
Veri�cation of Embedded Systems Using

Synchronous Observers

Martin Westhead1 and Simin Nadjm-Tehrani2

1 martinwe@aifh.ed.ac.uk, Dept. of Arti�cial Intelligence, University of Edinburgh, 5
Forrest Hill,Edinburgh, U.K.

2 simin@ida.liu.se, Dept. of Computer Information Science, Link�oping University
S-581 83 Link�oping, Sweden

Abstract. This paper is a study of observer-based proof techniques ap-
plied to the veri�cation of a model of a real world embedded system, an
aircraft landing gear. We present a formal description of these techniques
(taken from [5]) and look at three ways of applying them, comparing ver-
i�cation of the composed system with two approaches to decompositional
veri�cation. The example illustrates that due to the tight interaction in
a plant-controller setting there is often little to be gained by adopting a
decompositional approach to veri�cation. Nonetheless, two reasons are
presented for separation between the controller and its environment at
the modelling stage. Hence the result of the study is that in cases similar
to this one, it is most expedient to prove system properties using the
composed model derived from individual parts.

1 Introduction

A major application area for automatic veri�cation is embedded systems where
software controllers interact with a physical environment. Verifying safety and
timeliness properties for such systems has recently attracted a lot of attention
in the context of hybrid systems { where models with both continuous and
discrete elements are subject to study[4]. In this paper we explore an alternative
methodology, namely analysis of real-time control programs in combination with
discrete abstractions of their environment (the plant).

As a formalism for this investigation we have chosen an abstraction of a syn-
chronous program, a synchronous Input/Output (I/O) machine, as de�ned by
Halbwachs et.al. [5]. This formalism is typically used to provide the formal se-
mantics for programming languages such as Esterel and for de�ning the crite-
ria for accepting well-behaved programs. Here we use the formalism for modelling
embedded systems; this gives us the possibility of using the associated veri�ca-
tion technology in our case study. This approach has obvious bene�ts. First, we
use the Esterel development environment and veri�cation techniques for prov-
ing properties which can not be proved using the model of the control program
alone. These are properties which depend on the tight interaction between the
plant and the controller. Secondly, once the composed model of the embedded
system has been proved to have its desired properties the conversion of the real-
time program to C code (or a circuit) is a matter of routine translation provided

within the Esterel environment. Thus, existing and well-understood veri�ca-
tion techniques for discrete models can be applied in a new setting. The price
to pay is the derivation of explicit models for the environment. In this paper we
argue that this is a viable undertaking.

The plant model we use is based on the physically grounded models derived
elsewhere[10]. It can also be seen as the discrete structure extracted from a
hybrid model based on Delta IO machines currently under development [12].
The veri�cation technique we employ is the observer-based method given by
Halbwachs et.al. [5], where a safety property of an I/O machine M is de�ned in
terms of another machine called a synchronous observer. The observer watches
the inputs and outputs ofM , and if they ever violate the safety property it emits
an alarm signal. A restriction of the method is that only safety properties are
expressible.

The observer-based technique can also be applied in a decompositional3 way
which has been suggested elsewhere as a means for reducing complexity of proofs
[1, 7, 3, 2]. Supposing we have a system of two components, and some overall
property we wish to prove that the system satis�es. Instead of composing the
system and verifying the property directly, we wish to carry out a smaller proof
step involving an intermediate property on each of the components. Unfortu-
nately it is not always clear how to obtain this intermediate property nor for
that matter whether these new proofs will be easier. In this paper we study this
problem in the context of a an aircraft landing gear controller adopted from
a real-world application[10]. The method is interesting to study since for our
class of embedded systems there is an obvious (plant-controller) breakdown of
the components. Thus, we study whether this particular decomposition pays o�
during veri�cation.

The example illustrates the use of an explicit model of the environment for
proving safety properties which depend on the correct interaction between the
plant and the controller. The plant model can be used in a one shot compositional
veri�cation of the embedded system, or alternatively for deriving the weakest
observer leading to proofs of safety property in a decompositional framework. In
the paper we explain, again in the context of this example, why both of these
approaches are more appropriate than decompositional veri�cation using ad hoc
intermediate properties.

In the next section we present the formal de�nition of an observer with other
de�nitions required for the rest of the paper. Section 3 describes a model of
the aircraft landing gear in terms of synchronous I/O machines, and compares
di�erent proofs of a safety property. Finally in section 4 we return to the theory,
and consider how the automatic synthesis of an intermediate property can be
carried out.

