
Evaluation of an SDN-based Microservice
Architecture

Anton Hölscher, Mikael Asplund, and Felipe Boeira
Department of Computer and Information Science

Linköping University, Sweden
Email: anton@holscher.se, mikael.asplund@liu.se, felipe.boeira@liu.se

Abstract—Microservice architectures decompose applications
into individual components for enhanced maintainability and
horizontal scaling, but also comes with an increased cost for
orchestrating the services. Software-Defined Networks (SDNs)
enables the dynamic configuration of network switches using
controllers. In this paper we propose a microservice architecture
that leverages SDN to orchestrate the microservices with the
goal of reducing the orchestration latency cost. We perform a set
of experiments using Mininet in which we implement a tailor-
made microservice application that uses SDN for orchestration in
combination with a set of different controllers and load balancers.
Our results show that our proposed architecture performs in the
same order of magnitude as a corresponding monolithic system.

Index Terms—microservices, software-defined networking, la-
tency, OpenFlow, load balancing

I. INTRODUCTION

Developing and maintaining large-scale software projects
are error-prone and demanding tasks. There is reason to
believe that dividing the system into smaller sub-programs,
where each sub-program provides a single functionality of
the system, could potentially result in reduced overall system
complexity. Such a system architecture is typically referred to
as a Microservice Architecture [3].

While microservices are developed as individual functions
that communicate in order to provide the required functional-
ity, they are usually presented to the users as a single system.
This can be achieved by adding a microservice orchestrator
which is a separate microservice responsible for delegating
all incoming requests to the intended microservice. However,
adding an orchestrator entails increased latency overhead of
the system since all incoming packets need to be received and
forwarded by the orchestrator.

In this paper we explore the possibility of lowering the
latency impacts of the orchestrator by incorporating the or-
chestrating behaviour within a switch. The main motivation
for incorporating the microservice orchestrator into the switch
with the help of an SDN-based approach is to reduce the
overall latency of service requests from clients. We have
performed a set of experiments to assess how well an SDN-
based mircoservice orchestrator performs in terms of latency,
which will be affected in two ways. First, there is a certain
increased latency for every request that goes through the
switch due to time taken by the switching logic. Second, if
the switch needs to ask the controller for information on how

to route the requests then the latency will increase by several
orders of magnitude. Such controller intervention is relatively
rare, meaning that the average latency will not be so affected,
but has a significant impact on the worst-case or 99-percentile
latencies.

In addition to assessing the latency of the SDN-based
microservice orchestration, we have performed a set of ex-
periments to compare two different SDN controllers and three
load-balancing algorithms when applied in this context. The
task of the controller is to alter the flow table in the switch and
the task of the load-balancing algorithm is to determine the
node that will serve each request. These actions are necessary
for the microservice orchestration to work, and since there are
different designs and implementations for these components,
we evaluate how different choices of controllers and load-
balancers affect the overall system latency.

Our contributions are threefold, we
• summarise existing SDN controller performance studies,
• propose a novel SDN-based microservice architecture,

and
• implement a test environment to evaluate the performance

of the proposed architecture.
The remainder of the paper is organised as follows: Sec-
tion II presents the background and related work, Section III
describes our implementation of an SDN-based microservice
orchestrator, Section IV provides the methodology used in
the experiments, Section V presents the results from the
experiments, and finally, Section VI concludes the paper.

II. RELATED WORK

We organise this section in two subsections, (i) comparisons
on OpenFlow controllers and (ii) latency measurements of
microservice architectures.

A. OpenFlow Controller Comparison

The controller is an external process connected to the
OpenFlow switch and is responsible for altering the switches’
flow table and may add/remove flow entries in the switch at
any time to adapt to the ever-changing network environment.
When the switch receives a packet unmatched by the current
flow table, the packet is automatically sent to the controller,
which then deals with the packet instead. Thus, the controller
gets notified of any flow table misses, and may alter the

flow table accordingly. We briefly summarise the most widely
known SDN controllers below.

The NOX controller was the first publicly available open
source controller software. Tootoonchian et al. [13] presented
their slightly modified version of NOX, called NOX-MT, to
show that some small alterations to the NOX controller could
improve its performance significantly.

