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Abstract. Hybrid transition systems in their full generality describe
continuous behaviour by a set of equations in each mode { an algebraic
or di�erential equation for each state variable in terms of inputs and
other state variables. Each discrete transition may be taken according to
a (non-deterministic) time constraint.
In this paper we restrict this model to time-deterministic discrete transi-
tions. Thus, every transition is guarded by a condition g and has a �xed
delay t. Di�erent transitions may have di�erent delays (including zero),
but progress is enforced after the delay. Using this restriction and a com-
position operator which uses union of mode sets we then prove certain
compositionality properties. In particular, that the parallel composition
of two subsystems produces a system whose semantics is de�ned in terms
of semantics of its constituents provided that it has a run. The restriction
is well-justi�ed in a large class of control applications where the complex
mode-changing software is realised as a synchronous program.

1 Introduction

Hybrid theories combine the theory for continuous dynamic systems with the
theory for discrete dynamic systems. While the theoretical work is carried out,
safety-critical systems are being built and analysed at great costs. Successful
application of formal veri�cation techniques to such systems needs to start from
engineering models of hybrid systems and systematically transform them to
analysable models in the theory. The work presented here draws from the expe-
rience with a number of case-studies, where the idea has been to start from the
engineering models of physical systems \as they are".

Hybrid Transition Systems (HTS) were proposed in 1993 as an attempt to
capture both mode-switching physical systems and non-deterministically timed
computer systems in a single formalism. The formalism was studied in the con-
text of several realistic examples: a two car no-collision scenario [17], a 16th
century siphon pump machine [23, 22], and the landing gear system of an air-
craft [18, 19] among others. Some of these examples were veri�ed by the appli-
cation of deductive methods. Simpler models were augmented by addition of
invariances after which they could be model-checked as linear hybrid automata
(LHA) [2].

In this paper we propose a restriction of the formalism and prove certain
compositionality properties, while keeping the expressive style so that engineer-
ing models can still be plugged in with no additional e�ort. The motivation



for the restrictions are twofold. First, a number of changes in the de�nition of
the operational semantics and parallel composition operator facilitates proofs of
compositionality. Second, restriction to time-determinismparticularly suits anal-
ysis of systems controlled by programs from the so-called synchronous family of
languages [10], as described below.

Hybrid transition systems in their full generality describe behaviours of sys-
tems as interleavings of continuous phases of activity (having positive durations)
and discrete transitions (taking zero time). Each discrete transition, however,
may be taken according to a (non-deterministic) time constraint. A transition
is taken a least l time units and at most u time units after it has been enabled
(0 � l; u � 1).

The work on case-studies suggests the use of time-deterministic control pro-
grams in many applications, and the need for deductive reasoning about cases
where models of the physical environment is non-trivial (eliminating the pos-
sibility of model checking) [9]. We therefore propose to restrict the model to
time-deterministic transitions while keeping the expressiveness with regard to
dynamic continuous systems. Each discrete transition is thus required to be
taken within a �xed period of time from the time at which it was enabled. How-
ever, in a composed system, the �xed periods may di�er { due to transitions
belonging to di�erent subsystems.

Hence, we expect to keep the best of both worlds in the following sense.
Hybrid models are often built up from several modules each representing either
a control unit or a physical apparatus (mechanics, hydraulics, electronics, etc.).
For physical systems, our experience shows that models derived using systematic
modelling (e.g. by bond graphs) are naturally described by switching phases
of continuous activity, immediately on satisfaction of certain conditions (i.e.
l = u = 0). For control programs, many realisations have a �xed period for each
control function (l = u = d for some period d). Analysing the logical and causal
behaviour of such synchronous programs [10] on their own is well-established [6,
11]. By deriving the hybrid model we can now extend the analysis to the closed
loop system behaviours { including assessment of \the synchrony hypothesis".

Safety properties of such closed loop systems can sometimes be veri�ed on
discrete models, but that requires the derivation of a discrete model of the en-
vironment [25]. As synchronous languages are becoming more widespread in
industrial systems, and interfaces to veri�cation tools are forthcoming (see the
Lustre-PVS connection for example [4]), it is even interesting to formally anal-
yse the timing behaviour of such systems in relation to their environments. This
generally requires continuous analysis combined with deductive proofs. The re-
striction to time-determinism enables the direct translation of a synchronous
program to a time-deterministic HTS without transition delays (length of com-
putation step). Adding transition delays and the model of the environment we
get a model for the whole system to reason about.