Earlier applications of the automata approach within control systems can
be found in [11]. A more recent use of the observer based methodology within

3 Note that the term `compositional veri�cation' is sometimes used for the approach
we denote by decompositional in this paper. We shall use the term compositional
veri�cation when we refer to a one shot veri�cation of a composed system.

telecommunication is reported in [6].

2 Preliminaries

In this section we present some basic notions adopted from the work of Halb-
wachs et.al. which are used in the rest of the paper. Central to the modelling
approach that we adopt is the concept of non-symmetric communication. This is
di�erent from the communication mechanism in e.g. process algebras [8] in that
it allows an observer to observe the behaviour of a system without modifying it.
Another model with a similar property is dynamic transition systems [9] which
uses changes in the value of state variables for representing dynamic behaviour.
In this paper we use the syntax of signal (event) based I/O machines { the prime
motivation being the use of existing automatic veri�cation tools, Mauto and Au-
tograph for the synchronous language Esterel (which can be compiled to I/O
machines).

2.1 Basic De�nitions

De�nition 1. Let S be a set of signals, and Es == 2S be the set of events on
S. An I/O machine M is a 5-tuple (QM ; q0M ; IM ; OM ; �M) such that

{ QM is the set of states containing q0M , the initial state
{ IM � S; OM � S are the disjoint sets of input and output signals respec-

tively
{ �M � QM � EIM �EOM �QM is the transition relation.

We require our speci�ed systems to be reactive, i.e.

8q 2 QM ;8i � IM ; i 6= ;) 9(o; q0) such that (q; i; o; q0) 2 �M

Such an I/O machine in response to a sequence (i1; i2; : : : ; in; : : :) of input
events returns a sequence (o1; o2; : : : ; on; : : :) of output events, such that there ex-
ists a sequence (q0; q1; : : : ; qn; : : :) of states with q0 = q0M and (qn�1; in; on; qn) 2
�M for all n � 1. The sequence ((i1 [o1); (i2 [o2); : : : ; (in [on); : : :) will then
be called a trace of the machine.

A deterministic machine has at most one possible reaction to a given input
event. For a reactive deterministic machine M we denote by �O

M
the function

giving, for a state q and an input i, the output event o such that (q; i; o; q0) 2 �M .

De�nition 2. Let M be an I/O machine, and O0 � OM . The projected ma-
chineM # O0 is (QM ; q0M ; IM ; O0; �0), where �0 = f(q; i; o\O0; q0) j (q; i; o; q0) 2
�Mg.

De�nition 3. Let M1 and M2 be two I/O machines with OM1
\OM2

= ;. The
synchronous product ofM1 andM2, denoted byM1 kM2, is the I/O machine
M where

{ QM = QM1
�QM2

; q0M = (q0M1
; q0M2

)
{ IM = (IM1

nOM2
) [(IM2

nOM1
); OM = OM1

[OM2

{ ((q1; q2); i; o; (q
0

1
; q0

2
)) 2 �M , (q1; (i [o) \ IM1

; o \ OM1
; q0

1
) 2 �M1

and
(q2; (i [o) \ IM2

; o \ OM2
; q0

2
) 2 �M2

2.2 Veri�cation of Safety Properties

In the veri�cation approach based on I/O machines a safety property is con-
sidered as a set of traces. A trace � on a set of signals S is a �nite or in�nite
sequence of events on S. A property P on S is a safety property i�

� 2 P , �0 2 P for any �nite pre�x �0of �

Central to the veri�cation approach used here is the notion of observer.

De�nition 4. Let P be a safety property on S. Let � be a (alarm) signal not
in S. An observer of P is a machine (Q
P ; q0
P ; S; f�g; �
P) which is both
deterministic and reactive with the following property. Let q� be the state that

P reaches after reading the (possibly empty) trace �. Then for any event e 2 2S

�O
P (q� ; e) =

�
; if �:e 2 P
f�g otherwise

We further assume that all transitions with an f�g output event lead to a
distinguished state q� in
P . Note that such a machine returns a sequence of
empty output events as long as it receives a sequence of input events belonging
to the safety property P . Moreover, the q� state is not reachable from the initial
state as long as the input traces are in P . Thus, the observer machine can be
used for veri�cation purposes as follows:

An I/OmachineM satis�es a safety property P i� the composed machine
M k
P never outputs any event containing �.

