detection, due to the fact that 
components do not keep history between the cycles.) 

 
3.2. Communication and data flow 

 
Next we explain the data flow into, within, and out of 

each actuator node. Figure 3 pictures sensor and actuator 
messages sent each TDMA round (messages from nodes 
not relevant for the analysis are left out). 

 
BUS1 Si

1 … Si
2 … A1 … A7 

BUS2 Si
1 … Si

2 … A1 … A7 
TDMA cycle 

 

Figure 3 Messages broadcast every TDMA 
round under fault free condition. 

 
In the beginning of each TDMA round, the duplicated 

sensors broadcast their messages, [S1
1, …, Sn

1] and [S1
2, 

…, Sn
2] on both buses. Message Si

1 from sensors can hold 
values from continuous signals. Additionally the cockpit 
sensor also contains discrete signals such as selected 
mode as mentioned earlier. Actual mode is denoted as 
modev

w, where v = 1..Number_of_modes, and w  = {η, ξ} 
to indicate normal or reconfigured CLC operation. Each 
actuator node receives all sensor values and computes 
AHF and CLC, and subsequently exchanges information 
by broadcasting the messages, A1 to A7 in Figure 3. 
Messages from an actuator node include continuous 
signals, the computed command words, υ1- υ7, from CLC 
and some discrete signals, in particular actual flight mode, 
modev

w, the Alive Signal, α, and the streamlining signal, 
ξ. For example a message from actuator node p in normal 

operation mode issuing streamlining is denoted by:  Ap: 
[υ1- υ7, modev

η, α, ξp, …].  
In the paper we use ∅ to indicate a missing value, 

xfaulty for a faulty value of the variable in position x, and 
¬ξ for an unset streamlining signal. 

The numbered arrows in Figure 2 show the data flow 
within a node and we limit the details on data flow to 
those signals that are important for the FT analysis later 
on. In Figure 2, Arrow #1 illustrates all incoming and 
outgoing messages of the interface M:[…, mk, …], k = 
1..Number_of_nodes. Arrow #2, input to AFH block, 
illustrates the duplicated set of received sensor values Sin: 
[S1

1, …, Sn
1] and [S1

2, …, Sn
2] and arrow #3 is the 

computed sensor vector to the control law computation 
block, SCLC: [S1, ..., Sn]. The double arrow #4 coming out 
from the CLC block is this actuator’s message, Ap, which 
is both input to the own voter and broadcasted to other 
actuator voters, typically carrying normal mode control 
commands, Ap: [υ1- υ7, modev

η, α, ¬ξ, …]. The one-way 
groups of arrows #5 into the voter represent the other six 
actuator messages. The result from the voting process, 
arrow #6, is a control surface’s specific command word, 
Vp out: [υp] and feedback, arrow #7, to AFH for actuator 
fault detection. Arrows #8 into the monitoring block 
carries information for detection of permanent faults that 
must lead to streamlining, in particular faults in the Voter 
and the Interface components.  
 
3.3 Fault classes  
 

Only transient and permanent physical faults causing 
errors handled by the actuators are identified in this paper. 
Below, the considered fault classes and error descriptions 
for the DFCS components and functions are listed.  
Input signals can be erroneous due to permanent or 
transient faults in sensor nodes (Si

m, i=1..n, m=1,2) or 
buses. The errors appear in the actuator(s) as: 

a) Wrong or missing value(s) in all actuators during 
all sequential TDMA rounds (e.g. permanent 
physical damage in sensor node or bus). 

b) Wrong or missing value(s) in all actuators during 
one TDMA round (e.g. transient bit flip in sensor 
node or EMI disturbance on one, or both, buses). 

c) Correct values in one subset of actuators and 
wrong values in the other actuators (different 
delays or disturbance on buses, referred to as 
Byzantine faults [5]). 

Faults in the communication interface can manifest as: 
d) Permanently corrupted or no message / values 

(e.g. permanent fault in the sequence handler).  
e) Transiently corrupted message / value (e.g. bit 

flip in communication memory buffer, might 
cause inconsistency between affected and correct 
actuator nodes). 