POX is a Python implementation of NOX with some
design alterations to improve performance [6]. However, the
POX controller is outperformed by most other available SDN
controllers in terms of latency and throughput [9].

Ryu is an SDN controller implemented in Python focusing
on simplicity and agile development. Ryu is publicly available
and actively developed by NTT and aims to be a framework for
building SDN applications rather than a complete controller
with all possible features built into the system.

Beacon is a Java-based controller developed by Erick-
son [4]. Beacon has shown to be one of the top performing
controllers with respect to network throughput [4], [9], [11].
It also performs well in terms of latency [4], [11].

Floodlight is an extension of the Beacon controller, and
has an active community and commercial backing1. Floodlight
is widely used and has been used by companies such as
Canonical, CERN, SRI International, and others.

OpenDaylight is a decentralised controller, meaning that
more than one controller node may be utilised to deal with
unresolved packets and alter the flow tables of the switches
in the system [7]. The OpenDaylight controller is widely used
by many large corporations2.

ONOS [1] is a decentralised controller implemented in
Java. It was founded by the Open Networking Foundation and
serves as a fault-tolerant platform capable of automatic global
network discovery. ONOS supports SDN-Application hot-
plugging and automatically adapts to changes in the network
environment. It is backed by companies such as Google, Intel,
AT&T and Samsung.

Multiple studies have been performed in order to compare
the different controllers and convey the most fitting controller
in various scenarios. Most studies involve measuring the
throughput and latency of packets in complex/large network
structures while using different controller implementations
with varying number of threads. Table I shows how the
different controllers performed in each study. Note that the
table only considers the listed controllers.

As shown in the Table I, Beacon and ONOS each have the
highest throughput in three of the studies and NOX in one.
Ryu has the lowest latency in three studies, Beacon in two,
and NOX and OpenDaylight in one each. In the evaluation by
Tootoonchian et al. [13], they used an older version of Beacon
compared to the other studies evaluating Beacon.

B. Latency of Microservice Architectures

Shadija et al. [10] study how the chosen granularity of a
microservice affects its total latency. While they note only a

1Big Switch Networks: https://www.bigswitch.com/
2https://www.opendaylight.org/use-cases-and-users

TABLE I
SDN-CONTROLLER PERFORMANCE EVALUATIONS

Controller Included in Study Lowest
Latency

Highest
Throughput

NOX [4], [9], [11], [13] [13] [13]
POX [4], [9], [11], [12], [15]
Ryu [4], [8], [9], [11], [12], [15] [8], [12], [15]

Beacon [4], [9], [11], [13], [15] [4], [11] [4], [9], [11]
Floodlight [4], [8], [9], [11], [15]

OpenDaylight [8], [9], [12], [15] [9]
ONOS [8], [9], [12], [15] [8], [12], [15]

minor increase of the total latency, they argue that an increase
in the microservice granularity might still lead to a significant
increase in the response time of a system.

Ueda et al. [14] examine the latency effects of utilising a
microservice architecture based on how the implementation
differs from a monolithic server system. They find that the
performance of the microservice approach is up to 79% worse
than its monolith counterpart, potentitially caused by spending
considerable amount of time processing requests, instead of
executing the business logic and algorithms of the application.

Gan and Delimitrou [5] implemented two separate movie re-
view and streaming services, one using a monolithic approach
and the other using a microservice architecture. Comparing
the performance of both systems, the microservice system
outperformed the monolithic system at high server loads.

Based on the available evidence there is no obvious conclu-
sion to be drawn on the relative performance of microservice
architectures compared to their monolithic counterparts. It is
reasonable to assume that this will be very system-dependent
and that the level of inter-dependence between services is an
important factor. Our analysis focuses on the orchestration
of services through an SDN controller and is not intended
to answer whether the microservice architecture approach is
better or worse than monolithic systems.

III. SDN-BASED MICROSERVICE ORCHESTRATOR

We propose to use an SDN controller to perform the
microservice orchestration. To this end we have designed a
prototype implementation to showcase this approach and to
use as a test object for performance measurements. When a
client makes a request to the virtual IP address (VIP) of the
microservice, the packet is received at the SDN switch. The
switch communicates with the currently attached controller,
which utilises its currently attached load balancing algorithm
to decide which of the hosts that will receive the packet. Once
a receiver is decided, the controller installs a flow entry into
the switch and forwards the packet to the recipient.