2.3 Decompositional Veri�cation

The above technique can of course be applied for verifying a program which
in turn consists of a number of parallel modules. For verifying that M1 k M2

satis�es the safety property P , one may construct the machine M = M1 k M2

and ensure that (M k
P) # � emits only empty output events.
Halbwachs et.al. [5], however, propose an additional method for decomposi-

tional veri�cation which they suggest might be more e�cient in some cases. The
decompositional approach works as follows. Assume that we are interested in
proving the safety property P in a system composed of modules M1 and M2.
They suggest a two-step veri�cation procedure which requires the additional
notion of restriction.

For any X � QM , let gpreM (X) = fq j 8i8o8q0 such that (q; i; o; q0) 2
�M ; q0 2 Xg be the set of states having all their successors in X .

De�nition 5. Let M be an I/O machine and
P an observer for a safety prop-
erty P . Let M 0 = M k
P . Then sinkP is the set of states in M 0 leading
inevitably to the violation of property P , and de�ned as follows:

sinkP = �X:gpreM 0((QM � fq�g) [X)

where � is the least �xed point operator.

De�nition 6. Let M be an I/O machine and
P an observer for a safety
property P . Let M 0 = M k
P and assume q0M 0 62 sinkP . Then the non-
blocking restriction of M 0, denoted by M=1
P , is the I/O machine (QM 0 n
sinkP); q0M 0 ; IM ; OM ; �00) where

�00 = f(q; i; o; q0) 2 �M 0 j q; q0 62 sinkP and � 62 og

Intuitively, the resulting machine has no traces with � events in, neither
has it any states from which all the outgoing transitions (now pruned) had �
events before the restriction. The two steps of decompositional veri�cation can
then described as follows. To prove that M1 k M2 satis�es the property P on
S = IM1

[OM1
[IM2

[OM2
, �nd a property P 0 on IM2

[OM2
such that

1. M2 satis�es P 0

2. M1=1
P 0 satis�es P .

That is, �nd a reasonable approximation to M2 which has the necessary proper-
ties so that when composed with M1 the required safety property is met by the
combined system. An obvious application of this method is in the case of embed-
ded systems. Then let M1 correspond to our embedded software,M2 correspond
to its surrounding environment, and P 0 correspond to a relevant property of
the environment. The proof then tells us that provided the environment of the
software behaves as it should then the closed system has the required property.

This decompositional technique will be worthwhile only if each of these two
steps is `simpler' than the one shot approach of verifying the composed system.
Our conjecture is that for a large class of embedded systems this is unlikely to
be the case. The question is complicated by the fact that there is a potentially
in�nite number of possible intermediate properties P 0 that could be chosen. A
crucial question is then: how to chose a suitable P 0.

For example, assume we have a property P 0 which is thought to be suitable.
If the second step above fails, then the cause of the failure may be in either
of the two components (the module M1 or the abstraction of M2;
P 0). If the
property P 0 has been derived ad hoc then either M1 or P 0 and ultimately M2

may have to be changed. This can lead to an iterative process, where at each
step the source of the current failure is tracked down and a �x attempted.

One way of avoiding these iterations would be if we could synthesize the
weakest property P 0 which satis�ed step 2 above. If such a property can be
generated then we know that if step 1 fails then it is our model of the system,
M1 or M2 that is at fault. In section 4 we look at a synthesis technique, and
some of the technical details associated with it. First we present our example,
and show how these veri�cation techniques can be applied.

3 Example: Aircraft Landing Gear

In this section we use a model of a real world system to illustrate and assess
observer-based veri�cation. The system we have chosen to model is that taken
from studies of the landing gear system of the Swedish JAS 39 Gripen multirole
combat aircraft. This system has been modelled using a number of di�erent
formalisms, at various levels of complexity [10]. The earlier work included models
where the relation between the physical properties of the hydraulic subsystem
and the landing gear actuators could be studied. This enabled the study of the
timeliness properties which are not covered here.

The model of the plant used in this paper is an abstraction of the physical
models su�cient for the expression of a safety property. We consider the plant as
being composed of two simple mechanical systems, a door and a gear, interacting
with a software controller. The pilot can give a command for the gear to be
extended or retracted. Extending the gear for example involves the door being
opened, the gear being lowered, and then the door being closed again. The
safety property which can be expresses in terms of synchronous observers is the
property that the gear and door should never collide under operation.

