
Chapter 25

Algorithmic Debugging with Assertions

W lodek Drabent ? Simin Nadjm-Tehrani

Jan Ma luszy�nski

? Institute of Computer Science, Polish Academy of Sciences
Dept. of Computer and Information Science, Link�oping University

Abstract

Algorithmic debugging, as presented by Shapiro, is an interactive process
where the debugging system acquires knowledge about the expected meaning of a
program being debugged and uses it to localize errors. This paper suggests a gen-
eralization of the language used to communicate with the debugger. In addition to
the usual \yes" and \no" answers, formal speci�cations of some properties of the
intended model are allowed. The speci�cations are logic programs. They employ
library procedures and are developed interactively in the debugging process. An
experimental debugging system incorporating this idea has been implemented. In
contrast to some other systems, its diagnosis algorithms do not require instanti-
ation of unsolved goals by the oracle. This is achieved by generalization of the
oracle in the incorrectness algorithm, and by adopting a new approach in the
insu�ciency algorithm. A formal proof of correctness and completeness of the
new insu�ciency algorithm is presented. Extensions for some Prolog features are
discussed.

25.1 Introduction

This paper deals with diagnosis of logic programs and extends the pioneering
work of Shapiro (Shapiro 1983) by studying a way of partial automating of the
oracle by means of assertions. The paper also includes extensions of the approach
for some Prolog features. Implementation issues and preliminary experimental
results are reported in Drabent et al. (1988b).

Logical foundations of algorithmic debugging can be found in Ferrand (1987)
and Lloyd (1987). Our basic notions, though slightly di�erent, have been strongly
inuenced by these papers. (For discussion of the di�erences see Section 6).

2 Drabent, Nadjm-Tehrani and Ma luszy�nski

Every (pure) logic program P has a model (see e.g. (Lloyd 1987)). P is often
considered to be the speci�cation of the least Herbrand model MP . On the other
hand, the program should properly reect the intentions of the user. These can
be thought of as the \intended model" and can be viewed as a subset IP of the
Herbrand base. If IP di�ers from MP the program is erroneous.

The program P is said to be

� incorrect i� MP { IP 6= ;, i.e. i� it speci�es some element which is not in
the intended model, and

� insu�cient i� IP - MP 6= ;, i.e. i� some elements of the intended model are
not speci�ed by the program.

In this paper we do not deal with the termination aspect; we concentrate on trac-
ing incorrectness and insu�ciency of a logic program. The objective of debugging
is to �nd a cause of an error in the program.

In the case of incorrectness it is a clause which \produces" elements not in
IP . More precisely, it is a clause whose body is valid in IP and whose head is not
valid in IP . Such a clause will be called incorrect. It has a ground instance, such
that all atoms of its body are in IP and its head is not in IP .

In the case of insu�ciency it is a predicate p for which some atom p (t1; : : : ; tn)
valid in IP cannot be produced by the clauses de�ning p. More precisely, there
is no ground instance H B1; : : : ; Bm (m � 0) of a clause of P such that H is
an instance of p (t1; : : : ; tn) and B1; : : : ; Bm are in IP . The atom p (t1; : : : ; tn) is
called uncovered.

The elements of MP can be computed using SLD-resolution. To discover an
error and to localize its cause in the program one has to compare the results of
computations, including failures, with the intended model. However, the latter is
generally not formalized. To solve this problem Shapiro introduces the concept
of oracle (Shapiro 1983). The ground oracle decides whether an atom is in the
intended model. The existential oracle decides whether there is a solution to a
given goal and is capable of producing elements of the intended model which are
instances of the given goal. In practice, it is the user who answers the questions
concerning the intended model.

Shapiro's debugging system acquires knowledge about the intended model
through necessary interactions with the oracle. This knowledge consists of:

1. a �nite subset of the intended model | YES answers of the ground oracle
and the solutions produced by the existential oracle;

2. a subset of the complement of the intended model | NO answers of the
ground oracle;

3. a �nite set of atoms satis�able in the intended model | YES answers of the
existential oracle;

25. Algorithmic Debugging with Assertions 3

4. a �nite set of atoms unsatis�able in the intended model | NO answers of
the existential oracle.

The language of the oracles does not allow to specify in�nite subsets of the in-
tended model nor in�nite sets of atoms satis�able in the intended model. The
negative answers of the existential oracle are not used for tracing incorrectness
although they specify in�nite subsets of the complement of the intended model.
This language is rather low level | the knowledge about the intended model
is communicated in form of examples. There may therefore exist many queries
concerning similar atoms.

Shapiro pointed out that incorporation of \constraints and partial speci�ca-
tions" into the algorithmic debugging scheme may reduce the number of inter-
actions with the user (Shapiro 1983, p.79). This paper develops and formalizes
this idea. In the approach presented the user is allowed to provide the system
with formal speci�cations of some properties of the intended model. These for-
mal speci�cations may be developed interactively in the debugging process. The
diagnosis system uses its actual knowledge about the intended model to localize
errors. Whenever this is not su�cient for evaluation of results of the computa-
tion the system queries the user. The answer augments system knowledge about
the intended model. This scheme includes as special cases the answers used in
Shapiro's system. But generally the language of answers is more powerful. If the
user is able to provide the system with some general properties of the intended
model, the number of interactions decreases dramatically.

Another aspect of our debugging methodology is the relative ease with which
the user can interact with the system. As it is unlikely that the complete speci�-
cation of the model is conveniently provided by the user, there will be a number
of interactions between the system and the user. Our insu�ciency diagnoser, in
contrast to Shapiro's, will not require the user to provide instances of unsolved
goals. Instead, the user is expected to recognize the solutions to a goal and to
identify a case where some answer is missing.