Faults in the processor / memory can manifest as (error in 
the information flow on arrow 4): 

f) Permanent crash 
g) Permanent (all TDMA rounds) omitted value or 

value error 
h) Transient (one TDMA round) omitted value or 

value error 
Faults in the actuator’s electro mechanical parts lead to 
permanent disengagement of its control surface.  
 
4. Fault Handling and Redundancy 
Management 
 

We begin this section by stating the fault handling 
requirements on the DFCS as well as the assumptions 
used in the analysis, and continue with the main focus, 
description of the fault management mechanisms in the 
actuator nodes. The actuator analysis is more 
comprehensive since all sensor adaptation, control law 
computation, signal monitoring, etc are allocated to the 
actuators.  
 
4.1. The fault handling requirements of DFCS 
 

The analysis of adequacy of fault management in the 
DFCS, i.e. in the actuator nodes, depends on the high 
level requirements placed on the control system. In this 
section we list a number of major requirements that 
should be ensured by the distributed design. 

Requirement 1: No combinations of two transient 
faults lead to streamlining. 

As indicated in the introduction, this requirement 
reflects the decision that no extra hardware components 
should be included for dealing with transient faults. Thus, 
transient faults should be tolerated by the fault handling 
mechanisms. 

Requirement 2: The distributed actuator nodes behave 
as one with respect to the discrete signals, in particular the 
mode status. 

This is an obvious requirement for any distributed 
control system (a kind of correctness requirement). 
However, to make it more concrete, we consider it in 
terms of a combination of the two following properties.  

Requirement 2.1: Mode changes will be reflected in 
the control decisions taken by all actuator nodes. 
Moreover, the mode change should take place within a 
predefined number of cycles in each actuator, and the 
control decision taken in the very same TDMA cycle. 

To be more precise, some permanent physical faults 
will cause a control surface to streamline. If this happens, 
it will be reflected in the control decisions taken by all 
remaining 6 actuator nodes. Moreover, this change is 
required to take place within a predefined number of 
cycles, and all actuators change control law in the very 
same TDMA cycle. 

Requirement 2.2: If none of the control surfaces are 
streamlining, then none of the actuator node computations 
are carried out in the streamlining mode. 

At the heart of these requirements lies the inherent 
consistency property (Req. 2). As mentioned earlier, one 
primary control surface streamlining is not a critical 
situation, the aircraft can still be well controlled and 
perform safe landing. From real flight experience it is 
known that reconfiguration in the case of a control surface 
streamlining is performed in a safe and correct way by 
today’s centralized FCS. For the distributed case we must 
additionally ensure the inherent consistency property 
(Req.2). First the correct working actuator nodes must 
agree upon which surface is streamlining and secondly 
they must change mode simultaneously, within some time 
limit small enough not to jeopardize the stabilization of 
the aircraft, i.e. they must reconfigure synchronously.  

In this section the FT mechanisms are analyzed to 
ensure that the distributed design does not violate the 
above identified requirements. The analysis is based on 
the detailed fault handling mechanisms in subsection 4.3 
and the assumptions in next subsection.  
 
4.2. Assumptions 
 

1 No “babbling idiots”: The nodes are fail-silent in 
the temporal domain. 

2 Independent buses.  
3 Very high fault/error detection coverage is 

assured through message synchronization 
mechanisms and CRC at all messages. 

 
4.3. Actuator fault handling mechanisms 
 

In this section we present detection and handling 
mechanisms for the faults described in §3.3. All detection 
and handling is performed simultaneously within each 
actuator. Table 1 gives an overview of the mechanisms, 
and implicitly presents some dependencies that will 
appear in the analysis of distributed fault-tolerance later in 
this section.  

The DFCS cannot recover from permanent faults 
during runtime. Instead, the infected area or node is lost, 
giving a redundancy loss of the system. Permanent faults 
of sensors and buses are tolerated by hardware 
redundancy and the system impact of such faults is 
redundancy loss. A fault in a sensor node can result in 
either a) the node’s fault detection mechanisms discover 
the fault and report this in its next broadcast message or 
b) the fault is not detected in the sensor and an erroneous 
value is then broadcasted on the bus. Erroneous input 
sensor values will be detected and isolated in the AFH by 
comparison e.g., assertion checks [8], range, min / max 
derivate etc. 

