
Fault Analysis of a Distributed Flight Control System

Kristina Forsberg Simin Nadjm-Tehrani Jan Torin
SaabTech AB Linköping University Chalmers University of Technology

kristina.forsberg@saabtech.se simin@ida.liu.se torin@ce.chalmers.se

Abstract

This paper presents how state consistency among
distributed control nodes is maintained in the presence of
faults. We analyze a fault tolerant semi-synchronous
architecture concept of a Distributed Flight Control
System (DFCS). This architecture has been shown robust
against transient faults of continuous signals through
inherent replica consistency [1]. This approach
necessitates neither atomic broadcast nor replica
determinism. Here, we extend the analysis of replica
consistency property to confirm robustness against
transient faults in discrete signals in presence of a single
permanent fault in a control node. The paper is based on
a case study on JAS 39 Gripen, a modern fourth
generation multi purpose combat aircraft, presently
operating with a centralized FCS. Our goal is to design
the DFCS fault management mechanisms so that the
distributed treatment of faults corresponds to the existing
non-distributed FCS. In particular, fault management
mechanisms not existing in the present centralized system
but only in the distributed system are considered.

1. Introduction

The consistency problem in distributed replicas is a
well-known problem in aerospace control systems.
Already the SIFT project [2] recognized and solved the
problem with exact voting. In this paper we revisit the
consistency issue in the context of a very different
hardware architecture. The theoretical approach for
redundancy management of fault tolerant (FT) systems
often calls for exact bit-wise consensus [3]. To achieve
this the distributed nodes need to be strictly synchronized,
and important primitives, such as membership agreement
and atomic broadcast, are needed. For example the MARS
system [4], with similar underlying hardware architecture,
relies on a membership service. Many algorithms have
been developed to realize these primitives. However,
protocols supporting membership agreement designed to
increase dependability can exhibit brittleness against
transient faults, and for example, increase the risk of
excluding a correct node [5].

Synchronous communication is excellent to ensure
predictability in the time domain and enforce real-time
requirements, but strict synchrony works against
tolerating different views of the system state in the

distributed nodes. In the distributed architecture, we have
looked into a semi–synchronous approach where nodes
can be temporarily inconsistent during short periods, but
converge to the same view within a bounded time. With
inherent replica consistency we mean that the nodes
might not be exact replicas, continuous signals can be
slightly different in the value domain and the mode status
or discrete signals can be inconsistent during short, well-
defined, time intervals. The synchronization demands can
in this way be relaxed and the system made more robust
because inconsistency among the actuator nodes will be
tolerated during short periods. This conceptual solution
has a great impact on the DFCS fault handling
mechanisms. Similar treatment of faults in presence of
partial synchrony can also be implemented as a
middleware service [6]. But this paper concentrates on
application level fault tolerance that was desired in the
given aerospace context.

The adopted approach reduces overhead due to
consensus at communication level, and allows well-
known scheduling techniques for centralized nodes to be
applied to the distributed nodes. Additionally, our semi-
synchronous approach opens up for software diversity.

From early simulations presented in [1] it is found that
the inherent replica consistency approach works well with
continuous signals. However, the challenge is manifested
when decisions due to discrete signals are to be taken.
Hence, we must carefully analyze that the consistency
property of system status is upheld among the distributed
nodes.

In this paper we present an analysis of the consistency
of the distributed control system in presence of faults and
discrete mode changes. Using properties of the selected
architecture, we present arguments that the system can
reconfigure and keep its desired control properties in
presence of faults. In particular, that whenever one control
surface is disengaged due to a major fault, the other
actuators reconfigure simultaneously within a maximum
time represented as a well-defined number of periodic
cycles. These arguments form the sketch of a proof that
can be formalized in future works.

Note that the architecture for realizing a distributed
flight control system has been defined earlier and is not
motivated in this paper. This paper takes the architecture
as given and studies its inherent replica consistency in
relation to a class of faults and discrete mode changes.

The analysis is built up in two stages. First, we
consider the overall safety requirements of the aircraft.

These are then stated in terms of desired properties of a
distributed flight controller, especially upon discrete
mode changes. For example, prescribing that a distributed
controller acts in a similar way to the centralized one,
when a major fault causes a flight control surface to
disengage. The requirement on the DFCS is (informally)
formulated in terms of safety and bounded response
properties after this first stage of study.

In the second stage, a careful analysis and listing of
possible transient and permanent faults in every
component of the architecture shows that no potential
combination of these faults violates the requirements
stated above.

