
Formal methods for analysis of heterogeneous models of

embedded systems

Simin Nadjm-Tehrani

Dept. of Computer & Information Science, Link�oping University,

S-581 83 Link�oping, Sweden, e-mail: simin@ida.liu.se

tel: +46-13-28 24 11, fax: +46-13-14 22 33

1 Introduction

Technological development in micro-electronics have
made digital control an indispensable component in
all engineering systems. The rapid pace of develop-
ment and the demands on modern systems in terms of
novel functions and shorter development cycles has led
to many challenges in system design and veri�cation.
The down side of improved functionality is the unman-
aged complexity: never have we had systems built with
so many di�erent disciplines simultaneously at work -
each with their own collection of conceptual and con-
crete tools.

To manage complexity in this setting it is essential to
recognise and accommodate the diversities as early as
they arise. For most application domains this results
in a multi-paradigm development process, and is most
visible in the design modelling stage. In this paper
we discuss how mathematical modelling and analysis
of system properties is a�ected by having several disci-
plines at work. We show that soundness in design mod-
els can be obtained both through static analysis based
on properties de�ned for a meta-model, and through
formal veri�cation of an instance of a model { the lat-
ter being de�ned in terms of conformance to a require-
ments speci�cation.

2 What is meant by multi-paradigm?

A major dividing line inevitably exists between the dig-
ital system and the non-digital environment in which
it is embedded in. During the nineties a large volume
of work has arisen from attempts to bridge the gap
between traditional engineering models in mechanics,
hydraulics, and electrical circuits on the one hand, and
digital systems on the other. The �rst group are uni�ed
at the mathematical modelling phase in the sense that
continuous di�erential and algebraic equations (DAE)
provides them with a common mathematical funda-
ment. In contrast, models for digital hardware and
software span a large spectrum based on logic, au-
tomata, algebra and graph theory in the area of theo-

retical computer science, roughly classi�ed as discrete-
systems modelling. The work in the nineties has led to
an instance of multi-paradigm modelling called hybrid
systems, managing the complexities arising from the
discrete-continuous dichotomy.

There have also been attempts to unify traditional en-
gineering modelling prior to the mathematical mod-
elling phase using DAEs. In this paper we are not con-
cerned with how the continuous mathematical models
have been derived. The interested reader is referred to
the literature on energy-based physical modelling with
the language of bond graphs, for example [21] and ref-
erences therein. Also, considering simulations of tra-
ditional engineering systems, there has been a marked
interest in common model management environments
based on object-orientation [12, 11].

In this paper we focus more on digital hardware and
software. These in turn contribute to a number of ad-
ditional dichotomies at the mathematical formalisation
stage. The notion of digital (for both hardware-like
software and electronics), is used here to emphasise the
fact that a design can be realised in terms of either soft-
ware or hardware at a later design stage, after passing
initial tests at a high level design stage.

Since digital systems are easily extended and made
more complex, the need for concepts of hierarchy and
information sharing between subsystems arises. To
mathematically characterise these, a global notion of
computation step is considered. Thus, the dichotomy
between synchronous and asynchronous models ap-
pears. Also, to model the behaviour of a digital system
in response to changes in inputs (as a so-called reac-
tive system) can be described in an event-triggered or

time-triggered fashion respectively.

In addition, the application domains bring a rich 
ora
of modelling preferences to digital systems. A major
such division is between the control-oriented applica-
tions (where the complexity arises due to massive num-
bers of control locations in a computation) and data-
oriented applications (where there is much structure in
the data on which a large number of operations can
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be performed in few control locations). Many applica-
tions, of course, combine these two types of computa-
tions leading to the need for a combination of state-
based and data-
ow modelling.

Now, no matter how the individual subsystems are
modelled and analysed on their own, eventually the
composed system will be subject to analysis. One of the
main reasons for developing hybrid continuous-discrete
models, for example, is to ascertain that the closed loop
model consisting of a digital system in a physical en-
vironment exhibits desired behaviours only. Thus, a
very natural way to model an embedded system is by
including elements of the continuous state and the dis-
crete state in the same model. Note the distinction
between discrete states and treating the notion of time
in a discrete manner. Figure 2 clearly shows the four
resulting types of models.