Most permanent actuator faults (e.g. interface, voter, 
monitoring, servo, control surface) must lead to 



streamlining of the affected control surface followed by a 
reconfiguration, by which the remaining six control 
surfaces must compensate for the missing surface.  

The table shows there are 5 rows in which the system 
will resort to streamlining (reconfiguration) of actuator 
surface. These fault-handling scenarios will be further 
considered in section 5. 

 
Table 1 DFCS Actuator Fault handling 

 

 
DETECTION MECHANISM 

FAULT HANDLING 
MECHANISM 

SYSTEM EFFECT 

Sensor 

Wrong sensor value –Compare with replicated 
value, assertion checks and sensor model in AFH 

Exclude faulty sensor 
value in CLC 

 
Missing sensor value – detected by bus protocol  Use redundant sensor 

value 

If transient fault: None  
 

If permanent fault: 
Redundancy loss 

Bus 

Destroyed messages detected by CRC Use messages from 
redundant bus 

Nothing or noise on one of the buses detected by 
bus protocol 

Switch to duplicate bus  

If transient fault: None  
 

If permanent fault: 
Redundancy loss 

Actuator node 
-Communication Interface 

Corrupted message(s) detected by CRC Masked by voter None 

No messages – detected by bus protocol Streamlining Reconfiguration  

-Processor 
Wrong result (faulty operating calculation units) 

detected by comparison in voter 
Reuse previous states in 
CLC, masked by voter 

 
None 

No results (no messages) – detected by bus protocol Streamlining Reconfiguration 
-CLC (memory) 

Wrong result (bit flip in program or data) detected 
by comparison in voter 

Reuse previous states in 
CLC, masked by voter  

 
None 

Program crash detected by exception in CLC Masked by voter None 
-Voter (memory) 

Wrong result (bit flip in program) detected by 
monitoring 

Streamlining Reconfiguration 

-Monitoring (memory) 
Wrong result (bit flip in program or states) detected 

by existing mechanisms (not public) 
Streamlining Reconfiguration 

-Control Surface (Electro mechanical part) 
Not correct working control surface is detected by 
monitoring and comparison with position sensor 

Streamlining  Reconfiguration 

 
 

 
 

 



5. Analysis of the FT mechanisms of actuator 
nodes 
 

This section puts forward the arguments that show 
inherent replica consistency is upheld in the DFCS in 
presence of discrete mode changes and certain 
combination of faults. The analysis covers: single 
transient faults (section 5.1), multiple transient faults 
(section 5.2), single permanent faults (section 5.3) and 
combination of single permanent and transient faults 
(section 5.4). 

Before covering the separate cases, we give an abstract 
description of the distributed algorithm, to clarify how 
faults may affect its computations in different phases. 
DFCS Algorithm behaves as follows in each TDMA 
round: 

Communication Phase 1: All sensor nodes broadcast 
their values, which are received by all actuator nodes. 

Processing Phase 1: Actuator nodes apply 
received/stored sensor values on current states and 
perform AFH and CLC. 

Communication Phase 2: Actuator nodes exchange 
results by broadcasting their messages. 

Processing Phase 2: Actuator nodes perform voting on 
everybody’s results. 

In presence of faults this algorithm does not include any 
explicit consensus procedures. Instead we will show that 
the distributed voters will decide on the same mode in the 
presence of one or two arbitrary faults. In the following 
discussions we will go through single transient and 
permanent faults (as presented in section 3.3), as well as 
combination of faults that might cause the seven voters to 
come to different states followed by the treatment in order 
to re-establish the consistency.  
 
5.1. Single Transient Faults 
 
We begin our analysis by considering single transient 
faults. The first column in Table 2 embraces all transient 
faults listed in §3.3. The second column shows which 
vector/vectors that are affected, and especially the voters 
input vectors, Ap, p = 1..7. 

From Table 2 follows that no single transient fault 
leads to inconsistency among the distributed control 
nodes, and from this first assessment we can recognize 
that transient faults affecting the voter or the monitoring 
functions will not violate the consistency requirement 
(Req.2). Moreover, a single transient fault will not lead to 
streamlining.  