Note that design faults are excluded from the class of
permanent faults studied here. Several methods to reduce
design faults, including formal verification are
incorporated in the development process of safety-critical
software and electronics under consideration here [7].

The paper is divided into 6 sections. Next section
presents the hardware architecture, and Section 3 outlines
the system structure and fault model followed by the
DFCS fault management mechanisms in Section 4.
Maintaining consistency in presence of faults is analyzed
in section 5, and section 6 concludes the paper.

2. The Distributed FCS Architecture

The multi-role aircraft JAS 39 Gripen has seven
primary and three secondary control surfaces, all
controlled by the FCS. In the distributed architecture, the
critical sensor nodes and the bus are duplicated, while the
seven actuator nodes are simplex, one at each primary
control surface, see Figure 1. The reasons for studying a

distributed solution compared to a centralized one are
beyond the scope of this paper, but among the reasons one
can mention: less weight, use of new technology in
intelligent sensor and actuator nodes giving rise to
redundant computational resources that can be used up
this way, and finally fewer components leading to lower
risk of breakdowns.

Each primary control surface can operate in one of two
modes, the normal mode (fault free) and the streamlining
mode (in presence of permanent faults). During normal
mode the FCS controls the surface. In streamlining mode
the surface is free to follow the aerodynamic forces
affecting it. In this mode the surface will not add any lift
force and will therefore have minor impact on the
movement of the aircraft. The aircraft is well controllable
and able to perform safe landing even when one primary
control surface is streamlining.

Hardware replication (sensor and cockpit nodes, bus)
is added to the system in order to meet the safety
requirements with regards to permanent faults. This
implies that no transient faults should lead to hardware
losses. We will come back to this issue when considering
the requirements imposed on the DFCS.

All control software of today’s centralized flight
control system is replicated at all seven actuator nodes in
the distributed configuration, hence achieving a massive
redundancy (seven redundant control computers
compared to three of today’s). The actuator nodes
redundantly calculate all control commands and exchange
them over the broadcast bus. Hence, each actuator has its
own result plus the other actuators’ results for
comparison.

Accelerometer

Rate Gyro
Air Data

 . . .

Broadcast
buses

7 primary control surface nodes
3 secondary control
surface nodes

Interconnections
S

S
SS

S
S

Nose
wheel

Leading
edge flaps

Air Brake
Right Canard

Control surface

Actuator
node 7

Engine

Actuator
node 1

 Cockpit

Aircraft system bus

Left Inner
Elevon Control

surface

Figure 1 Sensor and Actuator Nodes of the Distributed FCS.

The communication between the distributed nodes is
synchronized using Time Division Multiple Access
(TDMA) according to protocols as e.g. TTP/C, FlexRay
or TT-CAN, while the actuator nodes are semi-
synchronous but inherently replica consistent. Below we
will show how the consistency among distributed control
nodes in presence of various faults can and will be
maintained using inherent replica consistency.

3. System Structure and Fault Model

In the distributed FCS illustrated in Figure 1, all
control and logic is allocated to the actuator nodes as well
as fault handling mechanisms. The sensors can be viewed
as data sources. Consequently, the following reasoning
concerns the actuator nodes and their functions.

3.1. The actuator functions

The actuator, depicted in Figure 2, has one digital part
(a computer) and one electro-mechanical part including
servo and control surface. The digital part can experience
both transient and permanent faults, whereas the electro-
mechanical part experiences only permanent ones.

The digital part is divided into six functions that will
be further discussed below: Interface, Sensor input
Adaptation and Fault Handling (AFH), Control Law
Computation (CLC), Voter, Monitoring, and Loop
Closure. In the distributed case, the CLC is identical to
the present central FCS, and Monitoring and AFH are
similar (but not identical). Hence, our goal is to verify that

changes to the design, including the inherent replica
consistency concept, lead to adequate fault handling with
specific emphasis on the added Voter component.
Potential design changes in the loop closure and the
electro-mechanical part will not be discussed below.

We now describe the digital functions in each box in
more detail. The dataflow denoted by numbered arrows
will be described in next section.

Interface. The main purpose of the interface is to deal
with the incoming and outgoing messages on the bus, in
effect implementing the TDMA protocol. Messages of
particular interest in a TDMA round are the incoming
sensor signals and the exchange of actuator messages.

Adaptation and Fault Handling (AFH). Here,
adaptation of sensor signals are performed as well as
detection and handling of faulty sensors. Knowledge of
system and sensor’s behavior is used to pinpoint a faulty
sensor with high coverage.