The rest of the paper is organized as follows. In Section 2 a language of asser-
tions is introduced as a natural generalization of the language of the oracle and
the use of assertions for algorithmic debugging is discussed. Section 3 describes
the necessary oracle interactions. In section 4 debugging algorithms based on
assertions are presented. The section also includes a formal proof of correctness
and completeness of our insu�ciency diagnosis algorithm. Extensions for some
Prolog features are discussed in section 5 and comparisons with related work are
presented in section 6. Sections 7 and 8 contain conclusions and topics for future
research.

4 Drabent, Nadjm-Tehrani and Ma luszy�nski

25.2 Assertions

We suggest to extend the communication language of the algorithmic debugger.
In addition to the simple YES and NO answers we want to provide the user
with a possibility to describe some properties of the intended model. For this
we introduce assertions as a device to specify (not necessarily �nite) sets of (not
necessarily ground) atoms of the object language. An obvious choice is to use
logic programs to provide executable speci�cations of such sets using, as much as
possible, existing library procedures.

Let S be a set of (not necessarily ground) atoms in the language L of a given
logic program P. The objective is thus to construct a logic program Q with a
unary predicate s \specifying" the set S. The clauses of Q beginning with the
symbol s will be called assertions (for S).

More precisely, there should be a one-to-one correspondence between set S
and the set of all ground atoms of the form s(: : :) that are logical consequences
of Q. In other words, each atom A of L should be coded as a ground term A0 of
the language M of the program Q. We adopt the following coding scheme:

if A is an atom and X1; : : : ; Xn are variables occurring in A , the
image of A is A0 = AfX1=var(1); : : : ; Xn=var(n)g (1 � i � n)

where var is a functor not used in the object language. (To obtain uniqueness
it may be assumed that X1; : : : ; Xn are ordered according to their �rst occurrences
in A).

This is a ground representation in terms of (Hill and Lloyd 1988). Notice that
all the predicate symbols and functors of L become functors of M. Atoms which
are not the same up to variable renaming have di�erent images.

One may argue that assertions can be used for full speci�cation of the intended
model. This would amount to giving an alternative correct version of the buggy
program (Dershowitz and Lee 1987). Such a solution is completely unrealistic in
most cases.

It is often suggested that while developing a new version of an existing program
the existing version can be used as an oracle (e.g. (Sterling and Shapiro 1986)).
Taken literally, this idea is also unrealistic because it requires that every procedure
of the new program has its counterpart with the same intended meaning in the
old program. Sterling and Shapiro (1986, p. 323) mention permutation sort
and quicksort (Sterling and Shapiro 1986 - p.55,56) as an example. However,
quicksort contains procedures partition and append that are not speci�ed by the
permutation sort program.

We suggest to employ four properties of the intended model IP in our debug-
ging framework. They generalize the four types of answers given by the oracles
as discussed in section 1. The properties are speci�ed in the above-mentioned
sense by four �xed predicate symbols in a program As(IP). This gives rise to four

25. Algorithmic Debugging with Assertions 5

types of assertions. The ways the debugging algorithms use As(IP) are described
in section 3.

We now give de�nitions of the 4 types of assertions.

Positive assertions. These are used to de�ne sets of (not necessar-
ily ground) atoms valid in the intended model. We specify positive
assertions using the predicate symbol true. If true(A0) is a logical con-
sequence of As(IP) and A0 is the image of A then for all substitutions
�, A� 2 IP provided A� is ground.

Example 1.
Consider the intended relation insert as in Shapiro (1983). It includes (as a

proper subset) all triples (X;Y; Z) such that X is an integer, Y is a sorted list of
integers and Z is a sorted list whose elements are X and all elements of Y . This
property can be formalized as the following assertion:

true(insert(X;Y; Z))
integer(X),
sorted integer list(Y),
sorted integer list(Z),
permutation([X j Y]; Z).

(It is assumed that As(IP) contains procedures with the obvious meaning for the
predicate symbols of the body.)

Negative assertions. These are used to specify sets of atoms not valid
in the intended model. We specify negative assertions using the pred-
icate symbol false. If false(A0) is a logical consequence of As(IP)
and A0 is the image of A then there exists a substitution � , such that
A� is ground and A� =2 IP .

Example 2.
Consider the intended relation sort where the arguments are integer lists and

the second one is a sorted permutation of the �rst. The following assertion char-
acterizes an in�nite set of atoms not valid in the intended model:

false(sort(X;Y))
member(var(N); Y),
not member(var(N); X).

(If there is a variable that is a member of the second list but not a member of the
�rst then the atom has a ground instance outside the intended model.)

Note that YES and NO answers to questions asked by the ground oracle can
be seen as singleton positive and negative assertions respectively.

6 Drabent, Nadjm-Tehrani and Ma luszy�nski

Positive existential assertions. These are used to specify sets of atoms
satis�able in the intended model. We de�ne positive existential as-
sertions using the predicate symbol posex. If posex(A0) is a logical
consequence of As(IP) and A0 is the image of A then there exists a
substitution � such that A� 2 IP .

Example 3.
The intended isort predicate of Shapiro (1983) has the property that whenever

it is called with the �rst argument being a list of integers and the second argument
being an uninstantiated variable then there exists an instance of this call which
is in the intended model. This can be formalized as the following assertion:

posex(isort(X; var(Y))) integer list(X).
The positive existential assertions generalize YES answers of the existential oracle.

Negative existential assertions. These are used to specify sets of atoms
unsatis�able in the intended model. We de�ne negative existential as-
sertions using the predicate symbol negex. If negex(A0) is a logical
consequence of As(IP) and A0 is the image of A then for all substitu-
tions �; A� =2 IP .

Example 4.
The intended isort predicate of Shapiro (1983) has the property that none

of its success instances have an unsorted list as the second argument. In the
language of assertions this can be formalized as follows:

negex(isort(X;Y))
integer list(Y),
not sorted(Y).