The prototype implementation consists of a microservice
implementation, a load listener and the controller software.
The load listener serves as a communication bridge between
the microservice implementation and the controller in the cases
where a server-aware load balancer is used.

Implementing the microservice requires two separate com-
ponents. The request handler responsible for handling in-
coming requests and the load sender responsible for sending

the current server load to the load listener. We implemented
the microservice using C++ and the communication was
implemented using the Linux socket interface.

The Request Handler. In order to keep the study focused
on the performance of the controllers and load balancers, as
opposed to the performance of the servers, the actual workload
in the experiments is synthethically generated. Each server
node listens to a UDP socket. All packets received consist
of a single positive integer denoting the amount of simulated
load this packet would require, which is a constant in the
static request experiment and chosen randomly in the random
request experiment. The load is parsed by the server which
increases its simulated load accordingly.

The Load Sender. The load sender is a component re-
sponsible for continuously updating the load listener with the
load of the server node. In a set time interval, the load sender
sends the current load of the system along with a server node
identifier to a specific UDP-port of the load listener.

The Load Listener. The load listener is responsible for lis-
tening for the current load of each server-node and forwarding
it to the SDN controller. It forwarded the load to the controller
using POSIX shared memory.

IV. EXPERIMENT METHOD

A. Experiment Design

Since the performance of using an SDN switch as an
orchestrator might be tied to the performance of the controller
itself, we performed a set of latency measurements using
different SDN controllers.

Performance Experiments. Both the Switch Performance
Experiment (SPE) and the Controller Performance Experiment
(CPE) consist of an emulated network containing two clients
and an SDN switch connected to an SDN controller. Once the
environment was set up and the controller initialised, one of
the clients issued 100 000 ping requests to the other client,
measuring the RTT of each of those requests.

In the SPE the flow entries for the request is pre-installed in
the switch, resulting in no controller interaction. In the CPE,
flow entry installation is disabled, resulting in all requests
having to travel through the controller. The purpose of these
experiments is to gauge the latency impact of the controller
communication overhead.

Microservice Architecture Experiments. In the Microser-
vice Architecture Experiments (MAE), several hosts resides in
an emulated network. Some hosts in the network, referred to as
microservice-hosts, start hosting the server program. Once the
microservice-hosts are configured, a Network Flooding Swarm
(NFS) is started, consisting of a multitude of clients that all
start to flood the network with requests. Each request sent
towards the microservice IP is caught by the SDN switch
and forwarded to one of the microservice-hosts. The SDN
switch chooses the microservice-host using its flow-table or
the connected SDN controller. The controller decides the recip-
ient using its associated load balancer. Each of these requests
increases the total workload of the recipient microservice-host,
and the workload of each microservice-host is observed to

evaluate the effectiveness of the utilised load balancer. Once
the entire NFS is started, another client, referred to as the
Main Client, begins issuing ping-requests to the microservice
IP and record their round-trip time (RTT). An overview of the
experiment is depicted in Figure 1.

For each controller and load balancer combination, the
experiment was performed ten times. Five times where each
NFS client made a request with a static workload, referred
to as the Static Microservice Architecture Experiment (MAE-
Static). The other five times, each NFS client got assigned
a random request workload, and each request made by that
client increased the server workload by the assigned amount.
This experiment is referred to as the Random Microservice
Architecture Experiment (MAE-Random).

Metrics. We perform measurements for five different
latency percentiles, 50% (median), 90%, 99%, 99.99%,
99.999%, as well as min and max values.

The other metric that we focus on in this work is the
server load imbalance which can be seen as an inefficiency
in the orchestration. DeRose et al. [2] designed the Load
Imbalance Percentage metric that quantifies how unevenly the
workload was between several processes. The metric is defined
as follows, where I is the resulting load imbalance percentage,
m is the maximum workload, a is the average workload and
n is the number of processes in the system:

I =
m− a

m
× n

n− 1
× 100

In the cases where m = 0 or n = 1 we assign I = 0, since
either there is no workload or there is only one process in the
system. Both cases imply that there is no server imbalance.

Latency Comparison. To assess the latency effects of SDN-
based microservice orchestration it is important to find an
approach of fairly comparing the different systems. Therefore,
we assume that the different systems could be implemented
with similar latency w.r.t. code performance.