Control Law Computation (CLC). This unit
implements algorithms that perform stability and control
computations. They change depending on which flight
phase (e.g. landing, start etc.) the aircraft is currently
performing. The JAS 39 Gripen aircraft can operate in
nine different phases, one at a time. Depending on actual
operating phase the CLC can operate in different modes,
e.g. the pilot can choose to engage modes for holding the
aircraft at a certain altitude, automatic aiming etc, in this
paper we focus on the fault handling modes. In particular,
the reconfigured modes, to compensate a streamlining
surface, might be selected in the CLC.

�
�
� 8 5

 4

 2

 1

�
�
�

7
6

 3
Loop Closure

Adaptation and
Fault Handl., AFH
of sensors / buses

Control Law
Comp., CLC

 VOTER

Detection and
masking of faulty
actuator nodes

 I
N
T
E
R
F
A
C
E

Monitoring

S

Control
surface

Alive Signal

Servo

Digital part Mechanical part

Figure 2 Simplified View of an Actuator.

Voter. The voter is a key element for the fault
handling mechanisms of the DFCS and its purpose is
twofold. First, for the continuous signals the voter
algorithm selects one out of seven command words in
each TDMA round by taking the mean value. In this way,
faulty values are detected and masked, and erroneous
command words are prevented from propagating to a
control surface. Second, for the discrete signals, i.e. mode
status, the algorithms will assure mode changes to be
synchronous and the actuators states consistent via exact
(majority) voting and deferring the decision one cycle.

Monitoring. This component monitors the behavior of
both the digital part and the electro mechanical part (using
the control surface’s position sensor, S in Fig. 2). It emits
the Alive Signal that prevents the control surface from
streamlining. As long as the monitoring qualifies the node
as being healthy it issues the Alive Signal but if the node
is not qualified the Alive Signal is not issued and the
servo streamlines the control surface. The monitor
function is equally important, as the Voter to achieve
required FT, but is left out at this stage where focus is on
consistency of the distributed Voters. (Monitor, Voter and
Interface programs are checked by checksum calculation
and coded variables for fault detection, due to the fact that
components do not keep history between the cycles.)

3.2. Communication and data flow

Next we explain the data flow into, within, and out of

each actuator node. Figure 3 pictures sensor and actuator
messages sent each TDMA round (messages from nodes
not relevant for the analysis are left out).

BUS1 Si

1 … Si
2 … A1 … A7

BUS2 Si
1 … Si

2 … A1 … A7
TDMA cycle

Figure 3 Messages broadcast every TDMA
round under fault free condition.

In the beginning of each TDMA round, the duplicated

sensors broadcast their messages, [S1
1, …, Sn

1] and [S1
2,

…, Sn
2] on both buses. Message Si

1 from sensors can hold
values from continuous signals. Additionally the cockpit
sensor also contains discrete signals such as selected
mode as mentioned earlier. Actual mode is denoted as
modev

w, where v = 1..Number_of_modes, and w = {η, ξ}
to indicate normal or reconfigured CLC operation. Each
actuator node receives all sensor values and computes
AHF and CLC, and subsequently exchanges information
by broadcasting the messages, A1 to A7 in Figure 3.
Messages from an actuator node include continuous
signals, the computed command words, υ1- υ7, from CLC
and some discrete signals, in particular actual flight mode,
modev

w, the Alive Signal, α, and the streamlining signal,
ξ. For example a message from actuator node p in normal

operation mode issuing streamlining is denoted by: Ap:
[υ1- υ7, modev

η, α, ξp, …].
In the paper we use ∅ to indicate a missing value,

xfaulty for a faulty value of the variable in position x, and
¬ξ for an unset streamlining signal.

The numbered arrows in Figure 2 show the data flow
within a node and we limit the details on data flow to
those signals that are important for the FT analysis later
on. In Figure 2, Arrow #1 illustrates all incoming and
outgoing messages of the interface M:[…, mk, …], k =
1..Number_of_nodes. Arrow #2, input to AFH block,
illustrates the duplicated set of received sensor values Sin:
[S1

1, …, Sn
1] and [S1

2, …, Sn
2] and arrow #3 is the

computed sensor vector to the control law computation
block, SCLC: [S1, ..., Sn]. The double arrow #4 coming out
from the CLC block is this actuator’s message, Ap, which
is both input to the own voter and broadcasted to other
actuator voters, typically carrying normal mode control
commands, Ap: [υ1- υ7, modev

η, α, ¬ξ, …]. The one-way
groups of arrows #5 into the voter represent the other six
actuator messages. The result from the voting process,
arrow #6, is a control surface’s specific command word,
Vp out: [υp] and feedback, arrow #7, to AFH for actuator
fault detection. Arrows #8 into the monitoring block
carries information for detection of permanent faults that
must lead to streamlining, in particular faults in the Voter
and the Interface components.