The negative existential assertions generalize NO answers to existential queries.
It is worth noticing that various notions of types for logic programs discussed in
the literature e.g. (Zobel 1987), (Mycroft and O'Keefe 1984), (Nilsson 1983), can
be related to negative existential assertions (if an argument in an atom is of a
wrong type then the atom should be unsatis�able).

At every stage of development the program As(IP) should describe the in-
tended model. A necessary condition for that is that it describes some model.
This is not the case if, for example, both true(A0) and false(A0) are logical con-
sequences of As(IP). That corresponds to A being both valid and not valid in IP .
The responsibility for providing consistent assertions is on the user. In the next
section it is described how (partial) consistency checking of As(IP) is performed.
Notice, that even the basic Shapiro algorithms are not free of the danger of in-
consistent answers. Let A be an atom with variables and B its ground instance.
When tracing incorrectness the answer concerning B may be YES, i.e.B is in IP .
Independently, when tracing insu�ciency the answer concerning A may be NO,
i.e. there is no instance of A in IP .

25. Algorithmic Debugging with Assertions 7

25.3 Oracle interactions

In order to show how the assertions are used, we set out the questions that are
posed by the diagnosis algorithms and the way they are answered. The basic idea
is that a question is �rst attempted to be answered with the help of As(IP). Only
if this attempt fails, the user is queried. She may either answer with YES/NO or
specify a relevant property of IP by adding new clauses to As(IP).

The ground image of atomA in the coding scheme used by assertions is denoted
by A0.

(1) Universal questions:

This type of question is asked by the incorrectness diagnoser:

\Is the atomic formula A valid in the intended model?" (i.e. are all its
ground instances members of IP ?)

The insu�ciency diagnoser requires answers to two additional types of questions:

(2) Existential questions:

\Is A satis�able in the intended model?" (i.e. is there a ground in-
stance of A which is a member of IP ?)

(3) Incompleteness questions:

The algorithm needs the information whether certain solved goals have pro-
duced all the expected answers in the intended model. This is obtained by asking:

\For the atom A, is there an instance A� 2 IP such that A� is not an
instance of some member of the set fA�1; : : : ; A�ng ?" (Substitutions
�1; : : : ; �n are (all the) computed answer substitutions for A and
P).

The system uses the knowledge explicitly represented in As(IP) for answering
the above questions before querying the user. Moreover, some queries to the user
may be avoided by exploiting the information that is implicit in the assertions.
For instance, it may happen that true(A0) is a logical consequence of As(IP) but
posex(A0) is not. However, in this case the answer to the existential question for
A is YES and querying the user is unnecessary.

Let A be an atom and B its instance. The following properties hold:
(1) If A is valid in IP then it is also satis�able in IP .
(2) If A is unsatis�able in IP then it is not valid in IP .
(3,4) If atom A is valid (unsatis�able) in IP then B is also valid (unsatis�able) in
IP .

8 Drabent, Nadjm-Tehrani and Ma luszy�nski

(5,6) If B is not valid (satis�able) in IP then A is not valid (satis�able) in IP .
(7) A ground atom is satis�able i� it is valid.

The procedure for answering universal questions employs properties (2), (6)
and (7). For atom A:

� If true(A0) is a logical consequence of As(IP) then the answer to this ques-
tion is YES.

� If A is ground and posex(A0) is a logical consequence of As(IP) then the
answer is YES.

� If false(B0) or negex(B0) is a logical consequence of As(IP) for some B
being an instance of A then the answer to this question is NO.

� Otherwise the user is queried.

The procedure for answering existential questions employs properties (1),(5) and
(7). For atom A:

� If posex(B0) or true(B0) is a logical consequence of As(IP) for some B being
an instance of A then the answer to this question is YES.

� If negex(A0) is a logical consequence of As(IP) then the answer to this
question is NO.

� If A is ground and false(A0) is a logical consequence of As(IP) then the
answer is NO.

� Otherwise the user is queried.

The properties (3) and (4) are not used by the answering procedures due to
implementation di�culties. However, if the decoded set of atoms de�ned by true
(resp. negex) is closed under substitution then employing properties (3) and (4)
does not change anything. In practice, these two sets are closed under substitution
in every reasonable As(IP).

The YES/NO answers to the incompleteness questions are to be provided by
the user.

Let Assertion be any of the predicate letters true; false; posex; negex. The
answering procedures require checking whether there exists an instance B of a
given atom A such that Assertion(B0) is a logical consequence of As(IP). To do
this, program As(IP) is queried with the goal Assertion(A) (note: not coded
A). This is because the coded image of any instance of A is also an instance of A
and if the coded image of a term is an instance of A then the term is an instance
of A.

Consider a universal (or an existential) question to be answered by the system.
The answering procedures may sometimes be able to give both YES and NO

25. Algorithmic Debugging with Assertions 9

answers to this question. In this case As(IP) is inconsistent and debugging is
aborted.

To accumulate the knowledge implied by user YES/NO answers to universal
and existential queries, new assertions can be added to As(IP) by the system. If
the user answer to the universal query for A is NO then assertion false(A0) is
added. If the user answer to the universal query for A is YES then any instance
of A is valid in IP . So assertion true(A) is added. Now for any instance B of
A, true(B0) is logical consequence of As(IP) (since coded image of any instance
of A is also an instance of A and vice versa).

If the user answer to the existential query for A is YES then assertion
posex(A0) is added. If the user answer to the existential query for A is NO
then the assertion negex(A) is added (since any instance of A is unsatis�able
in the intended model).

User answers to incompleteness questions can also be recorded. If the answer
is NO then unary clause complete solutionsA) is recorded. Then a success
of complete solutionsB0) implies a NO answer to the incompleteness question
concerning B since the answer is NO for any instance of A. (It turns out that
recording of YES answers is unnecessary.)