A di�erent application of the time-deterministic model can be the composi-
tion of timed models of synchronous subsystems, each having their own compu-
tational period; the resulting system being a timed description of asynchronous



networks of synchronous processes. Analysis of such applications is a subject for
future work.

The rest of this paper describes certain features of hybrid transition systems
for natural modelling of engineering systems in section 2. Then follows the for-
mal de�nition of time-deterministic HTS, and the parallel composition operator
for this class of systems in section 3. Section 4 treats issues related to com-
positionality and progress properties, and section 6 discusses relation to other
works.

2 Hybrid transition systems

Hybrid transition systems treat the discrete and continuous elements in each
state on a par. That is, all elements of state are conceptually represented as piece-
wise continuous functions of time. Each system has a �nite number of modes.
In each mode, the continuous elements of the state are concretely represented
by a set of di�erential and algebraic equations in state space form (see Fig. 1),
where a real-valued variable may change either in accordance with a di�erential
equation or according to an algebraic equation in each mode. This facilitates
modelling the cases where the dimension of the system is changed from one
mode to another (see the siphon pump in [23]). In any case, the representation
of continuous change as above provides a natural interface to engineering models
which have this form, and which can be plugged into the hybrid model without
additional transformation (e.g. addition of invariances and exit conditions as in
LHA).
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m
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Fig. 1. A schematic illustration of hybrid transition systems as a graph.

The discrete elements of state (piecewise constant functions of time) are
represented as variables taking constant values in each mode. Thus, all changes
in state are captured by di�erential and algebraic equations. Changes of mode
are conditional upon a guard becoming true, i.e. a boolean expression g over the
state and input variables. The change in input variables is not constrained.

The uniform treatment of continuous and discrete elements of state provides a
natural means of communication between subsystems. Instead of shared labels or
events we treat every state change as immediately visible by all other subsystems.
Thus communication is by shared variables, where each variable is only allowed
to be changed by one subsystem (the one which has this variable among its state
variables). Other subsystems may (or may not) have this variable as an input



variable { a model which supports non-symmetric communication (broadcast as
opposed to rendezvous).

The model is specially useful for modular developments. For each component
the change in state is de�ned in terms of current state and the current input.
The input is, however, not modelled explicitly (unless it is the state of another
subsystem). This allows the proper treatment of disturbances or inputs whose
modelling is to be postponed (e.g. the driver behaviours in [17]).

Consider a mode change conditional upon the guard g and having a timing
constraint [l,u], as depicted above. Then a watchdog for the guard can result in
setting a timer to zero whenever the value of g changes to true. From this point
onwards the transition may be taken, but at the point when the timer hits u
the transition must be taken. In what follows, we consider the systems where
all the transitions must be taken at the point which is exactly t time units apart
from the time when their guard becomes true.

3 Time-deterministic HTS

We now de�ne time-deterministic hybrid transition systems (TD-HTS) formally.

De�nition 1. A time-deterministic hybrid transition system is a tuple
hM;X;U; F; I; T i, where

M : is a non-empty set of mode sets fm1; : : : ;mqg. For a simple system mi are
singleton, for a composed system each mi is a set of mode elements.

X: is a set of typed state variables with disjoint subsets Xc and Xd, X = Xc[Xd,
where the domain of Xc variables is R. The set of states of the system, S,
is the set of type consistent interpretations of the variables in X.

U : is a set of typed input variables U = Uc[Ud where the domain of the variables
in Uc is R and X \ U = ;.

F : M �X ! E is a function associating an equation with each state variable
in each mode, where e = F (m;x) has the following forms:

{ if x 2 Xd then e = px = cq for some value c of the right type
{ if x 2 Xc then

� F (m;x) = p _x = f(�x; �u)q for some function f of appropriate type,
� or F (m;x) = px = g(�x; �u)q for some function g of appropriate type

where �x and �u denote vectors of variables over Xc and Uc.