3.3 Fault classes

Only transient and permanent physical faults causing
errors handled by the actuators are identified in this paper.
Below, the considered fault classes and error descriptions
for the DFCS components and functions are listed.
Input signals can be erroneous due to permanent or
transient faults in sensor nodes (Si

m, i=1..n, m=1,2) or
buses. The errors appear in the actuator(s) as:

a) Wrong or missing value(s) in all actuators during
all sequential TDMA rounds (e.g. permanent
physical damage in sensor node or bus).

b) Wrong or missing value(s) in all actuators during
one TDMA round (e.g. transient bit flip in sensor
node or EMI disturbance on one, or both, buses).

c) Correct values in one subset of actuators and
wrong values in the other actuators (different
delays or disturbance on buses, referred to as
Byzantine faults [5]).

Faults in the communication interface can manifest as:
d) Permanently corrupted or no message / values

(e.g. permanent fault in the sequence handler).
e) Transiently corrupted message / value (e.g. bit

flip in communication memory buffer, might
cause inconsistency between affected and correct
actuator nodes).

Faults in the processor / memory can manifest as (error in
the information flow on arrow 4):

f) Permanent crash
g) Permanent (all TDMA rounds) omitted value or

value error
h) Transient (one TDMA round) omitted value or

value error
Faults in the actuator’s electro mechanical parts lead to
permanent disengagement of its control surface.

4. Fault Handling and Redundancy
Management

We begin this section by stating the fault handling
requirements on the DFCS as well as the assumptions
used in the analysis, and continue with the main focus,
description of the fault management mechanisms in the
actuator nodes. The actuator analysis is more
comprehensive since all sensor adaptation, control law
computation, signal monitoring, etc are allocated to the
actuators.

4.1. The fault handling requirements of DFCS

The analysis of adequacy of fault management in the
DFCS, i.e. in the actuator nodes, depends on the high
level requirements placed on the control system. In this
section we list a number of major requirements that
should be ensured by the distributed design.

Requirement 1: No combinations of two transient
faults lead to streamlining.

As indicated in the introduction, this requirement
reflects the decision that no extra hardware components
should be included for dealing with transient faults. Thus,
transient faults should be tolerated by the fault handling
mechanisms.

Requirement 2: The distributed actuator nodes behave
as one with respect to the discrete signals, in particular the
mode status.

This is an obvious requirement for any distributed
control system (a kind of correctness requirement).
However, to make it more concrete, we consider it in
terms of a combination of the two following properties.

Requirement 2.1: Mode changes will be reflected in
the control decisions taken by all actuator nodes.
Moreover, the mode change should take place within a
predefined number of cycles in each actuator, and the
control decision taken in the very same TDMA cycle.

To be more precise, some permanent physical faults
will cause a control surface to streamline. If this happens,
it will be reflected in the control decisions taken by all
remaining 6 actuator nodes. Moreover, this change is
required to take place within a predefined number of
cycles, and all actuators change control law in the very
same TDMA cycle.

Requirement 2.2: If none of the control surfaces are
streamlining, then none of the actuator node computations
are carried out in the streamlining mode.

At the heart of these requirements lies the inherent
consistency property (Req. 2). As mentioned earlier, one
primary control surface streamlining is not a critical
situation, the aircraft can still be well controlled and
perform safe landing. From real flight experience it is
known that reconfiguration in the case of a control surface
streamlining is performed in a safe and correct way by
today’s centralized FCS. For the distributed case we must
additionally ensure the inherent consistency property
(Req.2). First the correct working actuator nodes must
agree upon which surface is streamlining and secondly
they must change mode simultaneously, within some time
limit small enough not to jeopardize the stabilization of
the aircraft, i.e. they must reconfigure synchronously.

In this section the FT mechanisms are analyzed to
ensure that the distributed design does not violate the
above identified requirements. The analysis is based on
the detailed fault handling mechanisms in subsection 4.3
and the assumptions in next subsection.

4.2. Assumptions

1 No “babbling idiots”: The nodes are fail-silent in
the temporal domain.

2 Independent buses.
3 Very high fault/error detection coverage is

assured through message synchronization
mechanisms and CRC at all messages.

4.3. Actuator fault handling mechanisms

In this section we present detection and handling
mechanisms for the faults described in §3.3. All detection
and handling is performed simultaneously within each
actuator. Table 1 gives an overview of the mechanisms,
and implicitly presents some dependencies that will
appear in the analysis of distributed fault-tolerance later in
this section.