25.4 Diagnosis algorithms

(1) Incorrectness diagnosis

If the SLD-refutation procedure of a goal A with program P produces a
substitution � such that A� is not valid in IP , then an incorrect clause instance
has to be found.

The original algorithm (Shapiro 1983) �nds an incorrect clause by systematic
traversal of a ground proof tree whose root is not in IP . In actual computations of
logic programs the proof trees constructed need not be ground. The idea can be
extended for non-ground trees in two di�erent ways. The suggestion of (Shapiro
1986, p.325) is that the oracle should instantiate the visited node, if possible to
an instance not included in the intended model, otherwise to any instance. The
solution used in this paper is to require that the oracle decides whether the visited
node is valid in the intended model or not. (This is a generalization of the original
ground oracle since validity of a ground atom in IP means that it is an element
of IP .)

We use the top down version of Shapiro's basic algorithm as presented in
(Sterling and Shapiro 1986) with this generalization. The queries posed by the
algorithm are dealt with in the manner described above. The input to the al-
gorithm is an atom A for which the program gives a wrong answer (this means
a success instance of A which is not valid in IP). The algorithm returns a (not
necessarily ground) instance of a clause in P such that the atoms in the body of
the clause are valid in IP and the head is not.

10 Drabent, Nadjm-Tehrani and Ma luszy�nski

The algorithm is sound because it always returns an incorrect clause instance.
It is also complete in the sense that it terminates and returns such an answer for
any input that satis�es the input condition stated above.

(2) Insu�ciency diagnosis

We will say that program P is insufficient for A if there exists � such that
A� 2 IP and no answer more general than � is a computed answer substitution
for A and P. An atom A is completely covered by program P if for every � such
that A� 2 IP , P contains a clause which has an instance where A� is the head
and all the atoms in its body are in IP . (Hence A is not completely covered if
there exists � such that A� 2 IP and there is no clause instance of P with the
head A� and the body atoms in IP .)

If a program P is insu�cient for a goal A then the insu�ciency diagnoser is
called to identify an atomic formula C not completely covered by the program P.
The algorithm is based on the assumption that Prolog computation rule is used
in the resolution.

Before describing the algorithm we introduce the following de�nition:

The search forest for A consists of a tree for each non-unary clause of P
whose head is uni�able with A. Let H B1; : : : ; Bn (n > 0) be a variant of
such a clause.
Then

(B1;), where is an mgu of H and A, is the root of the corresponding
tree

and
if (Bi; �) is a node of the tree, and program P gives f�1; : : : ; �mg (m � 0) as
computed answer substitutions to goal Bi�

then (Bi+1; ��j) for j = 1; : : : ;m is a child of this node if i < n
and (2; ��j) for j = 1; : : : ;m is a child of this node if i = n.

Note that (Bi; �) is a node in the forest i� Bi instantiated to Bi� is a selected
goal (on the top level) in the computation for A. Note also that (2; : : :) leaves
correspond to successes of A. If (2; �) is a leaf in the forest then goal A
succeeds with computed answer substitution � j variables(A) (where variables(A)
stands for the set of variables occurring in A and � j S stands for the restriction of
� to the elements of S). For a given A, the search forest is unique up to variable
renaming.

The Algorithm

The input to the algorithm is an atomic formula A for which the program
is insu�cient and the computation for A is �nite (under Prolog computation
rule); the output is a not completely covered atom.

25. Algorithmic Debugging with Assertions 11

The insu�ciency diagnoser asks questions about the nodes of the search forest
for A. The types of questions asked have been discussed in section 3. (The order
of visiting the nodes is irrelevant to the correctness of the algorithm).

For (B; �) being a leaf of the forest, B 6= 2, the existential question is asked
about B�. If the answer is YES then the algorithm is recursively called with B�.
(No questions are asked about a success leaf.)

For (B; �) being an internal node with children (C; ��1); : : : ; (C; ��m) (where
C is an atomic formula or 2), the incompleteness question is asked about the set
fB��1; : : : ; B��mg and the goal B�. If the answer is YES then the insu�ciency
diagnoser is called recursively on B�.

If for all nodes of the forest the answers for all the questions are NO, then
A is returned as a not completely covered atom and the algorithm terminates.
Otherwise, a not completely covered atom is found by the recursive call(s) of the
algorithm.

Correctness and completeness of the algorithm

Lemma

Consider program P and a search forest for atom C.
If

for every node in the forest the answer to the question asked by the
algorithm is NO and

C is completely covered by P

then

P is su�cient for C.

Proof

Assume that the premises of the lemma hold. Let C 2 IP (without loss of
generality it may be assumed that the domain of is variables(C)). We show
that there exists a computed answer substitution for C that is more general
than . As C is completely covered by P, there exists

A B1; : : : ; Bn (�)

which is a variant of a clause of P and there exists a substitution � such that

C = C� = A�;

B1�; : : : ; Bn� 2 IP :

If n = 0 then an mgu of C and A (restricted to variables(C)) is the required
computed answer substitution. Assume n > 0. We show that in the search forest

12 Drabent, Nadjm-Tehrani and Ma luszy�nski

for C, in the tree corresponding to (�) there exists a leaf (2; �) such that � is more
general than �. Assume that this does not hold. Note that for the root (B1; �1)
substitution �1 is more general that �. Let i be the greatest number for which
there exists a node (Bi; �) in the tree where � is more general than �. Then Bi�
is an instance of Bi�. Two cases are possible.

1. (Bi; �) is a leaf of the tree. The answer to the existential question about
Bi� is YES (as Bi� 2 IP). Hence contradiction.