I: is an initial con�guration consisting of hm0; s0i, where m0 2M and s0 2 S.
T : is a set of mode transitions � = hm;m0; g; ti where m;m0 2M , g is a boolean

expression over terms of the form z#w, with z 2 X[U , # 2 f=;�;�; <;>g,
and w is a type consistent term over X and U , elements from their value
domains, and uninterpreted function symbols. t 2 N corresponds to an exact
delay on the transition � .
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We denote by I(x) the value of the variable x in the interpretation I. The
guard g is de�ned to be true in an interpretation I if it evaluates to true when
all the variables z in g are substituted by the values given by I(z).

The operational semantics can be informally described as follows. A run for
a system is de�ned from the initial con�guration, for a given input time-function
(a function from the reals to interpretations for the input variables). The run
consists of a sequence of mode-state-input-time tuples where the changes in
the input components are governed by the input time-function at selected time
points. The recorded time points are those at which a mode change takes place,
or some guard to some transition changes its truth value. The state changes
are compatible with the solutions to equations in each mode. The (discrete)
mode changes are recorded by having the same time component and di�erent
mode-state components (though the value of continuous state variables are un-
changed at mode changes). Such a mode change appears in a run if the guard
g for some transition � has been true for the duration t as dictated by � . All
enabled transitions take place at the end of their respective durations t (i.e.
they must take place). If there are several such transitions, then one will appear
non-deterministically in the current position in the run, and the others will also
take place (with the same time component but at the next position in the run)
provided they are still enabled in the current mode.

Next we give a formal account of the operational semantics. In de�nitions
below we represent the interpretation of a set of variables Z as the set fhz; vi j
z 2 Zg, where each v is a value of the right type.

De�nition 2. Let hM;X;U; F; I; T i be a time-deterministic hybrid transition
system, and 
 denote a �nitely variable function from R to the set of interpre-
tations over U . Then the run of the system with input 
 is an in�nite sequence
of situations �0; �1; : : : such that:

{ �j = hmj ; sj ; ej ; tji where ej = 
(tj)
{ t0; t1; : : : is a progressive time sequence with tj 2 R

{ �0 = hm0; s0; 
(0); 0i
{ each state component sj 2 S, and is compatible with the trajectory of the

system in mode mj { i.e. sj(x) = 
x(tj) where 
x denotes the solution
to the DAE in mode mj as de�ned by F with respect to variable x, given
the initial values corresponding to si and ei from the last position i in the
run when the mode changed, a position i < j; such that mi 6= mj ; and
8k i < k � j mk = mj

{ at every tj either the mode changes, or the guard to some transition changes
truth value, i.e. mj = mj+1 ! 9hm;m0; g; ti 2 T such that g is true (false)
in sj [ ej and false (true) in sj+1 [ ej+1

{ mode changes take no time, i.e. mj 6= mj+1 ! tj = tj+1
{ a transition is taken only if it is enabled for long enough, i.e.
mj 6= mj+1 ! 9� = hm;m0; g; ti 2 T 9i � j such that
8i � k � j; g is true in sk [ ek; m \mk 6= ; and m0 \mj+1 6= ;

{ for every transition with guard g and delay t, if g becomes true at a time point
ti and stays true at all subsequent situations prior to the time point tj = ti+t,



then the transition is taken at tj provided that it can be taken , i.e. 8� =
hm;m0; g; ti, if tj = ti+t; g true in si[ei; and 8i � k � j; g true in sk[ek
and m \mk 6= ; then 9� = hm00; s; e; tji where m

0 \m00 6= ;; s(x) = sj(x)
for all x 2 Xc; and is otherwise de�ned by F (m00; x) (for x 2 Xd).

2

Note that we want to force progress as a rule. So any transitions which
have been enabled \for long enough" must be taken. On the other hand, we do
not want to force determinism | specially since parallel composition of several
subsystems may lead to independent transitions getting ready for being taken
at the same time. The semantics thus allows for all such transitions to take
place in an arbitrary order but at the same time point provided that they are
not in causal con
ict with each other. The latter is not explicit in the semantic
de�nition but is implicit: a system which does not have a run according to the
above de�nition does not have a well de�ned semantics. The detection of causal
paradoxes , e.g. that a taken transition disables an already enabled transition,
may be investigated using similar procedures to those for synchronous systems [6]
{ taking no regard to the timing delays.