The DFCS cannot recover from permanent faults
during runtime. Instead, the infected area or node is lost,
giving a redundancy loss of the system. Permanent faults
of sensors and buses are tolerated by hardware
redundancy and the system impact of such faults is
redundancy loss. A fault in a sensor node can result in
either a) the node’s fault detection mechanisms discover
the fault and report this in its next broadcast message or
b) the fault is not detected in the sensor and an erroneous
value is then broadcasted on the bus. Erroneous input
sensor values will be detected and isolated in the AFH by
comparison e.g., assertion checks [8], range, min / max
derivate etc.

Most permanent actuator faults (e.g. interface, voter,
monitoring, servo, control surface) must lead to

streamlining of the affected control surface followed by a
reconfiguration, by which the remaining six control
surfaces must compensate for the missing surface.

The table shows there are 5 rows in which the system
will resort to streamlining (reconfiguration) of actuator
surface. These fault-handling scenarios will be further
considered in section 5.

Table 1 DFCS Actuator Fault handling

DETECTION MECHANISM

FAULT HANDLING
MECHANISM

SYSTEM EFFECT

Sensor

Wrong sensor value –Compare with replicated
value, assertion checks and sensor model in AFH

Exclude faulty sensor
value in CLC

Missing sensor value – detected by bus protocol Use redundant sensor

value

If transient fault: None

If permanent fault:
Redundancy loss

Bus

Destroyed messages detected by CRC Use messages from
redundant bus

Nothing or noise on one of the buses detected by
bus protocol

Switch to duplicate bus

If transient fault: None

If permanent fault:
Redundancy loss

Actuator node
-Communication Interface

Corrupted message(s) detected by CRC Masked by voter None

No messages – detected by bus protocol Streamlining Reconfiguration

-Processor
Wrong result (faulty operating calculation units)

detected by comparison in voter
Reuse previous states in
CLC, masked by voter

None

No results (no messages) – detected by bus protocol Streamlining Reconfiguration
-CLC (memory)

Wrong result (bit flip in program or data) detected
by comparison in voter

Reuse previous states in
CLC, masked by voter

None

Program crash detected by exception in CLC Masked by voter None
-Voter (memory)

Wrong result (bit flip in program) detected by
monitoring

Streamlining Reconfiguration

-Monitoring (memory)
Wrong result (bit flip in program or states) detected

by existing mechanisms (not public)
Streamlining Reconfiguration

-Control Surface (Electro mechanical part)
Not correct working control surface is detected by
monitoring and comparison with position sensor

Streamlining Reconfiguration

5. Analysis of the FT mechanisms of actuator
nodes

This section puts forward the arguments that show
inherent replica consistency is upheld in the DFCS in
presence of discrete mode changes and certain
combination of faults. The analysis covers: single
transient faults (section 5.1), multiple transient faults
(section 5.2), single permanent faults (section 5.3) and
combination of single permanent and transient faults
(section 5.4).

Before covering the separate cases, we give an abstract
description of the distributed algorithm, to clarify how
faults may affect its computations in different phases.
DFCS Algorithm behaves as follows in each TDMA
round:

Communication Phase 1: All sensor nodes broadcast
their values, which are received by all actuator nodes.

Processing Phase 1: Actuator nodes apply
received/stored sensor values on current states and
perform AFH and CLC.

Communication Phase 2: Actuator nodes exchange
results by broadcasting their messages.

Processing Phase 2: Actuator nodes perform voting on
everybody’s results.

In presence of faults this algorithm does not include any
explicit consensus procedures. Instead we will show that
the distributed voters will decide on the same mode in the
presence of one or two arbitrary faults. In the following
discussions we will go through single transient and
permanent faults (as presented in section 3.3), as well as
combination of faults that might cause the seven voters to
come to different states followed by the treatment in order
to re-establish the consistency.

5.1. Single Transient Faults

We begin our analysis by considering single transient
faults. The first column in Table 2 embraces all transient
faults listed in §3.3. The second column shows which
vector/vectors that are affected, and especially the voters
input vectors, Ap, p = 1..7.

From Table 2 follows that no single transient fault
leads to inconsistency among the distributed control
nodes, and from this first assessment we can recognize
that transient faults affecting the voter or the monitoring
functions will not violate the consistency requirement
(Req.2). Moreover, a single transient fault will not lead to
streamlining.