2. (Bi; �) has sons (C; ��1); : : : ; (C; ��m) where C = Bi+1 or C = 2. As the
answer to the incompleteness question about Bi� is NO, for some substitu-
tion j, ��j is more general than �. Contradiction.

Now, the computed answer substitution corresponding to (2; �) is � j variables(C).
This solution is more general than � j variables(C) = . This concludes the proof.

2

As the algorithm is (recursively) called for atom C only if P is insu�cient
for C, it follows by the Lemma that the atom returned by the algorithm is not
completely covered by P. Hence the algorithm is correct.

Note that each search forest is �nite. So is the recursion depth of the algorithm
(otherwise the computation for A would be in�nite). Thus the algorithm always
returns an answer. So the algorithm is complete, in the sense that it returns a
correct answer for any atom satisfying the input conditions of the algorithm. This
notion of completeness is weaker than the usual one (where a diagnoser answer is
required even for goals that loop). However, the di�erence is insigni�cant if the
program in question is run under the Prolog computation rule. This is because the
insu�ciency diagnoser is not used for a goal for which the program loops (under
this computation rule). It should be mentioned that all practical insu�ciency
diagnosing algorithms are incomplete with respect to this stronger completeness
(Naish 1988).

It remains to discuss a situation where a program is both incorrect and insuf-
�cient. An example is a program giving a wrong answer and missing a correct
one. In such cases it is more convenient to perform incorrectness diagnosis �rst.
The incorrectness diagnoser usually searches a smaller search space, does not ask
incompleteness questions and produces more informative answers: an incorrect
clause instance refers to a wrong clause while a not completely covered atom
refers to a whole procedure.

A particular case is when one of the atoms displayed by an incompleteness
question is not valid in IP . Then it is convenient to interrupt the insu�ciency
diagnosis and start diagnosing incorrectness with such an atom. This usually
leads to a faster and more informative result.

25. Algorithmic Debugging with Assertions 13

25.5 Extensions

In this section extensions of the method for some Prolog features are discussed.
The approach presented above is declarative: the intended meaning of a logic
program is its intended model (and the actual meaning is its least Herbrand
model). Extensions of the method will be discussed within the same framework.
This excludes programs with side e�ects: those using input-output or assert-
retract.

25.5.1 Built-in predicates

Many Prolog built-in predicates can be treated declaratively since they can be
speci�ed by the relations they de�ne (over the Herbrand universe). Programs em-
ploying such built-ins can be treated as logic programs by including unary clause
p (t) for any built-in p and any term tuple t in the relation corresponding to p.
This includes predicates such as functor, arg , integer etc. , = :: (univ);=; n= and
Prolog arithmetic (since uninstantiated arguments to arithmetic procedures are
detected as run-time errors). No questions are posed by the debugging algorithms
about such built-ins. They are assumed to be implemented correctly.

The built-in predicates var; nonvar;== (exact equality) and n== (exact in-
equality) cannot be described by the declarative semantics. They will be referred
to here as extralogical predicates. Operationally, their role is to succeed without
binding their arguments or to fail. This may be seen as (conditional) pruning of
a part of a search tree.

Programs using such predicates can be dealt with by our method if the pro-
grammer knows the intended model of the program with extralogical predicates
removed. Such a model provides an approximation of the expected behaviour
which is inexpressible in a declarative way. Obviously, only those bugs that lead
to insu�ciency or incorrectness with respect to this model can be found by the
diagnoser. In such a setting, an extralogical predicate call can be a reason for in-
su�ciency but not for incorrectness. The insu�ciency diagnoser returns an atom
and the error is in the procedure corresponding to this atom. Either the reason for
insu�ciency is an extralogical call in this procedure or the atom is not completely
covered with respect to the procedure with extralogical calls removed. In the �rst
case the programmer has to decide whether the behaviour of the procedure is
actually erroneous.

25.5.2 Cut

Here we discuss introducing cut into our debugging framework. As the framework
is declarative, cut should be treated declaratively. This means that its role is
understood as cutting away part of the search space. If inserting a cut removes
some program's answers then this cut is called red. Otherwise it is called green
(van Emden 1982). Obviously, the declarative semantics is no longer valid for

14 Drabent, Nadjm-Tehrani and Ma luszy�nski

programs with red cuts. However, the declarative debugging approach is still able
to provide meaningful information about bugs in such programs, as shown below.

For incorrectness diagnosis the same algorithm is used. It analyses a proof tree
that lead to a wrong answer. As a result an incorrect instance of a program clause,
say p (T) B, is obtained. Now, wrong clauses are allowed in correct programs
provided the clauses are protected by (red) cuts. The user has to decide whether
the error has to be treated as a wrong clause or as a wrong usage of the cut. In
the second case the reason is a not activated cut. It can be either a cut missing
(or misplaced) in the program text or a cut not executed due to a failure of
preceding calls. The inactivated cut should occur in the clauses of procedure p
since p succeeds with a goal instance p (T) not in IP (and all the goals in B gave
correct answers).

A possible treatment at this stage is to search for insu�ciency that could lead
to a cut not being executed. A search forest is built for the preceding clauses
of procedure p that contain cuts. Incompleteness and existential questions are
then asked about its nodes as in the insu�ciency diagnoser. If there is a YES
answer then some answers to the corresponding subgoal are missing. The insu�-
ciency diagnoser has to be called for this subgoal. If all the answers are NO then
procedure p has to be corrected.

This is similar to a suggestion of (Huntbach 1987) (with a modi�cation that
non-failing subgoals also have to be examined) and to the approach of (Pereira and
Calejo 1988). A similar procedure is performed by a programmer in the examples
of (Takahashi and Shibayama 1985). The di�erence is that in our approach the
user is guided towards a declaratively correct program. A construction \red cut
+ incorrect clause" is accepted by a debugger only after an explicit decision of
the user.

