[TIT62 Real-time Process Control

Session topic: Banker’s algorithm
Simin Nadjm-Tehrani

Real-time Systems Laboratory

Department of Computer and Information Science
LinkOping university

. EE—



Banker’s algorithm

e Allocate multiple resources as and when
processes ask for it, but only:

—up to a predefined max value for each
process and resource

— provided that remaining resources
together with potential future releases
are enough for future allocations (up
to the max value)

. EE—



ImEIementation

For n processes and m resources we need
following data structures:

Max: N~ m matri X

Max[1,]] = k means that
process | requires max k elements of
resource type |

. E—



Al | ocatl of—h—mhtatrtx

Al location[i,]] = kmeans that
process | has already been allocated
k elements of resource type |

Aval | abl e: m vect or

Aval | abl e[1] = k means that k
elements of resource type | are

avallable for allocation

. E—



Request—m-vectof

process i :s request for resources

Notation:
Al | ocation; : thei -th row In
the Al | ocati1 on matrix

State: instantiations of Al | ocat 1 on

e
O(%O‘_O)Sgg:::




Banker’s algorithn

Input:
Matrix Max, vector Avali | abl e,
a given state, and
Request; for some process |
Output:
Yes + new state, or

No -+ unchanged state
(Request; can not be allocated now)

. EE—



Algorithm:
1. Need : = Mx;
2. Check if

Request; £ Aval | abl e

If not, return "NO”.

3. Pretend that resources In
Request; are to be allocated,
compute new state.

Al l ocation; := Allocation, + Request,
Need; : = Need; - Request,
Avai | abl e := Avail able - Request,

. E—



4. Test If the new state Is
IS deadlock-avoiding, in which
case return ’Yes”.

Otherwise, return ’NoO” -

roll back to the old state.
O

‘ 'y
O O/‘
" O

RO

o ...




Testing for deadlock-avoidance

Start with a given Al | ocat i on

and check If it Is deadlock-avoiding
According to the 3-step

algorithm below.




Fi ni sh: n vector with Boolean

values (initially false) ==

Wrk : mvector denotes
the changing resource set as

the processes become ready and release
resources (initially Work : = Avai l abl e)

1. Check if there iIs some process |

for which Fi ni sh; = fal se and

for which Need; £ Wr k. If there Is no such
process i, go to step 3.

. E—



2. Free the resources that1 has used to

get finished:
Wrk := Wrk + Allocation
Fi ni sh, := true

continue from step 1.

3. If Finish, = true for alli then

the initial state is deadlock-avoiding,
otherwise It is not.

. —