Table 2 Single transient faults

ERROR DESCRIPTION ERROR MANIFESTATION COMMENTS

Wrong or missing value from sensor Si
1

See §3.3 b)
Sin: […, Si-1

1, ∅, Si+1
1…,] ∧

[…, Si-1
2, Si

2, Si+1
2…,]

Inconsistency cannot happen since
all actuator nodes receive the same

sensor values.
Corrupted message, mk, in one bus

during Comm. Phase 1
or Comm. Phase 2

See §3.3 e)

M: […,mk-1, mk, mk+1, …] followed
by

M: […,mk-1, ∅, mk+1, …]

Inconsistency cannot happen since
all actuator nodes receive messages

on the duplicated bus.

Transient fault during Proc. Phase 1 in
Ap

See §3.3 h)

Ap:[υfaulty, …,modev
η, α, ¬ξ, …]

q≠p ⇒
Aq: [υ1- υ7, modev

η, α, ¬ξ, …]

All voters vote on 6 correct vectors
and one faulty (p’s).

Transient fault during Proc. Phase 2
affecting the Voter in Ap

See §3.3 h)

Ap out: [υp
faulty]

q≠p ⇒ Aq out: [υq]
The faulty command word in Ap

propagates to the loop closure, this
is OK for shorter periods due to the
inertia of the aircraft, and does not

influence the voter’s decisions.
Transient fault during Proc. Phase 2

affecting the Monitoring in Ap,
See §3.3 h)

As in the present FCS (Saab
restricted information).

Have no impact on decisions in the
voters.

In the next section we consider all possible

combinations of single transient faults above except for
those appearing in Voter and Monitoring.

5.2. Concurrent transient faults

In this section we show that combinations of transient
faults alone can neither lead to streamlining (Req. 1) nor
inconsistency with respect to discrete signals (Req. 2.1).

This analysis shows that Req 1 (No combinations of
transient faults lead to streamlining) is satisfied by the
DFCS architecture.

Table 3 Combination of transient faults

CONCURRENT ERRORS ERROR MANIFESTATION COMMENTS
Double sensor faults:

Wrong or missing sensor value in
sensor, Si

1, and in sensor, Sj
2

Sin: […, Si-1

1, Si
faulty , Si+1

1, …]
[…, Sj-1

2, Sj
faulty , Sj+1

2…,]

Inconsistency cannot happen since all
actuator nodes receive the same sensor
values. However, if i = j a mode change
might be missed if affected signal was

to enforce one.
Double bus faults:

Corrupted message, mk, on Bus 1
and, ml, on Bus 2

M1: […, mk-1, mk

faulty, mk+1, ...]
M2: […, ml-1, ml

faulty, ml+1, ...]

k≠l, correct message taken from the
unaffected bus.

k=l, not possible, see assumption under
section 4.1

Double actuator faults:
Faulty operating calculation units in

Ap and in Aq

Ap, Aq: […, υfaulty, …]

If p = q all voters vote on 6 correct
vectors and one (p’s) faulty.

If p ≠ q all voters vote on 5 correct
vectors and two faulty.

Concurrent sensor and bus faults:
Si

1 sends faulty value and mk is
corrupted on bus one

Sin: […, Si

faulty , …] […, Si
2 , …]

M1: […, mk-1, mk
faulty, mk+1, ...]

Handled by duplication in sensors and
buses.

Concurrent sensor and actuator
faults: Si

1 and Ap send faulty values
on both buses

Sin: […, Si

faulty , …] […, Si
2 , …]

Ap: […, υfaulty, …]

Single sensor faults are handled by
AFH. All voters vote on 6 correct

vectors and one faulty.
Concurrent actuator and bus faults:

Ap send faulty values and mk is
corrupted on bus one

Ap: […, υfaulty, …]

M1: […, mk-1, mk
faulty, mk+1, ...]

Single bus faults are handled by
duplication. All voters vote on 6 correct

vectors and one faulty.

5.3. Single permanent faults

Permanent sensor and bus faults are treated by
hardware replication while permanent actuator faults lead
to a degraded operating mode and CLC reconfiguration,
see Table 1. The question is how does the DFCS deal with
single permanent faults? That is, how do we ensure that

the actuator nodes reflect the streamlining decision by one
node in the future behavior of all remaining nodes (Req.
2.1). Decision on streamlining a control surface is taken
locally by the affected actuator node. We now show that
all seven voters shall take the decision on reconfiguration
simultaneously and within a certain number of cycles.
First we consider single permanent faults (Table 4).