 
Table 2 Single transient faults 

 
ERROR DESCRIPTION ERROR MANIFESTATION COMMENTS 

Wrong or missing value from sensor Si
1 

See §3.3 b) 
Sin: […, Si-1

1, ∅, Si+1
1…,] ∧ 

[…, Si-1
2, Si

2, Si+1
2…,] 

Inconsistency cannot happen since 
all actuator nodes receive the same 

sensor values. 
Corrupted message, mk, in one bus 

during Comm. Phase 1 
or Comm. Phase 2 

See §3.3 e) 

M: […,mk-1, mk, mk+1, …] followed 
by 

M: […,mk-1, ∅, mk+1, …] 

Inconsistency cannot happen since 
all actuator nodes receive messages 

on the duplicated bus. 

Transient fault during Proc. Phase 1 in 
Ap  

See §3.3 h) 

Ap:[υfaulty, …,modev
η, α, ¬ξ, …] 

q≠p ⇒  
Aq: [υ1- υ7, modev

η, α, ¬ξ, …] 

All voters vote on 6 correct vectors 
and one faulty (p’s). 

Transient fault during Proc. Phase 2 
affecting the Voter in Ap 

 
 

See §3.3 h) 

Ap out: [υp
faulty] 

q≠p ⇒ Aq out: [υq] 
The faulty command word in Ap 

propagates to the loop closure, this 
is OK for shorter periods due to the 
inertia of the aircraft, and does not 

influence the voter’s decisions.  
Transient fault during Proc. Phase 2 

affecting the Monitoring in Ap,  
See §3.3 h) 

As in the present FCS (Saab 
restricted information). 

Have no impact on decisions in the 
voters. 

 
In the next section we consider all possible 

combinations of single transient faults above except for 
those appearing in Voter and Monitoring. 

 
5.2. Concurrent transient faults 
 

In this section we show that combinations of transient 
faults alone can neither lead to streamlining (Req. 1) nor 
inconsistency with respect to discrete signals (Req. 2.1).  

This analysis shows that Req 1 (No combinations of 
transient faults lead to streamlining) is satisfied by the 
DFCS architecture. 



 
 

 

Table 3 Combination of transient faults 
 

CONCURRENT ERRORS  ERROR MANIFESTATION COMMENTS 
Double sensor faults: 

Wrong or missing sensor value in 
sensor, Si

1, and in sensor, Sj
2 

 
Sin: […, Si-1

1, Si
faulty , Si+1

1, …] 
[…, Sj-1

2, Sj
faulty , Sj+1

2…,]     
 

Inconsistency cannot happen since all 
actuator nodes receive the same sensor 
values. However, if i = j a mode change 
might be missed if affected signal was 

to enforce one. 
Double bus faults: 

Corrupted message, mk, on Bus 1 
and, ml, on Bus 2 

 
M1: […, mk-1, mk

faulty, mk+1, ...] 
M2: […, ml-1, ml

faulty, ml+1, ...] 

k≠l, correct message taken from the 
unaffected bus. 

k=l, not possible, see assumption under 
section 4.1 

Double actuator faults: 
Faulty operating calculation units in 

Ap and in Aq  

 
Ap,  Aq: […, υfaulty, …] 

 
 

If p = q all voters vote on 6 correct 
vectors and one (p’s) faulty. 

If p ≠ q all voters vote on 5 correct 
vectors and two faulty. 

Concurrent sensor and bus faults: 
Si

1 sends faulty value and mk is 
corrupted on bus one 

 
Sin: […, Si

faulty , …] […, Si
2 , …] 

M1: […, mk-1, mk
faulty, mk+1, ...] 

Handled by duplication in sensors and 
buses. 

Concurrent sensor and actuator 
faults: Si

1 and Ap send faulty values 
on both buses 

 
Sin: […, Si

faulty , …] […, Si
2 , …] 

Ap: […, υfaulty, …] 

Single sensor faults are handled by 
AFH. All voters vote on 6 correct 

vectors and one faulty. 
Concurrent actuator and bus faults: 

Ap send faulty values and mk is 
corrupted on bus one 

 
Ap: […, υfaulty, …] 

M1: […, mk-1, mk
faulty, mk+1, ...] 

Single bus faults are handled by 
duplication. All voters vote on 6 correct 

vectors and one faulty. 
 

