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Banker’s algorithm

• Allocate multiple resources as and when 
processes ask for it, but only:

–up to a predefined max value for each 
process and resource 

–provided that remaining resources 
together with potential future releases 
are enough for future allocations (up 
to the max value)
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For n processes and m resources we need 
following data structures:

Max: n × m matrix

Max[i,j] = k means that 
process i requires max k elements of                
resource type j

Implementation
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Allocation[i,j] = kmeans that 
process i has already been allocated
k elements of resource type j

Available: m vector

Available[i] = kmeans that k
elements of resource type i are
available for allocation

Allocation: n × m matrix
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Requesti: m vector

process i:s request for resources

Notation:
Allocationi : the i-th row in 
the Allocation matrix

State: instantiations of Allocation

...

......

......
...
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Banker’s algorithm

Input: 
Matrix Max, vector Available,
a given state, and
Requesti for some process i

Output:
Yes + new state, or
No  + unchanged state 
(Requesti can not be allocated now)
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Algorithm:
1.    Need := Max;
2. Check if 

Requesti ≤ Available
if not, return ”No”.

3. Pretend that resources in 
Requesti are to be allocated, 
compute new state.

Allocationi := Allocationi + Requesti
Needi := Needi - Requesti
Available := Available - Requesti
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4. Test if the new state is
is deadlock-avoiding, in which 
case return ”Yes”. 

Otherwise, return ”No” -
roll back to the old state.

...

...

...

...

...

...
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Testing for deadlock-avoidance

Start with a given Allocation 
and check if it is deadlock-avoiding
According to the 3-step
algorithm below.
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Finish: n vector with Boolean 
values (initially false) 

Work : m vector denotes 
the changing resource set as
the processes become ready and release 
resources (initially Work := Available)

1. Check if there is some process i
for which Finishi = false and
for which Needi ≤ Work. If there is no such 
process i, go to step 3.
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2. Free the resources that i has used to 
get finished:
Work := Work + Allocationi
Finishi := true
continue from step 1.

3. If Finishi = true for all i then 
the initial state is deadlock-avoiding,
otherwise it is not.