3 Early design modelling

Many embedded systems are used in safety-critical ap-
plications. Several others are used in such volumes that
discovering a design 
aw after the production stage is
considered as a major failure. Just in the same way
that bridges and buildings are never made without a
mathematical model and calculations to ensure a cer-
tain degree of con�dence before major investments are
made, today's complex computer-based systems bene-
�t from a thorough analysis of a mathematical model
prior to implementation. It has in fact been shown that
many major failures have their roots in misconceptions
or omissions in the early design stages of the system.

Formal methods are promoted in order to assist discov-
ering errors at an early design stage. These methods
are however geared towards a particular modelling lan-
guage or a tool, suiting a particular style of implemen-
tation. Multi-paradigm development of systems im-
plies that there are isolated islands of captured knowl-
edge, no uniform analysis techniques (or tools) at sys-
tem level, and a lot of integration testing to compen-
sate for this. A major challenge is therefore to combine

existing analysis techniques from various paradigms
and to devise a coherent veri�cation methodology for
multi-paradigm systems. In the rest of the paper
we describe how some of the above dichotomies can
be reconciled in the same system using appropriate
meta-models. That is, how can systems composed of
continuous/discrete, synchronous/asynchronous, state-
based/data-
ow, event-triggered/time-triggered com-
ponents be methodically developed based on well-
de�ned underlying semantics? In particular, which as-
pects of the analysis bene�t from the existing capabil-
ities of each paradigm? We give examples of multi-
paradigm system veri�cation techniques, illustrating
with an industrial example.

4 Merging dichotomies

4.1 State-based vs. data-
ow
The family of formal languages known as synchronous
languages have shown that they are simple enough to
appeal to the engineering community and expressive
enough to model non-trivial applications in embedded
control. Lustre and Signal [14, 13] have a data-

ow style (declarative) whereas Esterel and Stat-

echarts are considered as state-based (imperative)
[15, 5]. Each language comes with a bunch of anal-
ysis techniques and well-developed toolboxes. One of
the major bene�ts of Signal, Lustre and Esterel

is the clearly documented formal semantics which acts
as a description of a meta-model. The clock calculus in
Lustre and Signal and the constructive semantics
of Esterel, for example, can be used for static check-
ing of desired properties of an instance (an application
model) based on formal semantics of the languages and
de�ned correctness criteria. Major such properties are
determinism in a controller and causal consistency at
every computation (macro) step [6, 23]. The Statem-
ate tool based on Statecharts checks type-coherence
of the variables in a model and performs some simple
consistency checks.

These tools are �nding their ways into modelling
the digital parts of several embedded applications,



e.g. energy and power systems and digital sig-
nal processing (Signal), electronic circuit design

and aerospace (Esterel~), rail transportation and

aerospace (Lustre~). These tools also provide eÆ-
cient automatic code generation. So, once the design
is "sanity checked" at compilation stage it can be sub-
jected to further formal veri�cation and code optimi-
sation, eventually leading to automatically generated
controller code (in C, Ada, or design model in VHDL).

Statecharts has had its original popularity in the
aerospace sector, but it is gaining popularity for general
embedded system design due to inclusion in the UML
family of languages [9]. The tool Rhapsody, though no
longer in the framework of synchronous languages, is a
valuable tool for modelling object-oriented distributed
systems.

All of the above-mentioned tools, however, have so far
been applied on an individual basis in the respective
applications. Considering the growing needs of multi-
paradigm modelling, two recent European projects
have been exploring the combination potentials of these
tools - SACRES for combining Signal and State-

charts, and SYRF for combination of Signal, Lus-
tre and Esterel. The work in SACRES has resulted
in relating synchrony with asynchrony [4], and the con-
ditions under which these paradigms can be combined.
The work in SYRF has resulted in cross-compilation
tools for Lustre, Signal, and Esterel (loose inte-
gration) [22, 17], an environment for multi-paradigm
modelling (tight integration) [1], and code distribution
for digital systems [8].