Table 4 Single permanent faults: Streamlining and synchronous reconfiguration

In Cycle j a Permanent fault causes control surface p to streamline

TDMA cycle j TDMA cycle j+1 TDMA cycle j+2
Ap: [υ1- υ7, modev

η, ∅, ξp, …]
∀ q ≠ p

Aq: [υ1- υ7, modev
η, α, ¬ξ, …]

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

∀ q ≠ p
Aq: [υ1- υ7, modev

η, α, ξp, …]

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …]

∀ q ≠ p
Aq: [υ1- υ7, modev

ξ, α, ξp, …]
Cycle j: The control law computation is in normal mode, modev

η, in all actuator nodes, A1-7 , and Ap flags for
streamlining, ξp thus, stopped issuing the Alive Signal, α, (seen by ∅).

Cycle j+1: The DFCS is still operating in normal mode, but all actuators have now recognized that control surface p
is streamlining, ξp, and due to majority decision in the voter the next computation will be in reconfigured mode.

Cycle j+2: CLC is computed in reconfigured mode, modev
ξ, in all actuators. Hence, reconfiguration takes place in

the same TDMA cycle.

In next section we show that the above property
(reconfiguration in the same cycle) will not be affected by
a concurrent single transient fault.

5.4. Combined permanent and transient faults

Here we show that the actuator nodes of the DFCS
behave as one with respect to the discrete signals also for
combination of transient and permanent faults (Req. 2.1).
The single permanent fault from Table 4 is combined with
the transient faults from Table 2 (except for those
appearing in Voter and Monitoring) and analyzed in Table
5. The combined cases are:

Case I: Actuator p issues streamlining and in the same
TDMA cycle is sensor, Si

1, affected by a transient.

Case II: Actuator p issues streamlining and in the same
TDMA cycle message, mk, is corrupted during
Communication Phase 1 or 2.

Case III: Actuator p issues streamlining and in the
same TDMA cycle transient computation faults occur
during Processing Phase 1 in actuator q. This case
includes two sub-cases, III a) and III b) in both of which
the permanent fault occurs in actuator p. In III a) the
transient fault that appears in actuator q affects continuous
signals υ, and in III b) it affects the discrete signal ξ.

Table 5 Combined permanent & transient faults

Case I In Cycle j: Streamlining in Ap and Sensor fault in Si
1

TDMA cycle j TDMA cycle j+1 TDMA cycle j+2
Sin: […, Si-1

1, Si
faulty , Si+1

1, …]
∧ […, Si-1

2, Si
2, Si+1

2, …]
Ap: [υ1- υ7, modev

η, ∅, ξp, …]
∀ q ≠ p Aq: [υ1- υ7, modev

η, α, ¬ξ, …]

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

∀ q ≠ p
Aq: [υ1- υ7, modev

η, α, ξp, …]

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …]

∀ q ≠ p
Aq: [υ1- υ7, modev

ξ, α, ξp, …]

Cycle j to j+2: Sensor faults does not affect the ξ signal (only υ values corrected by AFH) hence, Case I is reduced
to the single permanent fault case in Table 4.

Case II In Cycle j: Streamlining in Ap and message, mk, is corrupted on Bus 1
TDMA cycle j TDMA cycle j+1 TDMA cycle j+2

M1: […, mk-1, mk
faulty, mk+1, ...]

M2: […,mk-1, mk, mk+1, ...]
Ap: [υ1- υ7, modev

η, ∅, ξp, …]

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

∀ q ≠ p
Aq: [υ1- υ7, modev

η, α, ξp, …]

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …]

∀ q ≠ p
Aq: [υ1- υ7, modev

ξ, α, ξp, …]

Cycle j to j+2: Bus faults are corrected by the duplicated bus and Case II is reduced to the single permanent fault
case in Table 4.

Case III a) In Cycle j: Streamlining in Ap and computation faults during Processing Phase 1 in actuator q
resulting in faulty command values.

TDMA cycle j TDMA cycle j+1 TDMA cycle j+2
Ap: [υ1- υ7, modev

η, ∅, ξp, …]
Aq: […, υfaulty, modev

η, α, ¬ξ, …]
∀ r ≠ p, q Ar: [υ1- υ7, modev

η, α, ¬ξ, …]

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

∀ i ≠ p Ai: […, modev
η, α, ξp, …]

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

∀ i ≠ p Ai: […, modev
ξ, α, ξp, …]

Cycle j to j+2: Faulty command words in Aq are masked by the voter and we will have the same result as in the
single permanent case with synchronous reconfiguration in three TDMA rounds.

