
NeuralGAP: Deep Learning Evaluation of
Networked Avionic Architectures
Rodrigo S. de Moraes

Institute of Computer and Information Science
Linköping University

rodrigo.moraes@liu.se

Simin Nadjm-Tehrani
Institute of Computer and Information Science

Linköping University
simin.nadjm-tehrani@liu.se

Abstract—Evaluation of system requirements in the early con-
cept design stage of networked architectures is important since
many future choices are restricted after this stage. Evaluating
whether a candidate topology meets dependability and timeliness
requirements has complex sub-problems, such as routing data
exchanges in the network, finding shortest paths, and clustering
network elements according to their attributes. In this paper, we
build on an earlier work that tackles the generation of network
topologies and propose a hybrid approach based on genetic
algorithms and graph convolutional networks to address the
topology evaluation problem. We apply the proposed evaluation
method to a realistic industrial use case and show that it is up
to 5 times faster than the previous method.

Index Terms—Graph Neural Networks, Network Topology
Generation, Network Topology Evaluation

I. INTRODUCTION

Conceptualizing safety-critical networked systems, partic-
ularly those with extra requirements such as timeliness and
secure data exchange (e.g., avionic and automotive systems),
poses significant challenges. During the early concept stage,
domain specialists must investigate the tradeoff between mul-
tiple, often conflicting, requirements, and evaluate the merits
of different networked platform configurations.

In earlier work [1], we explored the challenges of searching
for suitable network topologies and introduced NetGAP, an au-
tomated method to support early-stage exploration and concept
design of networked systems. In NetGAP, graphs representing
candidate network topologies are generated using Monte Carlo
tree search (MCTS) and a domain-specific grammar that
expresses possible hardware module interconnections.

Assessing the alignment of these candidate topologies with
application requirements, however, involves solving a series
of hard problems. These include: mapping software processes
to hardware modules, routing messages through the links, and
searching for paths to estimate communication resource ade-
quacy. Handling these for each candidate solution significantly
impacts evaluation efficiency and scalability

In this paper, we extend NetGAP and integrate a graph
convolutional network (GCN) regressor into the topology
evaluator algorithm with the following two contributions:

This work was supported by Sweden’s Innovation Agency – Vinnova,
as part of the national projects on aeronautics, NFFP7, project CLASSICS
(NFFP7-04890). The authors wish to thank the industrial partners from Saab
AB for their valuable technical input and for the use case used in the paper.

1) We propose a hybrid GCN/GA model (NeuralGAP)
to calculate the reward of a given network topology
against an application model and a set of application
and topology requirements.

2) We show that the proposed evaluator accelerates and
improves the efficacy of the search for network topolo-
gies when applied to a realistic use case: a synthetic
application design provided by an industrial partner.

This paper showcases the new model’s ability to iden-
tify candidate topologies that deviate from the application
requirements, achieving faster results than the previous ge-
netic algorithm implementation. In experiments, we show that
NeuralGAP consistently improves the quality of synthesized
candidate topologies, accelerating the search and broadening
the explored space.

II. RELATED WORKS

Evaluating candidate topologies involves addressing various
problems which are challenging to solve with traditional
techniques (e.g. network calculus [2], mixed-integer linear
programs [3], and graph analysis [4]). Here, we explore works
using graph neural networks, particularly graph convolutional
networks [5], which successfully handle network-related prob-
lems [6], [7], [8], [9] and could offer scalability benefits.

Analyzing a topology involves evaluating communication
aspects such as network link bandwidth, message scheduling,
and data latency. Typical techniques for that are network
calculus for latency estimation [10], and mixed-integer linear
programming or dynamic programming for schedulability [3],
[11]. However, recent works advocate for machine learning
to address similar challenges, e.g. to assess Ethernet network
feasibility within time-sensitive networks [12], to predict end-
to-end delay in Software Defined Networking [7], to estimate
routing congestion in large-scale integrated circuits [13]. An-
other aspect concerns the reliability and resilience of network
links, nodes, and the network as a whole. Traditionally, exact
methods and Monte Carlo simulations have been used for this
purpose [4], [14], [15]. In the context of machine learning,
Davila-Frias et al. [16] use deep neural networks to estimate
the reliability degradation function of network components
over time. Our work is intended to combine many (potentially
conflicting) requirements in the same attempt.

1



III. PROBLEM STATEMENT

This paper focuses on the evaluation of network topologies
to determine their alignment with the needs of a specific
application. In this section, the relevant terms are defined, and
the problem is formalized.