3.1 Modelling

In this section we present various components of the system and discuss the
composed model. To begin with a hybrid model of the plant was developed
using the hybrid formalism of Delta IO machines [12]. The formalism represents
a simple extension of discrete synchronous systems which allows the modelling of
continuous processes within the framework of a standard synchronous language,
in this case Esterel. In this paper we present the discrete structure of that
model which contains su�cient information for verifying the safety property we
are interested in.

The models are presented as I/O machines. They were generated directly
from the Esterel compiler, and drawn using the Autograph package. Transi-
tions on the graphs are signal operator pairs concatenated by full stops. The
' !' operator represents that a signal is being output, a '?' operator represents
signal input, and a '#' is an operator representing the absence of a signal from
the input of a reaction.

The Plant For our purposes here, the 'plant' is considered to consist of every-
thing beneath the software control system. This includes not just the physical
system, but also the sensors, and the interface of the sensors with the controller.

Figure 1 shows an I/O machine representing the discrete fraction of the door
model. This is half of the total plant model, the other half being the gear itself,
which has very similar functionality (but will not be depicted here). The gear
is raised and lowered in the same way that the door is opened and closed. The
plant model is given by the parallel composition of the door and the gear models.

The machine in �gure 1 has four states, the double ringed one representing
the initial state. The two states shown here on the left and right of the diagram

#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq#cd . #dq

?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd?dq . !dro . #cd

?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq?cd . #dq

?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro?cd . ?dq . !dro

!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od!d . #od

!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od!d . !dc . #od

?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d?od . !d

?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc?od . !d . !dc

!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd!d . #cd

!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd!d . !dro . #cd

?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d?cd . !d

?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro?cd . !d . !dro

#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od#dq . #od

?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od?dq . !dc . #od
?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq?od . #dq

?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc?dq . ?od . !dc

OPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPENOPEN

CLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSINGCLOSING

OPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENINGOPENING

CLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSEDCLOSED

inputs outputs

od open door dro door open
cd close door dc door closed
dq door query d door in motion

Fig. 1. A model of the door as an I/O machine showing input and output signals

represent the fact that the door is stationary, and open or closed respectively.
The top and bottom states represent the movement of the door.

The door can receive three inputs: od and cd are requests from the controller
for the door to be opened and closed respectively, dq is a request from the
controller for the door to report its state. As we can see from the transitions if
the door is stationary (in states OPEN or CLOSED) and it receives a dq, it will
report its current state with the outputs dro or dc, (door open and closed). If the
door is in motion, the dq signal is ignored. On the transition from OPENING to
the the OPEN state the door emits a dro without prompting, (and of course a
dc for the corresponding CLOSING case). The signal d is a signal indicating the
movement of the door. It is emitted spontaneously on an empty input whenever
the position of the door is updated i.e. when the door moves.

So the operation of the door is essentially a cycle. It starts closed. A od
will start it opening, once open a cd will start it closing again. At any stage its
movement can be reversed by the appropriate command.

The Controller The controller is not depicted here because the state machine
produced is too complicated to make easy sense of, consisting of 8 states and 48
transitions. The Esterel code for it is given instead in the Appendix.

The controller communicates with the plant via the ten control and sensor sig-
nals. In addition it receives two signals from the pilot, cmd up and cmd down
representing commands to extend and retract the gear. It is assumed that the

controller should allow the pilot to disrupt the process of extension or retraction
of the gear at any stage. It was also intended that the controller should not sim-
ply assume knowledge of the position of gear and door, but must check, every
time a command is issued.

The System A diagram of the composed system is shown in �gure 2. This
model has been automatically generated using the parallel composition of the
plant and controller models. From the initial state at the top, a cmd down
signal will start the door moving (opening) this can be seen on the graph as
the transition !d . #cmd up. Once the door is open the gear starts moving
(lowering) and �nally the door moves again (closing) and comes to rest. This
is the progression down the left hand side of the diagram. At any stage if we
receive a cmd up signal, this will move control to the right hand side which
brings the gear up.

We can clearly see just from this diagram that our composed system (8
states, 28 transitions) is simpler in terms of reachable states and transitions than
either the plant model (16 states, 256 transitions) or the controller (8 states, 48
transitions) from which it is composed.

3.2 Compositional Veri�cation

The property that we are interested in verifying is that the landing gear
and the door will not collide. This property we prove by proving the stronger
property that the door should always be open and stationary when the landing
gear is in motion. This second property can be seen as two properties, that the
door and gear are never moving at the same time, and that the door is always
open when the gear is in motion. Notice that both properties, are properties of
the composed system, and cannot hold over just the plant or controller.