Case III b) Streamlining in Ap, and transient faulty discrete signal in Aq e.g. q flags for streamlining, ξq.
TDMA cycle j TDMA cycle j+1 TDMA cycle j+2

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

Aq: [υ1- υ7, modev
η, α, ξq, …]

∀ r ≠ p, q Ar: [υ1- υ7, modev
η, α, ¬ξ, …]

Ap: [υ1- υ7, modev
η, ∅, ξp, …]

∀ i ≠ p
Ai: [υ1- υ7, modev

η, α, ξp, …]

Ap: [υ1- υ7, modev
ξ, ∅, ξp, …]

∀ i ≠ p
Ai: [υ1- υ7, modev

ξ, α, ξp, …]

Cycle j to j+2: In this case two actuators flag for streamlining simultaneously, however only one control surface is
actually streamlining. The voter logic will mask this case by ignoring the ξq since the Alive Signal, α, is present in

Aq. Thus, also this case is similar to the single permanent one and reconfigure in three cycles.

This analysis shows that Req. 2.1 is met even in

presence of combination of permanent and transient
faults. As a corollary we get the satisfaction of Req. 2.2 as

the final case of the analysis, III b). The above sections
thus complete the proof sketch that replica consistency

eventually holds in the distributed nodes (in the j+3rd
cycle) in presence of the interesting fault classes.

6. Concluding remarks

The analysis of the DFCS even as an informal
reasoning process has not been a trivial task. Having done
this analysis we have further studied the replica
consistency property that was initiated in [1] and covered
continuous signals. Here, the reasoning is extended to
include discrete values. In this paper we have
concentrated on presenting the likely fault scenarios and
the essential fault handling mechanisms that ensure a
correct distribution of the flight control function. What
remains to complete the picture is the consideration of
permanent faults in the communication system.

The correctness of the implemented distribution with
respect to well-defined combinations of transient and
permanent faults (that might affect continuous or discrete
values) has been shown and is the major contribution of
this paper. Thus, a valuable input to the system safety and
reliability analysis has been rigorously documented.

Future works include defining and detailing the design,
especially the voter, at a formal level where the analysis
can be checked by employment of formal verification
tools. A recent study of a much simpler component, an
avionic sensor voter, indicates that the derivation of
environment models is the major step in verifying the
component under development [9]. In that work several
models of the environment were iteratively developed as a
result of counter examples generated by a formal
verification engine. In our case, the detailed analysis
above is a major step towards characterizing the
conditions (combinations of faults) under which the
formal proofs would be meaningful and reliable.

7. Acknowledgement

This article is partially supported by projects in the
Swedish national aerospace program NFFP 428, 436 and
the project SAVE, supported by the Swedish foundation
for Strategic Research (SSF).

8. References

[1] K. Ahlström, J. Torin, K. Fersán, P. Nobrant, “Redundancy
Management in Distributed Flight Control Systems; Experience
& Simulations”, in proceedings of AIAA and IEEE 21th Digital
Avionics Systems Conference, Irvine, CA, USA, 2002.

[2] J.H. Wensley et al., “SIFT: Design and Analysis of a Fault-
Tolerant Computer for Aircraft Control”, In proceedings of
IEEE, Vol. 66, 1978, pp 1240-1255.

[3] J. H. Lala, R. E. Harper, “Architectural Principles for Safety-
Critical Real-Time Applications”, In proceedings of IEEE, vol.
82, 1994, pp 25-40.

[4] H. Kopetz et al., “Tolerating Transient Faults in MARS”, In
proceedings of 20th Symposium on Fault-Tolerant Computing,
1990, pp 466-473.

[5] H. Sivencrona, P. Johannessen, J. Torin, “Protocol
Membership in Dependable Distributed Communication
Systems – A Question of Brittleness”, SAE World Congress
paper No. 2003-01-0108, Detroit, USA, 2003.

[6] D. Szentivanyi, S. Nadjm-Tehrani, Middleware Support for
Fault Tolerance, Chapter in the book "Middleware for
communications", Q. Mahmood (Ed.), John Wiley and sons,
July 2004.

[7] J. Hammarberg, S. Nadjm-Tehrani, “Formal Verification of
Fault Tolerance in Safety-critical Modules”, Software Tools for
Technology Transfer Journal, Springer Verlag, 2004. To appear.

[8] M. Hiller, “Executable Assertions for Detecting Data Errors
in Embedded Control Systems”, In proceedings of IEEE
International Conference on Dependable Systems and Networks,
2000, pp. 24-33.

[9] S. Dajani-Brown, D. Cofer, A. Bouali, “Formal Verification
of an Avionics Sensor Voter using SCADE”, In proceedings of
International Conference on Formal Techniques in Real-time
and Fault-tolerant Systems, (FTRTFT´04), 2004.