For insu�ciency diagnosis, a variant of the algorithm of section 4 is used. Only
the goals that actually occurred during the computation are represented in the
search forest. (This means a node (Bi; �) has sons (Bi+1; ��1); : : : ; (Bi+1; ��j)
only if during the actual computation Bi� succeeded j times (with answer sub-
stitutions �1; : : : ; �j); j may be less than the number of answers of the program
to goal Bi� due to interruption of backtracking by a cut.) For leaves of the form
(B; �); B 6= 2 , the existential questions are asked as in the basic algorithm.
Incompleteness questions are asked only about those internal nodes (B; �) for
which it is known that the corresponding goal B� produced all the answers (in
other words it eventually failed). A recursive call of the algorithm is made for a
node for which the answer is YES. The algorithm returns an atom A for which
all questions in the related search forest were answered NO. Either A is not com-
pletely covered (in the sense of section 4) or the reason for insu�ciency is a cut
in procedure p , where A = p (: : :). More precisely, the cut is either misplaced or
is unnecessarily executed due to an incorrect success of the preceding procedure
calls of the same clause. In the last case, the incorrectness diagnoser can be used
to �nd an actual bug.

25. Algorithmic Debugging with Assertions 15

To assist the user, she is informed

1. which clauses with a head matching A were not used in the computation
and

2. for which nodes (B; �) in the search forest there exists a missing answer to
B� (together with a list of answers obtained for each such node).

Note that giving lists of answers missing due to cut may be informative but it
may also lead to in�nite computations for some programs.

If a cut is the reason for insu�ciency then the information given to the user
provides a compacted version of a trace of the procedure execution. It allows her
to localize clauses and cut(s) executed and shows a history of backtracking in the
clause containing this cut (these cuts). This makes it possible to decide whether
a cut is misplaced and to localize a possible incorrect success.

25.5.3 Negation

For programs with negation (Lloyd 1987), the intended model IP is a model of
the completion of a correct program. For a sound implementation of negation
it is necessary that computation of the program is safe or weakly safe (Lloyd
1987). This means that whenever :A is selected and fails, A succeeds with an
empty answer substitution. This requirement should be checked by the debugging
system.

To incorporate negation, the algorithms of section 4 are extended in an obvi-
ous way suggested by McCabe (Shapiro 1983) (Lloyd 1987). If the incorrectness
diagnoser, instead of an incorrect clause instance, �nds a literal :A that incor-
rectly succeeds then the insu�ciency diagnoser is called with A. Whenever the
answer to a question posed by the insu�ciency diagnoser about a literal :B is
YES, the incorrectness diagnoser is called with input B (YES means missing so-
lutions). The insu�ciency diagnoser does not ask incompleteness questions about
successful negative literals because there cannot be any missing solutions (nega-
tive literals succeed with empty substitutions).

Answering questions about negative literals refers to the property that :A
is valid (satis�able) in I i� A is unsatis�able (not valid) in I. Hence to answer
the universal (existential) question about :A the existential (universal) question
about A is answered as described in section 3 and the answer is negated.

The diagnoser obtained by composing the extended incorrectness and insu�-
ciency diagnosers in this way, is sound in the sense that for any atom satisfying
the respective input conditions, the result (if any) is either an incorrect clause
instance or a not completely covered atom. The de�nitions of these notions are
obvious extensions of those for de�nite programs. The input condition is either
that for the incorrectness diagnoser or that for the insu�ciency diagnoser of sec-
tion 4. The proof of soundness is a straightforward modi�cation of the proofs for
the de�nite program diagnosers.

16 Drabent, Nadjm-Tehrani and Ma luszy�nski

The diagnoser is also complete in the sense that it returns an answer for any
atom satisfying the relevant input condition. An outline of a proof is given below.

The Prolog computation rule is assumed. Let the diagnoser be called with an
atom A as an input. From the input conditions it follows that there exists a �nite
computation D of the given object program P with goal A such that D results
in an incorrect answer or searches the whole search space.

The computation of the composed diagnoser can be seen as a sequence of
mutual calls of the incorrectness and insu�ciency diagnosers. The argument
passed at such a call is an instance of an atom that actually occurred as a selected
subgoal in D. The sequence of these atoms is a subsequence of the sequence of
selected goals of D. Hence the number of mutual calls is �nite.

The computation corresponding to a single call to the incorrectness diagnoser
is �nite since it is a search of a �nite tree. By an argument analogous to that
of section 4, the computation corresponding to a single call to the insu�ciency
diagnoser is �nite. Hence the whole computation is �nite.

25.6 Comparisons with related work

The types of assertions introduced originate from the analysis of the logical nature
of answers given by the oracles of Shapiro. They also have their counterparts in the
algorithms of Ferrand (1987) and Lloyd (1987) where the oracles are represented
by the predicates valid and unsatisfiable (and to a certain extent impossible
(Ferrand 1987)). But the oracles have complete knowledge of the intended model
while the assertions only approximate it. For example the assertions true and
false provide incomplete information about validity of a given atom in the in-
tended model. The �rst of them speci�es a set of atoms valid in the intended
model, the other a set of atoms non-valid in the intended model. A given atom
may belong to none of the sets while the validity oracles of Ferrand and Lloyd
can always decide its validity. However, the oracles are outside the system, while
the assertions constitute a part of the system (which is incrementally developed
during the external interactions). External interactions are necessary in our sys-
tem only if the actual assertions cannot produce the required answer. In this case
the external interaction provides an increment for the existing assertions so that
the question can be answered.