A. Terminology

Here, we present terminology from earlier works [1] that
we reuse in the remainder of the paper.

• Application: defines functionality and is represented by
software processes who exchange messages and cooper-
ate to provide the expected behavior.

• Platform: the set of conceivable hardware and system
software components where processes can be deployed.
Hardware modules provide resources (i.e. communica-
tion bandwidth, memory, and computation capacity) for
application processes.

• Platform Configuration or Topology: denotes the ar-
rangement of a selected set of hardware modules based
on specific interconnection patterns.

B. The topology evaluation problem

Let T = (V,E, lE , lV ) be the graph representing a candidate
topology, where V represents a set of hardware modules, E
is a set of directed edges representing the links between the
hardware modules, and lE and lV are labeling functions that
assign labels to edges and vertices, respectively. Let Vp ⊆ V
be the subset of vertices of T labeled as processing modules.
Let P = {p1, . . . , pm} be a finite set of software processes
and G = {g1, . . . , gn} is a partition over the set P, i.e. each
process p in P is contained and

∑n
i |gi| = m. Finally, let wi :

Vp −→ G be a bijective mapping from labeled (processing)
vertices in Vp to process groups in G and W = {w1, . . . , wh}
be the set of all such possible mappings. Note that, in practice,
each wi represents a possible allocation of software processes
to processing modules in Vp.

Now, let f : (T,A)×W −→ [0, 1] be a function that evalu-
ates the extent to which a topology T with the mapping wi is
able to host the envisaged application given the requirements
expressed by A.

The reward of a topology T based on a grouping G (rep-
resenting the mapping of processes onto modules) evaluated
against the requirements A, is expressed by the function
r(T,G,A). Then our goal is to find the maximum reward
expressed as follows:

r(T,G,A) = f(T,wmax,A),
wmax = argmax

wi∈W
f(T,wi,A)

where wmax is the maximum reward, calculated across all
mappings in W .

The last equation shows a significant challenge in topology
evaluation: finding wmax in W is computationally intensive as
there could be up to n! potential mappings, with n! denoting
the factorial of the number of process groups.

Another topology evaluation challenge involves the exis-
tence of requirements in A that demand complex analysis
of the topology T in f . Some of these are specific to the
use case and are hard to predict ahead of time. They include
tasks like pathfinding and clique identification. While efficient
algorithms exist for some tasks, others are challenging to
approximate when assessing thousands of candidate solutions.

IV. ACCELERATING TOPOLOGY EVALUATION

In NetGAP, the authors employ a genetic algorithm (GA) to
address the topology evaluation problem. While this approach
effectively handles the problem’s combinatorial nature, it re-
quires solving complex graph sub-problems for each solution
considered during its execution. In this paper, we propose a
hybrid GA/GCN topology evaluator to address this complexity.

The hybrid evaluator works in two steps: filtering and
refinement. During the filtering step, candidate topologies are
swiftly analyzed by the neural network. If the neural network’s
reward exceeds a defined threshold, thref , the topology is
passed to the genetic algorithm for further refinement. If
the score falls below the threshold, we exit the evaluation
module. This mechanism enables rapid sorting and pinpointing
of promising candidates for in-depth analysis while ignoring
those that do not offer viable solutions. The choice of threshold
thref is determined empirically by the user and should be
chosen considering the reward function and the accuracy of the
GCN module. Figure 1 shows the proposed hybrid evaluator.

Module Mapping and
Reward Optimization

Reward

Candidate
Topology

GCN

reward > threshold ?

n

ENTER
y

EXIT

GA

FROM NETGAP

TO NETGAP

Fig. 1: The hybrid evaluation module of NeuralGAP. Double
arrows represent the flow of data, single arrows represent the
control flow. Grey areas highlight the different algorithms used
for refinement and filtering.

The proposed network is composed of 3 stages. The first
stage is based on graph convolution layers. Each layer con-
volves the nodes in a graph with their neighbors, extracting
features from both nodes and edges based on their attributes
and those of their neighbors. Each convolution layer is fol-
lowed by a normalization layer. Our model cascades 4 of these
convolution and normalization ensembles.

Next in sequence is the pooling layer. To avoid overfitting,
this layer averages the node features learned by the convolution
layers and creates a single graph-level embedding from a
batch of training inputs. The final stage of the network is
the regression stage, which is composed of 3 standard, fully

2



connected, linear layers. Their objective is to associate a
reward in the interval [0, 1] to the graph embeddings received
from the pooling stage.