5.3. Single permanent faults 
 

Permanent sensor and bus faults are treated by 
hardware replication while permanent actuator faults lead 
to a degraded operating mode and CLC reconfiguration, 
see Table 1. The question is how does the DFCS deal with 
single permanent faults? That is, how do we ensure that 

the actuator nodes reflect the streamlining decision by one 
node in the future behavior of all remaining nodes (Req. 
2.1). Decision on streamlining a control surface is taken 
locally by the affected actuator node. We now show that 
all seven voters shall take the decision on reconfiguration 
simultaneously and within a certain number of cycles. 
First we consider single permanent faults (Table 4). 

 
Table 4 Single permanent faults: Streamlining and synchronous reconfiguration 

 
In Cycle j a Permanent fault causes control surface p to streamline 

TDMA cycle j TDMA cycle j+1 TDMA cycle j+2 
Ap: [υ1- υ7, modev

η, ∅, ξp, …] 
∀ q ≠ p  

Aq: [υ1- υ7, modev
η, α, ¬ξ, …] 

Ap: [υ1- υ7, modev
η, ∅, ξp, …] 

∀ q ≠ p  
Aq: [υ1- υ7, modev

η, α, ξp, …]  

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …] 

∀ q ≠ p  
Aq: [υ1- υ7, modev

ξ, α, ξp, …] 
Cycle j: The control law computation is in normal mode, modev

η, in all actuator nodes, A1-7 , and Ap flags for 
streamlining, ξp thus, stopped issuing the Alive Signal, α, (seen by ∅). 

Cycle j+1: The DFCS is still operating in normal mode, but all actuators have now recognized that control surface p 
is streamlining, ξp, and due to majority decision in the voter the next computation will be in reconfigured mode. 

Cycle j+2: CLC is computed in reconfigured mode, modev
ξ, in all actuators. Hence, reconfiguration takes place in 

the same TDMA cycle. 
 

In next section we show that the above property 
(reconfiguration in the same cycle) will not be affected by 
a concurrent single transient fault. 
 



5.4. Combined permanent and transient faults 
 

Here we show that the actuator nodes of the DFCS 
behave as one with respect to the discrete signals also for 
combination of transient and permanent faults (Req. 2.1). 
The single permanent fault from Table 4 is combined with 
the transient faults from Table 2 (except for those 
appearing in Voter and Monitoring) and analyzed in Table 
5. The combined cases are:  

Case I: Actuator p issues streamlining and in the same 
TDMA cycle is sensor, Si

1, affected by a transient.  

Case II: Actuator p issues streamlining and in the same 
TDMA cycle message, mk, is corrupted during 
Communication Phase 1 or 2. 

Case III: Actuator p issues streamlining and in the 
same TDMA cycle transient computation faults occur 
during Processing Phase 1 in actuator q. This case 
includes two sub-cases, III a) and III b) in both of which 
the permanent fault occurs in actuator p. In III a) the 
transient fault that appears in actuator q affects continuous 
signals υ, and in III b) it affects the discrete signal ξ.  

Table 5 Combined permanent & transient faults 
 

Case I      In Cycle j: Streamlining in Ap and Sensor fault in Si
1  

TDMA cycle j TDMA cycle j+1 TDMA cycle j+2 
Sin: […, Si-1

1, Si
faulty , Si+1

1, …] 
∧ […, Si-1

2, Si
2, Si+1

2, …] 
Ap: [υ1- υ7, modev

η, ∅, ξp, …] 
∀ q ≠ p Aq: [υ1- υ7, modev

η, α, ¬ξ, …] 

Ap: [υ1- υ7, modev
η, ∅, ξp, …] 

∀ q ≠ p  
Aq: [υ1- υ7, modev

η, α, ξp, …]  

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …] 

∀ q ≠ p  
Aq: [υ1- υ7, modev

ξ, α, ξp, …] 

Cycle j to j+2: Sensor faults does not affect the ξ signal (only υ values corrected by AFH) hence, Case I is reduced 
to the single permanent fault case in Table 4. 

Case II       In Cycle j: Streamlining in Ap and message, mk, is corrupted on Bus 1 
TDMA cycle j TDMA cycle j+1 TDMA cycle j+2 

M1: […, mk-1, mk
faulty, mk+1, ...] 