The only work known to us that uses a concept similar to our approximate
speci�cation is a recent paper by Lichtenstein and Shapiro (1988). It deals with
debugging of concurrent programs and introduces an additional abstract oracle.
The abstract oracle speci�es a superset of the intended behaviour of a program
while the concrete oracle speci�es the intended behaviour exactly. The intention
of introducing abstract oracle is to ask questions that are simpler to answer by
a programmer, whereas the role of assertions in our approach is to automatically
answer some of the questions. Assertions can specify not only supersets but also
subsets of the set of interest. (The set of interest is either IP or the set of atoms

25. Algorithmic Debugging with Assertions 17

satis�able in IP .) For a given debugger, it is �xed which (super-) sets can be
speci�ed by the abstract oracle, while assertions can specify any set.

The algorithms of (Shapiro 1983) (Sterling and Shapiro 1986), Ferrand (1987)
and Lloyd (1987) require that the oracle is able to deliver elements of the intended
model. If the oracle is the user, this type of interaction may create di�culties or
even lead to wrong answers. One of our objectives has been to free the user from
this burden.

A new algorithm for insu�ciency diagnosis presented in this paper automat-
ically generates answers for atomic subgoals. Instead of generating bindings the
user is (sometimes) asked whether the set of generated answers is complete. A
similar approach is presented by Pereira (1986). However that work seems to rely
on the procedural semantics of Prolog, while ours has a clean logical foundation
and our algorithm is proved correct and complete.

Clearly, the bindings provided by the user can speed-up the diagnosis process.
However, the decision whether a binding is to be given or not should be left to
the user. Our algorithms can be easily extended with that option.

There are some di�erences in basic de�nitions used in this paper and the
papers by Ferrand and Lloyd which give logical foundations for declarative de-
bugging. We follow Lloyd in that our intended model is a ground Herbrand model
in contrast to the nonground term model of Ferrand.

Another di�erence concerns the results produced by the debugger. Since we
do not force the user to produce bindings during the debugging process, the �nal
result may come out less instantiated than in the other systems. To be more
precise, consider separately the form of our results in diagnosing incorrectness
and insu�ciency.

For incorrectness, the result returned is an incorrect instance of a program
clause, that is H B such that B is valid in I and H is non-valid in I. This
is similar to Ferrand's de�nition of incorrectness ((Ferrand 1987) De�nition 4).
However, his debugger returns such H B that B is valid and H is unsatis�able.
The results produced by the debugger of Lloyd also have this property. In the case
of Ferrand (1987) this is due to representing variables of the program by variables
of the debugger. (The diagnoser is a logic program, if it returns H B then it
is also able to return any instance of H B; hence H has to be unsatis�able for
the diagnoser to be sound.) The approaches are equivalent, since any incorrect
clause (in our terminology) has an instance where the head is unsatis�able and
the body valid.

For insu�ciency diagnosis the situation is similar. The results produced by
our debugger are atoms which are not completely covered while Lloyd's debugger
produces uncovered atoms (An atom A is called uncovered if A is valid in IP and
none of its instances is in TP (IP); A is completely covered i� A� 2 IP implies
A� 2 TP (IP)). Comparing the de�nitions one can see that every not completely
covered atom has an instance which is uncovered. This instance is not produced
by our system. This is because we do not force the user to produce bindings

18 Drabent, Nadjm-Tehrani and Ma luszy�nski

for subgoals during the debugging process. Ferrand's notion of insu�ciency is a
counterpart of Lloyd's uncovered atom but it is weaker than the latter (A is an
insu�ciency if A is valid in IP and not all its ground instances are in TP (IP)).
However, the answers really produced by Ferrand's algorithm are similar to those
of Lloyd. More precisely, in both cases the result of insu�ciency diagnosis is an
uncovered atom.

Another di�erence to be mentioned concerns inputs for insu�ciency diagnosis.
Usually it is supposed to be a �nitely failed goal which is satis�able in the intended
model. However, the �nite failure of this goal may be caused by the fact that some
subgoal of the computation does not fail but produces an insu�cient number of
answers. In most systems this situation is handled by asking the oracle to provide
all intended answers for the subgoal. The answer not produced by the insu�cient
program will cause its failure and eventual localization of insu�ciency. Our system
does not require the user to provide correct subgoal instances. This also results
in extending the allowed inputs for the diagnoser: the input is a goal whose
computation terminates and delivers an incomplete set of computed answers.

A di�erent debugging approach is presented in Pereira (1986), and Pereira and
Calejo (1988). That approach is not declarative but operational. It does not refer
to an intended model but to the intended behaviour of the program. A program
is understood through its operational properties and not through the logical ones.

In addition to incorrectness and insu�ciency, a third kind of program error is
introduced in Pereira (1986), and Pereira and Calejo (1988), namely inadmissible
call pattern. An example of such an error is violation of a mode declaration.
The following is not made explicit there but is important from our point of view.
Inadmissibility is related to an additional speci�cation saying which call patterns
are allowed during program computation. Inadmissibility is not related to the
declarative semantics: a program P may be correct (that means MP = IP) but
manifest inadmissible call pattern(s).

An earlier work using assertions within logic programming is (Drabent and
Ma luszyns�nski 1987). Here assertions are used to prescribe predicate call and
success patterns. Preassertions in this sense describe all the predicate calls that
are possible: those which succeed and those which fail. The described form of
procedure calls is not expressible in terms of declarative semantics and is therefore,
in general, not related to the assertions introduced in this paper. Nevertheless, it
is possible to make use of such assertions in the debugging process by detecting
inadmissible call patterns. We believe that this can be a generalization of Pereira's
queries relating to admissibility of a goal (Pereira 1986), (Pereira and Calejo 1988).

In this paper we are interested in logic programming as a declarative pro-
gramming paradigm. Thus we do not include inadmissibility into our debugging
framework.