These two properties can be checked by a pair of observer machines combined
in parallel4. Figure 3 shows these machines. The �rst simply emits an alarm and
halts whenever an event occurs containing the signals g and d at the same time,
indicating that the door and gear have moved at the same time. The second
machine watches the signals dro and dc which are sensor states from the plant
emitted when the door is open and closed respectively. This second machine
emits an alarm if g ever occurs when the sensors have indicated that the door
is not open.

In order to check that the system satis�es the safety property, the complete
observer is combined in parallel with the system, and the resulting state machine
checked for the emission of � signals. Of course the proof is successful, and our
composed system behaves as we require.

4 These two machines share a common output � which technically means that they
can't be combined using the product operator that was de�ned. This can be prac-
tically solved by calling the respective observers' outputs �1 and �2 and renaming
both outputs to � in the composed machine.

?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down?cmd_down

#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down#cmd_down

?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d

!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up

?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d?cmd_up . !d

!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up ?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d !d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down

?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d?cmd_down . !d

!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down

?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g?cmd_up . !g

!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up

?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g?cmd_down . !g

!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down

?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up?cmd_up

#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up#cmd_up

!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up

!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up!d . #cmd_up

!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down

!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down!d . #cmd_down

!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up!g . #cmd_up !g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down!g . #cmd_down

DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED
GEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISEDGEAR RAISED

DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED DOOR CLOSED
GEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWEREDGEAR LOWERED

inputs outputs

cmd up pilot command | raise gear d door in motion
cmd down pilot command | lower gear g gear in motion

Fig. 2. A model of the complete system. Communications between plant and controller
could be shown here as outputs, but for clarity have been omitted.

ααααααααααααααααα?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !?d . ?g . !

?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d?g . #d#g#g#g#g#g#g#g#g#g#g#g#g#g#g#g#g#g

ααααααααααααααααα

ααααααααααααααααα?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro?g . ! . #dro

?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro?dro

#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g#dro . #g

?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc?dc

#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc#dc

ααααααααααααααααα

inputs outputs

d door in motion � alarm
g gear in motion
dro door open
dc door closed

Fig. 3. An observer of the safety property that the door and gear do not collide. The
actual observer is the parallel composition of these two machines.

The complete observer has 4 states, 13 transitions and when combined with
the system, the resulting machine has only 9 states and 35 transitions. This
appeared to be a very small proof and the decompositional techniques would be
hard pressed to improve on it.

3.3 Ad Hoc Decompositional Veri�cation

In this subsection we consider verifying the property using an ad hoc approach
to �nding our intermediate property P 0. The problem of synthesising this prop-
erty automatically is complex, and we consider it in section 4. Here we consider
�nding a suitable property by using our intuitive understanding of the operation
of the system.

There are two ways in which we can go about searching for P 0. Either we
can look for a property P 0 that is a property of the plant, or we can look for a
property P 0 that is a property of the controller. In fact we tried both here.

The property is, of course, expressed as an observer. Finding suitable ob-
servers was a far from trivial task. We started by building observers that ex-
pressed what we thought might be su�cient conditions, and kept adding restric-
tions until we could make both steps of the proof hold. The resulting observers
expressed much stronger properties than were necessary in the end. In the search
for P 0 we were helped by the fact that we already knew that our composed sys-
tem satis�ed P . The task would have been much harder if we were trying to
actually verify P for the �rst time, in which case proof failures could have been
caused by errors in the system models as well as de�ciencies in P 0.

Both our observers were larger than the observer of the system property.
The controller observer had 4 states and 61 transitions, its two veri�cation steps

involved machines of size 19 states, 151 transitions and 13 states 212 transitions.
The plant observer had 26 states and 2676 transitions and had veri�cation steps
with machines of sizes 27 states, 402 transitions and 61 states, 5108 transitions.
Clearly both of these decompositions produced two much larger proofs than the
veri�cation of the composed system.

3.4 Does Decomposition Pay O�?

The example considered here is small, but large enough to be illustrative. From
the work presented here we can conclude, that for similar cases:

{ The composition of plant and controller can be smaller than either compo-
nent.

{ It is di�cult to �nd an intermediate property suitable for decompositional
proof by hand.