Next we give the de�nition for composition of TD-HTS. Note that the com-
position operation is de�ned provided that a condition on shared variables holds.
This might be slightly problematic with certain systems in which common out-
puts are desired, e.g. subsystems which both emit the same alarm signal in
di�erent situations. This situation can however be remedied by renaming of the
state variable in one subsystem after composition.

De�nition 3. Given time-deterministic HTS H1 = hM1; X1; U1; F1; I1; T1i, and
H2 = hM2; X2; U2; F2; I2; T2i, such that X1 \ X2 = ; and M1 \M2 = ;, we
de�ne their composition denoted by H1kH2, as the time-deterministic HTS
H = hM;X;U; F; I; T i where:

M = fm1 [m2 j m1 2M1; m2 2M2g,
X = X1 [X2,
U = (U1 [ U2)�X,
F : M �X ! E where E is the set of equations E1 [ E2, such that

F (m;x) = Fi(mi; x), for x 2 Xi; mi � m 2M; mi 2Mi

(i 2 f1; 2g),
T is the smallest set of transitions such that:

if hm1;m
0

1; g1; t1i 2 T1, then for all m 2M2, we have
hm1 [m;m0

1 [m; g1; t1i 2 T , and
if hm2;m

0

2; g2; t2i 2 T2, then for all m 2M1, we have
hm [m2;m [m0

2; g2; t2i 2 T .

2

Proposition 1. The parallel composition operator is commutative and associa-
tive.

Proof. Follows directly from the de�nitions and the properties of set union.
2



4 Compositionality of TD-HTS

We are interested in compositionality of hybrid systems in two di�erent ways.

{ Proving assertions of the type \if H1 and H2 satisfy a particular property,
so does H1kH2".

{ Proving that \if H1kH2 satis�es a property P and H1 is equivalent to H3 in
some sense, then H3kH2 satis�es P .

The �rst one is needed for bottom-up modelling and veri�cation of systems,
and the second for making simpli�cations prior to analysis, or for re�ning ab-
stract designs to implementations. In this paper we treat the �rst aspect of com-
positionality. That is, we show that composition of systems preserves certain
interesting properties. A central property for hybrid transition systems is having
a well-de�ned semantics in terms of a set of runs. Thus, we would like to show
that if H1 and H2 each have well-de�ned semantics in terms of a (non-empty)
set of runs, then their composition also has a run. Note that the de�nition of
a TD-HTS does not guarantee existence of a run for the system. In particular,
systems with obscure behaviours (e.g. the so-called Zeno behaviours in which
time progresses in small increments but never beyond a particular bound) do
not have a run, but are not syntactically excluded. Unfortunately, we can not
exactly characterize systems whose states are �nitely variable (have �nite num-
ber of discrete state state changes in a �nite interval of time), or compositions
of systems which have no runs.

Therefore, we proceed as follows. First, we distinguish systems in which an
in�nite number of discrete transitions are possible in a single point in time. The
intuition for this rests on experience with modelling realistic systems. Models
of physical systems which are derived with systematic modelling techniques do
not exhibit such behaviours, despite the fact that in these systems, structural
change can be naturally modelled by an instantaneous transition [23]. Models of
computer systems are de�nitely non-Zeno as long as there are non-zero delays
associated with every transition. Therefore, we de�ne the notion of admissi-
ble systems which at least do not exhibit the undesired behaviour of changing
in�nitely often in a single time point.

De�nition 4. Let H = hM;X;U; F; I; T i be a TD-HTS. We associate a labelled
graph GH = hV;E; Li with H such m 2M i� vm 2 V , and hv; v0i 2 E i� 9� =
hm;m0; g; ti 2 T ; the labelling function L associates the lable (g; t) with the edge
hvm; v0

mi. We de�ne the TD-HTS H as admissible i� for every cycle in GH ,
if all labels are of the form (g; 0), then there are at least two edges in the cycle
with guards g and g0, where g and g0 are mutually exclusive when evaluated in
all interpretations of X [ U .

2

Proposition 2. If H1 and H2 are admissible then H1kH2 is admissible. 2

Obviously, this property does not guarantee existence of a run when two sys-
tems are composed, but it eliminates some cases which depend on inappropriate
enabling of guards.