25. Algorithmic Debugging with Assertions 19

25.7 Conclusions

The main contribution of this paper is the formalization of the concept of asser-
tion for algorithmic debugging. Assertions provide a formal description of some
properties of the intended model, thus \approximating" it. They give a exible
framework for its formal description. On one end of the spectrum the yes/no
oracle answers provide rudimentary but easy to produce information about the
intended model. On the other end the full formal speci�cation of the intended
model can be used, if so desired. Assertions can be seen as generalizations of the
simple oracle answers and include them as special cases.

It is worth noticing that the concept of assertion is orthogonal to the concept
of debugging algorithm: any debugging algorithm based on oracle interactions
can also use appropriate assertions.

A prototype debugger using assertions has been implemented. Algorithms
which do not require correct instantiations of atoms by the user are incorporated
in the implementation. Our experiments show a reduction in the debugging e�ort
through the use of rather simple assertions and the improved algorithms. A more
detailed account of experiments performed can be found in Drabent et al. (1988a)
(1988b).

Modi�cations of the initial assertions may be preserved from session to session.
In this way the debugging process gives as a side e�ect an interactively developed
formal description of some properties of the intended model.

25.8 Future work

In practice it often happens that the intended model is not known to the pro-
grammer. Instead, she knows a set JP of atoms that should be in MP and a set
KP of atoms that should be in BP �MP (where BP is the Herbrand base). The
rest, BP � JP �KP , is irrelevant to program's speci�cation. An interesting task
is a declarative debugging methodology based on such an approximation of the
intended model.

Further experiments with debugging of Prolog programs are needed to under-
stand the debugging process better, to evaluate the presented approach and to
develop pragmatics of declarative debugging with assertions.

Another subject of future work is to discuss testing of logic programs and cor-
recting of errors. The objective would be a testing-diagnosing-correcting method-
ology. It should be based on declarative features of existing logic programming
languages and may be a complement to methods of systematic construction and
veri�cation of programs. Although proving programs correct seems to be a more
important target, programs still need debugging and providing sound methods
and tools for this is a signi�cant research task.

20 Drabent, Nadjm-Tehrani and Ma luszy�nski

Acknowledgements

This work has been partially supported by the National Swedish Board for
Technical Development, project number: 87-02926P, and a grant by The Royal
Swedish Academy of Engineering Sciences (IVA). The �rst author was also sup-
ported by Polish Academy of Sciences. The editors of FGCS'88 proceedings
(cICOT, Tokyo 1988) kindly permitted us to use fragments of Drabent et al.
(1988b) in this paper.

References

Dershowitz, N., and Lee, Y., Deductive Debugging, Proceedings of the IEEE Sym-
posium on Logic Programming - San Francisco 1987 : 298-306.

Drabent, W., and Ma lszy�nski, J., Inductive Assertion Method for Logic Pro-
grams, Proceedings of the International Conference on Theory and Practice of
Software Development (TAPSOFT) 1987, LNCS 250, Springer Verlag : 167-181.

Drabent, W., Nadjm-Tehrani, S., and Ma luszy�nski, J., (1988a) Algorithmic De-
bugging with Assertions, Research Report LiTH-IDA-R-88-04, Link�oping Univer-
sity, March 88.

Drabent, W., Nadjm-Tehrani, S., and Ma luszy�nski, J., (1988b) The Use of As-
sertions in Algorithmic Debugging, Proceedings of the FGCS conference - Tokyo,
November 88 : 573-581.

van Emden, M., Warren's Doctrine on the slash, Logic Programming Newslet-
ter, December 1982.

Ferrand, G., Error Diagnosis in Logic Programming, an Adaptation E.Y. Shapiro's
Method, Journal of Logic Programming 1987(4): 177-198.

Hill, P.M., Lloyd, J.W., Analysis of Meta-Programs, Proceedings of the work-
shop on Meta-Programming in Logic Programming , Bristol, 1988: 27-42.

Huntbach, M., Algorithmic PARLOG debugging, Proceedings of the IEEE Sym-
posium on Logic Programming - San Francisco, 1987 : 288-297.

Lloyd, J.W., Foundations of Logic Programming, Springer Verlag, Second edi-
tion, 1987.

Lichtenstein Y., Shapiro E., Abstract Algorithmic Debugging, Proceedings of the
�fth International Conference and Symposium on Logic Programming - Seattle,
1988: 512:531.

25. Algorithmic Debugging with Assertions 21

Mycroft, A., O'Keefe, R.A., A Polymorphic Type System for Prolog, Arti�cial
Intelligence 23 , 1984 : 295-307.

Naish, L., Declarative Diagnosis of Missing Answers, Department of Computer
Science, University of Melbourne, Technical report 88/9.

Nilsson, J.F., On the Compilationof a Domain-based Prolog, in: Mason, R.E.A.(ed),
Information Processing 83, North Holland 1983 : 293-298.

Pereira, L. M. and Calejo, M., A Framework for Prolog Debugging, Proceed-
ings of the �fth International Conference and Symposium on Logic Programming
- Seattle, 1988: 481:495.

Pereira, L. M., Rational Debugging in Logic Programming, Proceedings of the
3rd International Conference on Logic Programming , LNCS 225, Springer Verlag
, 1986 : 203-210.

Takahashi, H. and Shibayama, E., PRESET- A Debugging Environment for Pro-
log, Proceedings of the fourth Logic Programming Conference - Tokyo, 1985:
LNCS 221, Springer Verlag: 90-99.

Shapiro, E.Y., Algorithmic Program Debugging, MIT Press, 1983.

Sterling, L. and Shapiro, E.Y., The Art of Prolog, MIT Press 1986.

Zobel, J., Derivation of Polymorphic Types for Prolog Programs, in: Lassez,
J.L.,(ed), Proceedings of the Fourth International Conference on Logic Program-
ming, Melbourne 1987 : 817-838.