4.2 Event-triggered vs. time-triggered
As mentioned above, each member of the synchronous
family has been extensively used for design of digital
systems. A recent activity has been to combine anal-
ysis of continuous systems (as modelled in Matlab

Simulink) with the meta-model veri�cation and eÆ-
cient code generation capabilities of the Signal envi-
ronment. This is one approach in a series of attempts at
the problem of analysis of hybrid systems - an approach
we resort to for the case where the plant in itself has
abrupt structural changes, and its modelling bene�ts
from a study of simulation runs. Alternatively, we use
the simulation environment for the study of behaviours
in a closed loop system with a non-linear plant.

To this end, a co-simulation environment has been de-
veloped whereby automatically generated C-processes
from each tool can be run in a pseudo-parallel fash-
ion [26]. Thus, Signal being a powerful tool for devel-
opment of hierarchical controllers with complex struc-
tures is used for the discrete parts, while Matlab ca-
pabilities for generating simulation models of a con-
tinuous plant are used for that purpose. The devel-
opment of the co-simulation environment followed an

analysis of the communication mechanism between the
two subsystems. In consequence, it was decided that
a protocol based on event-triggering of each (discrete)
control component should be combined with the time-
triggering of the various plant sub-components during
simulation [25].

In recent years Matlab has been extended with a
modelling facility for describing a discrete controller
(Stateflow - with a syntax reminiscent of State-
charts ). However, the underlying computation mech-
anism for simulation of the discrete part of a model is
the same as the continuous part of the model. That
is, all signals are de�ned over continuous time and the
simulation is time-triggered based on the lowest sam-
ple period. In other words, in our Signal-Simulink
co-simulator one can combine models from the top left
part of Figure 2 with models from the bottom right
part (where there is no regular metric distance between
subsequent steps in the discrete model), whereas the
Simulink Stateflow models combine models from
the bottom row of the table. Another di�erence is that
meta-model analysis, formal veri�cation, and code op-
timisation based on the discrete clock calculus are fea-
tures present in our multi-paradigm approach and ab-
sent in the current Matlab implementation.

4.3 Synchronous vs. asynchronous
As it was mentioned above, not all applications can
naturally be modelled as a globally synchronous sys-
tem. A recent development has been to relate the no-
tions of synchrony and asynchrony in the context of
data-
ow languages (in particular Signal) [4, 3]. This
work introduces the theoretical notions which can be
used to characterise an asynchronous network of locally
synchronous nodes, and compositionality properties as
a meta-model property in this context. Similar ideas
are developed in the context of imperative languages
where it is shown how constructively checked Esterel
can be used as an input language to the POLIS envi-
ronment, compiling into co-design �nite state machines
communicating over one-place bu�ers [7].

5 Mathematical analysis: continuous/discrete

Recent years have seen the extension of application of
formal methods to models with both continuous and
discrete elements. A typical goal of veri�cation is to
show that an invariance holds over a model. In par-
ticular, a bad property does not hold in any reachable
state of a system. Since digital controllers are increas-
ingly complex with mode changes and multiple inputs
and outputs, and the goal of the controller is typically
to avoid a bad state in the physical environment, the
traditional methods for proving the invariance are not
applicable (neither the computer science methods for
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Figure 2: The external interface to the system.

proving properties of discrete systems, nor control the-
ory methods for analysis of continuous systems).

Several techniques for dealing this inherently diÆcult
problem have been proposed, see e.g. [2, 16, 10]. We
have studied the speci�c instance of the problem where
the digital controller is modelled by a synchronous pro-
gram and the controlled environment is modelled by
DAEs [19]. We have attempted two approaches to ver-
i�cation: compositional veri�cation and one-shot veri-
�cation. In each case we provided systematic transfor-
mations to one or more parts of the model, arriving at
instances of the model which are formally analysable.

5.1 Compositional veri�cation
In this approach we have automatically translated
models of the controller in Lustre or Statecharts
to a logical representation analysable by the �rst order
theorem prover NP-Tools. This tool is based on the
St�almarck method [24] and deals with propositional
logic and integer arithmetic. Proofs of a property R

in the closed loop system is then performed by �nd-
ing sub-properties R1; : : : ; Rn such that

V
Ri ! R.

Each Ri is then locally proved in the controller by the-
orem proving, in the plant by continuous analysis, or
by further re�nement into a new conjunction of sub-
properties [18].