V. EXPERIMENTS AND RESULTS

We assess NeuralGAP by using it in an industrial but
synthetic scenario. The use case consists of an application
model constructed to mimic the properties of airborne systems
in a concept design stage at our industrial partner. It has 91
periodic processes that exchange 629 periodic messages. Of
these 629, 50 represent high-priority (HP) flows.

A. Requirement definition

For evaluation purposes, we consider the following require-
ments:

• Communication latency: The application is time-
sensitive, therefore the latency of inter-process messages
must be minimized.

• Resiliency: HP messages should have redundant paths,
allowing for resiliency and reconfiguration as a means of
fault tolerance if necessary.

• Resource utilization: Load on computing modules and
network links should not exceed 80%.

• Computation Adequacy: A candidate topology should
have as many computation modules as needed to host
the processes while respecting the resource utilization
requirements.

B. Reward Function

The score of a topology can be calculated as the weighted
average of the following three terms:

• Latency score: characterizes how much latency the
messages being exchanged by processes mapped to the
modules within a given topology are subjected to. We
approximate it as follows:

ls =
2e1−xl/loadth−o

h

Where xl is the maximum communication load observed
in any single link; o is the number of overloaded links;
and h is the mean number of hops in the path of a
message. The negative exponential formulation of ls guar-
antees convergence towards networks with lower loads
and fewer hops.

• Cost: We assume hardware modules cost 10 monetary
units (10u) and that links cost 0.1 monetary units (0.1u).

• Resiliency Score: Reflects the adherence to the resilience
requirements, this score is calculated as the ratio between
the number of HP flows with redundant paths in the
candidate topology and the total number of HP flows.

Due to the characteristics of this reward function, topology
rewards are not expected to exceed the value of 0.85. There-
fore, topologies with scores above 0.80 are considered ”good”.

C. Experiments and Results

With NetGAP we generated a dataset of 58,314 topology
graphs annotated according to the requirements above and used
it to train the network. Training took about 17min on an Nvidia
T4 accelerator.

We compare the NetGAP-based evaluator and the new
NeuralGAP hybrid evaluator in two sets of experiments. The
first set terminates the search based on a given elapsed search
time. This choice lets us explore how the evaluators affect
the solutions given the same execution time. The second set
of experiments terminates the search based on the number of
iterations performed. By choosing this termination parameter,
we can compare which evaluator provides better results given
the same amount of work (same number of solutions explored).
Each experiment was sampled 90 times.

Figures 2 and 3 show the reward scores and the size of the
explored space for the time-limited experiments. Each figure
shows a boxplot over 90 runs of each experiment for each
timeout. The orange lines indicate the median and the boxes
show the interquartile range. The whiskers extend to 1.5 times
the interquartile range and the crosses indicate the outliers. The
green and blue areas show the shape of the data distribution.

From Figure 2, we can see that the hybrid algorithm beats
the genetic algorithm by a good margin from the start, at a time
limit of 15s, producing better topologies consistently across
runs. The hybrid algorithm maintains its edge to the end, at a
limit of 300s, when it still produces more consistent and better
median results than the genetic algorithm.

Fig. 2: Distribution of the solution rewards in the time-limited
experiments.

Figure 3 provides insight into the underlying reasons for
the more convergent behavior of the hybrid evaluator. Given
the same time limitation, the hybrid evaluator can consistently
explore more of the solution space than the genetic algorithm,
helping the main search loop prune out worse regions and
focus on looking for solutions in the more promising regions.

The iteration-limited experiment (Figure 4) shows that given
a low number of iterations, the original NetGAP approach
produces high-reward results more consistently. As the number

3



Fig. 3: Distribution of the size of the explored space (number
of explored topologies) in the time-limited experiments.

of allowed iterations increases, the hybrid evaluator produces
more consistent and better median results, beating the genetic
evaluator at 1600 iterations. We hypothesize that this behavior
arises because the hybrid evaluator tends to slightly underesti-
mate rewards within the range [0.55, 0.85]. We conjecture that,
at a low iteration count, underestimating a topology’s reward
harms the search by prematurely steering it away from regions
of interest. Yet, with more iterations, this underestimation
appears advantageous as the increased sample size averages
out any detrimental effects.

Fig. 4: Distribution of the solution rewards in the iteration-
limited experiments.