M2: […,mk-1, mk, mk+1, ...] 
Ap: [υ1- υ7, modev

η, ∅, ξp, …] 

Ap: [υ1- υ7, modev
η, ∅, ξp, …] 

∀ q ≠ p  
Aq: [υ1- υ7, modev

η, α, ξp, …]  

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …] 

∀ q ≠ p  
Aq: [υ1- υ7, modev

ξ, α, ξp, …] 

Cycle j to j+2: Bus faults are corrected by the duplicated bus and Case II is reduced to the single permanent fault 
case in Table 4. 

Case III a)      In Cycle j: Streamlining in Ap and computation faults during Processing Phase 1 in actuator q 
resulting in faulty command values. 

TDMA cycle j TDMA cycle j+1 TDMA cycle j+2 
Ap: [υ1- υ7, modev

η, ∅, ξp, …] 
Aq: […, υfaulty, modev

η, α, ¬ξ, …] 
∀ r ≠ p, q Ar: [υ1- υ7, modev

η, α, ¬ξ, …] 

Ap: [υ1- υ7, modev
η, ∅, ξp, …]  

∀ i ≠ p Ai: [ …, modev
η, α, ξp, …] 

Ap: [υ1- υ7, modev
η, ∅, ξp, …]  

∀ i ≠ p Ai: [ …, modev
ξ, α, ξp, …] 

 

Cycle j to j+2: Faulty command words in Aq are masked by the voter and we will have the same result as in the 
single permanent case with synchronous reconfiguration in three TDMA rounds. 

Case III b)        Streamlining in Ap, and transient faulty discrete signal in Aq e.g. q flags for streamlining, ξq. 
TDMA cycle j TDMA cycle j+1 TDMA cycle j+2 

Ap: [υ1- υ7, modev
η, ∅, ξp, …] 

Aq: [υ1- υ7, modev
η, α, ξq, …] 

∀ r ≠ p, q Ar: [υ1- υ7, modev
η, α, ¬ξ, …] 

Ap: [υ1- υ7, modev
η, ∅, ξp, …]  

∀ i ≠ p  
Ai: [υ1- υ7, modev

η, α, ξp, …] 

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …]  

∀ i ≠ p  
Ai: [υ1- υ7, modev

ξ, α, ξp, …]  

Cycle j to j+2: In this case two actuators flag for streamlining simultaneously, however only one control surface is 
actually streamlining. The voter logic will mask this case by ignoring the ξq since the Alive Signal, α, is present in 

Aq. Thus, also this case is similar to the single permanent one and reconfigure in three cycles. 
 
This analysis shows that Req. 2.1 is met even in 

presence of combination of permanent and transient 
faults. As a corollary we get the satisfaction of Req. 2.2 as 

the final case of the analysis, III b). The above sections 
thus complete the proof sketch that replica consistency 



eventually holds in the distributed nodes (in the j+3rd 
cycle) in presence of the interesting fault classes. 
 
6. Concluding remarks 
 

The analysis of the DFCS even as an informal 
reasoning process has not been a trivial task. Having done 
this analysis we have further studied the replica 
consistency property that was initiated in [1] and covered 
continuous signals. Here, the reasoning is extended to 
include discrete values.  In this paper we have 
concentrated on presenting the likely fault scenarios and 
the essential fault handling mechanisms that ensure a 
correct distribution of the flight control function. What 
remains to complete the picture is the consideration of 
permanent faults in the communication system.  

The correctness of the implemented distribution with 
respect to well-defined combinations of transient and 
permanent faults (that might affect continuous or discrete 
values) has been shown and is the major contribution of 
this paper. Thus, a valuable input to the system safety and 
reliability analysis has been rigorously documented.  

Future works include defining and detailing the design, 
especially the voter, at a formal level where the analysis 
can be checked by employment of formal verification 
tools. A recent study of a much simpler component, an 
avionic sensor voter, indicates that the derivation of 
environment models is the major step in verifying the 
component under development [9]. In that work several 
models of the environment were iteratively developed as a 
result of counter examples generated by a formal 
verification engine. In our case, the detailed analysis 
above is a major step towards characterizing the 
conditions (combinations of faults) under which the 
formal proofs would be meaningful and reliable. 
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