5.2 One-shot Veri�cation
In this approach both the plant and controller are rep-
resented in the same veri�cation environment (in the
same language), and the properties of the system are
proved directly in the closed loop model. This is of
course dependent on abstractions of the plant model
in order to represent it in the same environment { the
abstraction being geared towards particular properties
of the system [20].

In particular, transformations of a non-linear plant
model to a piece-wise linear model leads to an abstrac-
tion as a mode-automaton [17] in which a set of dif-
ference equations (speci�ed in Lustre) are associated
with each mode. These models can be translated to


at Lustre which in turn can be translated to the in-
put format of NP-Tools via the tool Lucifer (see work-
package 3 in [22]).

5.3 Example application
Here we brie
y explain an application on which several
of the above modelling and veri�cation paradigms were
studied. It consists of a climatic chamber with a heater
and a fan. The multi-mode control and monitoring case
study provided by the industrial partners (Saab AB)
exhibited the same types of problems which appear in
aircraft air control systems, including undesired mode
changes and 
uctuations in the heat and 
ow levels.
The external interface is depicted in Figure 2 showing
three of the four modes of the system (idle, normal
\work", and emergency \block" mode).

Analysis of the textual requirements document from
Saab led to identi�cation of the following overall goals
for the controller.

� Keeping the reference values constant,

{ the work light shall be lit within a time
bound from the start of the system, and

{ the system shall be stable in the work mode.

� Chamber temperature never exceeds a given
limit.

� Whenever the reference values are (re)set, the
system will (re)stablise within a time bound or
warnings are issued.

Proving bounded response properties of a multi-mode
synchronous controller relies on two factors:

1. How many \steps" it takes to reach a particular
discrete state.

2. How variations in the duration of the step a�ects
the real-time response.

Of course, the �rst question can not be answered by
considering the controller alone. The environment
(plant) behaviour is a major part of that. Here we de-
scribe the transformations needed before theorem prov-
ing can be applied on the closed loop system for con-
�rming the answer to the �rst question. This is done
on \unfolded" models of the system, which means that
the transition function for the closed loop system has
to be speci�ed in terms of the language of a theorem
prover. In the case of NP-Tools, this is propositional
logic and integer arithmetic.

The second question is typically assumed to have a
well-de�ned answer. The software engineer assumes
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Figure 3: Continuous plant model.

that the `right' period will be delivered by the control
engineer. In the Saab case study we see that this is
not necessarily to be taken for granted (for details see
[18]). Also, the physical modelling performed in the
early stages of the case study was used for determin-
ing a reasonable step size, in turn a�ecting the number
of `unfoldings' mentioned above. This model is shown
in Figure 3, where x is the chamber temperature, u1
the air
ow as an input to the temperature equation,
u2 the controller signal based on voltage, and u3 the
temperature of incoming air.

This DAE model does not directly lend itself for plug-
ging into the closed loop model in the theorem prover.
First, the plant model is \simpli�ed" by restricting
some inputs to piece-wise constant signals { replac-
ing the non-linear continuous dynamics with discrete
modes and linear dynamics in each mode. Then, using
the knowledge that the remaining input signals are con-
trol signals issued by a synchronous (and sampled) con-
troller, each linear di�erential equation in each mode is
transformed to di�erence equations (Lustre programs
with real variables).

Finally, using the same scheme applied for compilation
of mode-automata till 
at Lustre, we obtain a multi-
mode Lustre model of the plant. This model is now
equivalent to the original model modulo restrictions on
(physical) input signals. One last step is to approxi-
mate the variables in the Lustre program from reals
to integer. This scheme is depicted in Figure 4.

6 Summary and future works

The transformation scheme presented here has been
successfully applied to the climatic chamber case re-
sulting in some improvements in the translators and
compilers. Also, a multi-paradigmmodel was obtained
based on Lustre Signal and Esterel and a further
distribution of controller has been obtained within the
Signal environment [8]. There is however more work
to do in improving the veri�cation tools and techniques,
and the combined discrete-continuous simulation tool
is a step towards combining some veri�cation possibil-
ities on the controller, followed by co-simulation in the
closed loop system.

m

_x = ax + : : :

mnm1 : : : mi : : :

Mode Automaton
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Controller Plant

Figure 4: Transformation scheme for obtaining a closed
loop model in Lustre.
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