To study the sensitivity of the approach to the refinement
threshold we ran dedicated experiments with different thresh-
olds and found that while the quality of the solutions did not
change significantly, higher thresholds increase the size of the
explored space (charts omitted due to space limitations).

VI. CONCLUSION

In this paper, we proposed NeuralGAP to evaluate network
topologies in the early concept stage. We have shown that the
proposed approach is not only faster than an earlier method,

but it also accelerates convergence to a similar high-reward
topology. The insights provided during the exploration attest
to the capabilities of neural networks to be used in the context
of state space exploration for industrial applications.

The main downside of the proposed approach is the over-
head of training the network (ca 17 min). Therefore, the
evaluator proposed in this paper is more suitable for workflows
that require the generation of a large number of topologies with
similar features or similar requirements.

Future work may involve adjusting NeuralGAP for online
training with new topologies during the concept exploration
process and comparing the grammar-based topology genera-
tion approach to other methods.

REFERENCES

[1] R. S. de Moraes and S. Nadjm-Therani, “Netgap: A graph-grammar ap-
proach for concept design of networked platforms with extra-functional
requirements,” under review, 2022.

[2] J.-Y. Le Boudec and P. Thiran, eds., Network Calculus, pp. 3–81. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001.

[3] R. Zhao, G. Qin, Y. Lyu, and J. Yan, “Security-aware scheduling for
TTethernet-based real-time automotive systems,” IEEE Access, vol. 7,
pp. 85971–85984, 2019.

[4] Z. Zhang, W. An, and F. Shao, “Cascading failures on reliability in
cyber-physical system,” IEEE Transactions on Reliability, vol. 65, no. 4,
pp. 1745–1754, 2016.

[5] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR), 2016.

[6] Z. Xiangyun, W. Lijun, L. Zhiyuan, and J. Yulin, “Deep reinforcement
learning with graph convolutional networks for load balancing in SDN-
based data center networks,” in International Computer Conference on
Wavelet Active Media Technology and Information Processing ((IC-
CWAMTIP), pp. 344–352, IEEE, 2021.

[7] Z. Ge, J. Hou, and A. Nayak, “Forecasting SDN end-to-end latency
using graph neural network,” in International Conference on Information
Networking (ICOIN), pp. 293–298, IEEE, 2023.

[8] Y. Peng, C. Liu, S. Liu, Y. Liu, and Y. Wu, “Smarttro: Optimizing
topology robustness for internet of things via deep reinforcement learn-
ing with graph convolutional networks,” Computer Networks, vol. 218,
2022.

[9] J. Coleman, M. Kiamari, L. Clark, D. D’Souza, and B. Krishnamachari,
“Graph convolutional network-based scheduler for distributing computa-
tion in the internet of robotic things,” in IEEE Military Communications
Conference (MILCOM), pp. 1070–1075, IEEE, 2022.

[10] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus: Design and evaluation of an accurate
and fast analysis,” Measurement and Analysis of Computing Systems,
vol. 1, jun 2017.

[11] Y. Zhang, F. He, and H. Xiong, “Scheduling rate-constrained flows
with dynamic programming priority in time-triggered ethernet,” Chinese
Journal of Electronics, vol. 26, no. 4, pp. 849–855, 2017.

[12] T. L. Mai and N. Navet, “Deep learning to predict the feasibility of
priority-based Ethernet network configurations,” ACM Transactions on
Cyber-Physical Systems, vol. 5, sep 2021.

[13] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Routenet: Leveraging graph neural networks for network
modeling and optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[14] J. E. Ramirez-Marquez and D. W. Coit, “A Monte-Carlo simulation ap-
proach for approximating multi-state two-terminal reliability,” Reliability
Engineering and System Safety, vol. 87, no. 2, pp. 253–264, 2005.

[15] J. Ayoub, W. Saafin, and B. Kahhaleh, “k-terminal reliability of com-
munication networks,” in IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), vol. 1, pp. 374–377 vol.1, 2000.

[16] A. Davila-Frias, N. Yodo, T. Le, and O. P. Yadav, “A deep neural
network and Bayesian method based framework for all-terminal network
reliability estimation considering degradation,” Reliability Engineering
and System Safety, vol. 229, 2023.

4


	Introduction
	Related works
	Problem statement
	Terminology
	The topology evaluation problem

	Accelerating topology evaluation 
	Experiments and Results
	Requirement definition
	Reward Function
	Experiments and Results

	Conclusion
	References