{ Even when an intermediate property is found the two steps of the decom-
positional proof can involve larger constructions than the single proof of the
composed system.

We tentatively conclude that this was not a suitable situation to apply de-
compositional veri�cation.

Part of the problem that we experienced in applying the technique of de-
composition to this example was due to the di�culty of �nding a suitable inter-
mediate property P 0. The properties that we came up with in both cases were
stronger than required. Ideally we would use the weakest possible P 0. This would
have the advantage that the two steps of the decompositional proof would pro-
vide necessary and su�cient conditions for our overall property to be satis�ed
by the composed system.

4 Weakest Observers

4.1 Synthesis Method

Halbwachs et.al. propose a method for synthesis of the weakest property P 0, and
present a proof for the the following statement: if the property P 0 is arrived at
in the proposed manner then it su�ces to perform step 1 of the decompositional
technique for proving the property P . To put this statement more precisely we
restate a few auxiliary de�nitions.

Let traces(Q) be the set of all �nite traces � = e1; : : : ; en such that
(qn�1; in; on; qn) 2 �M , in[on = en, and qn 2 Q. For a trace � = (e1; : : : ; en; : : :)
we de�ne the projection of � on a set of signals S0 as the trace � # S0 =
(e1 \ S0; : : : ; en \ S0; : : :). The projection of a set of traces T on a set S0 is
de�ned as T # S0 = f� # S0 j � 2 Tg. Finally, if T is a set of �nite traces on S,
then C(T) is de�ned to be the set of traces on S which do not have any pre�x
in T .
To prove that M1 kM2 satis�es P (denoted j= P), Halbwachs et.al. suggest the
following method.

Proposition7. [5] Let
P be an observer for P emitting � on violation of P .
Let Terr = traces(QM1

� fq�g) and let P 0 = C(Terr # S2). Then

M2 j= P 0 ,M1 kM2 j= P

This proposition provides a method for doing decompositional veri�cation
that avoids the need for iterating, because the bottom line of claim 7 is an `if
and only if'. In other words if we generate the property in this way, then if P 0

is satis�ed by M2 the proof is successful, if it fails to be satis�ed by M2 then we
know that one of the machines M1 or M2 is awed.

Although this proof is expressed in terms of traces, it can clearly be imple-
mented in terms of observers. The property C(Terr # S2) can be expressed as an
observer constructed from the synchronous product of M1 and
P , by changing
signals from outputs to inputs (except �) and restricting the signals to those in
S2. This observer can then be used to check the properties of M2 in the usual
way.

4.2 Discussion

In comparing the di�erent proof approaches we are interested in the size, that
is number of states and transitions, of the I/O machines involved in the veri�-
cation process. A decompositional approach might be considered worthwhile if
it involves signi�cantly smaller machines.

We have already observed that the composition of a plant and controller
can result in a small machine. To see why we must consider the de�nition of
synchronous product. For two machines A and B the size of their product C =
A k B is related to the way in which the input to the composed machine is
de�ned. Here its inputs are de�ned as IC = (IA nOB)[(IB nOA). Constraining
the input alphabet in this way means that some potential transitions in C cannot
exist because all their inputs have been removed from IC . This situation will
occur when the inputs of one machine are the outputs of another. Clearly this
is the case in the situation of a plant and controller. In the extreme IA = OB
and IB = OA in which case only spontaneous transitions i.e. those with empty
input will survive.

In the case of our synthesized observer
P 0 , it is clear that it will be the
same size as M1 k
P . Consequently the veri�cation step on this machine which
involves checking to see if
P 0 k M2 emits �, will involve comparable sized
machines to the compositional veri�cation step which checks M1 kM2 k
P for
� emissions. Not only is the last step comparable, the intermediate step it takes
can also involve the unnecessary introduction of a large machine. Such an
P 0

synthesized as a property of the plant in our landing gear example has 29 states
and 547 transitions.

The observer
P 0 , as we have described it, is not of course the minimal
weakest observer. We need to preserve any transitions in any path leading to
an �-state. However any other transitions could be removed. This minimised
version of
P 0 could possibly provide smaller veri�cations. In practice, we found

that there were no opportunities for such minimisations when the techniques
were applied to our example, since every transition was in a path leading to an
�-state.