Next we show that the parallel composition of H1 and H2, produces a system
H whose semantics is de�ned in terms of semantics of its constituents provided
that it has a run. That is, a sequence belongs to the set of runs of H if it is
grounded in runs of H1 and H2 in a sense that we make more precise as follows.

Proposition 3. Let H1 and H2 be two TD-HTSs. Let 
1; 
2 and 
 be three
input time functions with the following properties:

1. Hi has a run with 
i; i 2 f1; 2g.
2. 
(t)(u) = 
1(t)(u) if u 2 U1 �X2, and 
(t)(u) = 
2(t)(u) if u 2 U2 �X1.
3. 
1(tj)(u) = ej(u) at every position j of the run for H2 with 
2 if u 2 U1\X2,

and 
2(tj)(u) = ej(u) at every position j of the run for H1 with 
1 if u 2
U2 \X1.

If H = H1kH2 has a run with 
, then for every such run of H, there is some
run of H1 with 
1 (and H2 with 
2) such that for every element at position i in
the run of H there is a corresponding element with the same time component ti in
the run of H1(orH2) such that the restriction of the element in H to (state, mode
and input) variables of H1(orH2) gives the element in the run for H1(orH2).

2

Proof. By induction on the sequence of situations in the runs of H . Consider an
arbitrary run of H with 
.
Base step: for the initial state the condition is trivially true.
Induction step: Consider a fragment of the run: : : : ; �i; �i+1; : : :

We will show that for any element �i+1 at position i+1 there is an element
related to it at a position j < i + 1 in the run for H , such that, if there is an
element corresponding to �j in some run of H1 with 
1 (or some run of H2 with

2), then there is an element corresponding to �i+1 in that run of H1 (or H2).
There are two cases:

1. mi 6= mi+1

According to the operational semantics for H there exists a transition � =
hm;m0; g; ti in T such that mi \ m 6= ;;mi+1 = m0, and g has been true
in every sk [ ek since a position j in which g became true. Assume that �j
restricted to variables of H1 (or H2) exists in a run for H1 (or H2). Then
according to the operational semantics, a situation corresponding to �i+1
with the same time component exists in the run of H1 (or H2).

2. mi = mi+1

According to the operational semantics there is a transition with guard g in
H such that g is false (true) in si[ei and true (false) in si+1[ei+1. According
to the de�nition of parallel composition this transition (guard) can be traced
to one of the two systemsH1 and H2. Without loss of generality assume that
it comes from H1. Consider a run for H1 with 
1. Assume that there is a
situation �k with time component equal to ti in this run for H1, whose mode
and state components are restrictions of mi and si to variables of H1. We
have to show that �k+1 in that run corresponds to a restriction of �i+1 to



variables of H1. First, we show that g is false (true) in sk [ ek. This easily
follows since sk is a restriction of si to X1, variables in g are a subset of
X1[U1, and due to conditions 2 and 3 in the antecedents of the proposition,
the value of these variables is the same as that in si [ ei.
Next we show that g changes truth value at �k+1 and that takes place at
time point ti+1. Again, since the variables in g are a subset of X1[U1, based
on de�nition of F in parallel composition, and restrictions 2 and 3 in the
antecedent to the proposition, we can state the following: if ti+1 is the �rst
time point after ti in which g changed truth value in the run of H , then ti+1
is also the �rst time point after �k in the run of H1 in which g changes truth
value. Hence, according to the operational semantics, there exists a situation
�k+1 = hm0; s0; e0; ti+1i in the run of H1 such that m0 � mi; s0 = si+1
restricted to X1, and e0 = 
1(ti+1).

2

5 Current application

In the SYRF project we are investigating formal veri�cation of a climatic cham-
ber case study provided by Saab Aerospace. The physical environment consists
of a chamber with two outlets, a fan to change the 
ow of air in the chamber,
and a heater to warm the incoming air. The objective of the controller is to keep
the temperature and 
ow of air in the chamber within prede�ned distance from
dynamically changing reference values. To ensure that these objectives can be
met the system performs continuous regulation as well as monitoring, the latter
giving rise to several modes of operation.

