
Undergraduate course on Real-time Systems
Linköping University

TTIT62 Real-time Process Control

Session topic: Banker’s algorithm

Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
Linköping university

11 pages
Spring 2005

Undergraduate course on Real-time Systems
Linköping University

2 of 11
Spring 2005

Banker’s algorithm

• Allocate multiple resources as and when
processes ask for it, but only:

–up to a predefined max value for each
process and resource

–provided that remaining resources
together with potential future releases
are enough for future allocations (up
to the max value)

Undergraduate course on Real-time Systems
Linköping University

3 of 11
Spring 2005

For n processes and m resources we need
following data structures:

Max: n × m matrix

Max[i,j] = k means that
process i requires max k elements of
resource type j

Implementation

Undergraduate course on Real-time Systems
Linköping University

4 of 11
Spring 2005

Allocation[i,j] = kmeans that
process i has already been allocated
k elements of resource type j

Available: m vector

Available[i] = kmeans that k
elements of resource type i are
available for allocation

Allocation: n × m matrix

Undergraduate course on Real-time Systems
Linköping University

5 of 11
Spring 2005

Requesti: m vector

process i:s request for resources

Notation:
Allocationi : the i-th row in
the Allocation matrix

State: instantiations of Allocation

...

......

......
...

Undergraduate course on Real-time Systems
Linköping University

6 of 11
Spring 2005

Banker’s algorithm

Input:
Matrix Max, vector Available,
a given state, and
Requesti for some process i

Output:
Yes + new state, or
No + unchanged state
(Requesti can not be allocated now)

Undergraduate course on Real-time Systems
Linköping University

7 of 11
Spring 2005

Algorithm:
1. Need := Max;
2. Check if

Requesti ≤ Available
if not, return ”No”.

3. Pretend that resources in
Requesti are to be allocated,
compute new state.

Allocationi := Allocationi + Requesti
Needi := Needi - Requesti
Available := Available - Requesti

Undergraduate course on Real-time Systems
Linköping University

8 of 11
Spring 2005

4. Test if the new state is
is deadlock-avoiding, in which
case return ”Yes”.

Otherwise, return ”No” -
roll back to the old state.

...

...

...

...

...

...

Undergraduate course on Real-time Systems
Linköping University

9 of 11
Spring 2005

Testing for deadlock-avoidance

Start with a given Allocation
and check if it is deadlock-avoiding
According to the 3-step
algorithm below.

Undergraduate course on Real-time Systems
Linköping University

10 of 11
Spring 2005

Finish: n vector with Boolean
values (initially false)

Work : m vector denotes
the changing resource set as
the processes become ready and release
resources (initially Work := Available)

1. Check if there is some process i
for which Finishi = false and
for which Needi ≤ Work. If there is no such
process i, go to step 3.

Undergraduate course on Real-time Systems
Linköping University

11 of 11
Spring 2005

2. Free the resources that i has used to
get finished:
Work := Work + Allocationi
Finishi := true
continue from step 1.

3. If Finishi = true for all i then
the initial state is deadlock-avoiding,
otherwise it is not.