5 Summary

In this paper we have considered the use of synchronous observers for veri�ca-
tion of embedded systems. We have considered a case where we have a property
P that can not be ascribed to the plant or the controller alone { rather, it is a
property of the composed system. To begin with, we note that starting to model
the composed system is not to recommend for two reasons. First, to ensure corre-
spondence with physical models, separate plant modelling is necessary. Second,
checking the property of the composed system model does not give any hints as
to what the controller should look like. Separate controller modelling leads to
easier realisation of the control program code.

Next, we have considered alternative veri�cation strategies. In this case it
seems clear that a decompositional veri�cation of the plant and controller can
lead to harder proofs than a direct veri�cation of the composed system, due
largely to the tight interaction between the plant and the controller. It may be
the case that alternative decompositions of the system into components which
share fewer signals would be more fruitful. However such decompositions may
not be a natural feature of the constructed hybrid models.

Finally a note on complexity of models. A signi�cant problem being con-
stantly attacked by the veri�cation community is the state explosion problem.
While e�orts in this direction are essential for applications in the real world, we
hope to have demonstrated in this paper that clever modelling can complement
these e�orts by keeping the size of the system under analysis to a minimum.

Appendix

%%

%

% Landing Gear Controller

%

% Author: Martin Westhead

%

% This is an implementation of a controller for a simple

% landing gear model.

%

% Inputs: cmd_up - retract gear, cmd_down extend gear,

% dro - door open, dc - door closed,gl - gear lowered,

% gr - gear raised.

% Outputs: od - open door, cd - close door, rg - raise gear,

% lg - lower gear, gq qery gear state, dq - query door state

module CONTRL :

input cmd_up, cmd_down, dro,dc,gl,gr;

output od,cd,rg,lg,gq,dq;

await cmd_down; % nothing happens until pilot lowers gear

loop

do

emit gq; % query state of gear

present gl else % gear is already lowered?

run open_door;

emit lg; % send lower gear signal

await gl; % wait for gear to be lowered

end;

run close_door;

up to cmd_up;

do

emit gq;

present gr else % gear is already raised?

run open_door;

emit rg; % send raise gear signal

await gr; % wait for confirmation

end;

run close_door;

upto cmd_down;

end

References

1. M. Abadi and L. Lamport. Composing Speci�cations. In J.W. de Bakker, W.P.
de Roever, and G.Rozenberg, editors, proceedings of the REX workshop on stepwise

re�nement of distributed systems, LNCS 430, pages 1{41. Springer Verlag, 1989.

2. A. B�rjesson, K.G. Larsson, and A. Skou. Generality in Design and Compositional
Veri�cation Using TAV. Formal Methods in System Design, 6:239{258, 1995.

3. H. De-Leon and O. Grumberg. Modular Abstractions for Verifying Real-time Dis-
tributed Systems. Formal Methods in System Design, 2:7{43, 1993.

4. R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Proc. Workshop

on Theory of Hybrid Systems, October 1992, LNCS 736, Lyngby, Denmark, 1993.
Springer Verlag.

5. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the veri�-
cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,
Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST'93,
Twente, June 1993. Workshops in Computing, Springer Verlag.

6. L.J. Jagadeesan, C. Puchol, and J.E. Von Olnhausen. A Formal Approach to Re-
active Systems Software: A Telecommunications Application in Esterel. Formal

Methods in System Design, 8:123{151, 1996.

7. R. Kaivola. Compositional Model Checking for Linear-Time Temporal Logic. In
Proc. 4th int. workshop on Computer Aided Veri�cation, pages 248{259. Springer
Verlag, 1992.

8. R. Milner. Communications and Concurrency. Prentice-Hall, 1989.
9. S. Nadjm-Tehrani and J-E. Str�omberg. From physical modelling to compositional

models of hybrid systems. In Proc. of the 3rd International Conference on Formal

Techniques in Real-time and Fault-tolerant Systems, pages 583{604. LLNCS 863,
Springer Verlag, 1995.

10. S. Nadjm-Tehrani and J-E. Str�omberg. Proving dynamic properties in an
aerospace application. In 16th International Symposium on Real-time Systems,
pages 2{10. IEEE Computer Society Press, December 1995.

11. P.J.G. Ramadge and W.M. Wonham. The Control of Discrete Event Systems.
Proceedings of the IEEE, 77:81{97, 1989.

12. Martin D. Westhead and John Hallam. Modelling hybrid systems as the limit of
discrete computational processes. In International Conference on Robotics and

Automation. IEEE, 1996.

This article was processed using the LaTEX macro package with LLNCS style