The controller is realised as a synchronous program which can be represented
in a statechart-like model with di�erent regulation activities associated with
di�erent modes. The controller program (or its functional speci�cation) is too
large to be included in this paper. The physical environment has so far been
modelled with certain simplifying assumptions { nevertheless giving rise to the
following non-linear equation describing the change of chamber temperature in
terms of the 
ow and the input heat power. Here Tchamb denotes the inside
temperature, Tin the incoming air temperature, uheat the voltage applied to
the heater, and q the (volume-based) 
ow of the air in the chamber. The k-
terms are constants determined by the range of values involved and the chamber
characteristics.

_Tchamb = 1=kchamb

( q Tin kin +

u2heat kheat �

Tchamb(q kout � kloss))

Further details of this case study which gives rise to a non-trivial hybrid
system can be found in [20]. The physical environment model is modular in the



sense that it excludes elements such as events (thresholds) used by the controller
and dictated by the requirements speci�cations.

The initial modelling step using composition of a synchronous program (with
�xed delays) and the physical model is facilitated by the TD-HTS model. The
next step is transformation of this model to a form which is directly analysable
with existing formal veri�cation tools. These are the type of models usually
assumed as given in the veri�cation literature. Analysis of the properties of the
system and formulation of intermediate invariances is currently in progress.

6 Related works

We share a common aspiration with data 
ow approaches like Signal [5]: that of
treating the discrete and continuous elements on a par.

Hybrid transition systems can be seen as a modular version of phase transi-
tion systems [15], our main contribution being the treatment of compositionality
and separation of input and state components. Other versions of phase transition
systems [16] include the notion of important events which, as well as enabling
conditions (corresponding to our guards), include assertions from the require-
ments speci�cation for a system. Hybrid transition systems do not mix the model
of a system and its requirements.

Hybrid automata [2] di�er mainly on the model for communication and par-
allel composition. There, communication is by shared synchronisation labels.
Moreover, composition is de�ned on systems which have the same set of con-
tinuous variables, making modular models of di�erent subsystems less natural.
Hybrid automata also require invariants in order to force progress. This is often
a signi�cant additional modelling step not directly present in engineering mod-
els. In our model, progress is by default, and addition of invariances are seen as
part of the veri�cation process.

Modular modelling appears in several other frameworks, e.g. in [24, 1]. The
work by Westhead and Hallam [24] models hybrid computations as a limit to
discrete synchronous computational processes. Abadi and Lamport [1] discuss
composition of, and decomposition into, speci�cation modules. Their speci�-
cations are representations of safety and liveness properties in temporal logic.
Separation of input and state arises naturally in models proposed within control
theory, e.g. several models discussed in [7]. However, rather than composition-
ality, aspects such as stability are in the focus of these discussions.

A hybrid theory which treats aspects of compositionality can be found in
the work by Lynch et.al. [14] wherein both communication by shared variables
and shared labels is considered. This work also attacks proving non-Zenoness by
switching to a game theoretic framework.

Going to the domain of timed systems, there are works which treat com-
position in presence of non-deterministic timing constraints in variants of timed
automata [21, 12]. Sifakis and Yovine distinguish between transitions which must
take place and those which may take place by using a notion of deadline in ad-
dition to the usual notion of invariance in timed automata. Kesten, Manna and



Pnueli, on the other hand, separate the progress conditions and enabling condi-
tions by using di�erent assertions for each. The former being global assertions
and the latter as local predicates on each transition.

7 Summary and future works

The paper presents a model for hybrid systems where all elements of state (dis-
crete and continuous) are represented as state variables. Modes of continuous
activity are governed by di�erential and algebraic equations in state space form,
and communication is by shared variables. The model is a modi�cation of hy-
brid transition systems presented earlier | the modi�cations being restriction
to time-determinism and composition by union of mode sets. The restrictions
are based on practical experience with modelling realisic engineering systems,
and an intention to link to veri�cation e�orts on the synchronous family of lan-
guages. A treatment of compositionality for open subsystems was discussed and
a proof of preservation of semantics on composing subsystems was presented.

Future works include continued investigation of the above industrial case
study, and the investigation of how proof techniques from computer science and
control theory can be combined in systems having diverse requirements speci�-
cations.
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