We measure latency by issuing ping requests to the mi-
croservice host for all experiments. In the analysis of the SPE,
we establish that the controller had no impact on the latency.
Additionally, the network layout of the SPE and would be
identical to a monolithic architecture if the monolith replaced
the switch, and the two clients in the experiments instead was
one single client sending requests to itself through the switch.
However, one of the ping requests in the SPE experiment
would then represent two ping requests to the monolith. Thus,
we can estimate the ping percentiles of the monolith by simply
halving the response times from the SPE results. We conclude
in the analyis of the SPE that the controller doesn’t matter in
that experiment. Therefore, we can use the mean of both those
experiments to get a more reliable result.

In order to quantify the MAE latencies in relation to the
monolith latencies we can calculate the ratio using the the
following formula, where R is the relative latency, E is
the estimated latency of the monolith and M is the latency
measured in the microservice experiment: R = M

E

Microservice Network Flooding Swarm

Controller 1 Controller 2 ... Controller K

Main
Client

Client Client
Client

Client

ClientClientClientClient

Client

Client

Client

Microservice A
Host Microservice A

Host Microservice A
Host Microservice A

Host Microservice A
Host Microservice A

Host Microservice A
Host Microservice

Host

SDN
Switch

Load Balancer
1

...

Load Balancer
2

Load Balancer
N

Fig. 1. Experiment Network Layout - The SDN switch forwards all packets from the client to the microservice, consulting the attached
controller which uses the current load balancer to decide recipients for requests with no flow entries yet installed.

B. Experimental Setup

Simulation Environment. We use Mininet to emulate a
network environment. In the setup, the Mininet network con-
tains an emulated Open vSwitch3 which is connected to an
OpenFlow controller running outside of the Mininet network.

Choice of Controllers. As shown in Table I, OpenDaylight,
Ryu, Beacon and NOX have been regarded as the controllers
with lowest latency in at least one of the surveyed controller
evaluation studies. Of these NOX and OpenDaylight were
omitted due to configuration issues.

Load Balancers. Due to their simplicity and wide-spread
use, we include the Round Robin and Random Assign al-
gorithms in our comparison. In order to examine the effects
of a server-aware load balancing algorithm, the Least Loaded
algorithm has also been implemented.

Gathering Data. The current load and timestamp of each
microservice-host is captured once every 100 ms. After the ex-
periment has finished, these loads and timestamps are written
to a file and analyzed. Similarly, the latency of each ping-
request made by the main client is recorded to a file.

V. RESULTS

This section presents the results of our experiments. First,
the results of SPE and CPE are presented and explained,
followed by the MAE-Static and MAE-Random, respectively.

A. Latency Experiments

The results for the SPE and the CPE, shown in Table II,
consist of the latency of the RTT between the two hosts in the
system. A higher value in the table indicates a higher latency
for that controller.

The table shows that when installing flow entries, the latency
of a request is constantly below a millisecond. Regardless
of controller, the lowest latency is 3 microseconds and for
90% of all requests, the latency is below 5 microseconds. For

3Open vSwitch https://www.openvswitch.org/

the remaining requests, the latency increases to around 8 mi-
croseconds at the 99th percentile and around 20 microseconds
for the 99.9th percentile. For the slowest requests, the latency
increases to 422 microseconds when the Beacon controller
was measured and 161 microseconds when measuring the
Ruy controller. When not installing flow entries, the latency
increases significantly, reaching as high as 20 milliseconds for
the slowest requests. Comparing the controllers, for the fastest
90% of all requests with each controller, Beacon yields at least
5 times faster responses. For the remaining 10%, the latency
of the requests measured when using Beacon approaches the
latency measured when using Ruy with both measurements
being approximately 20 milliseconds for their slowest request.

TABLE II
LATENCY PERCENTILES IN SPE AND CPE (MILLISECONDS).

Controller Experiment Min P50.0 P90.0 P99.0 P99.9 P99.99 Max
Beacon SPE 0.003 0.004 0.004 0.008 0.026 0.078 0.422
Ryu SPE 0.003 0.004 0.004 0.007 0.021 0.058 0.161
Beacon CPE 0.162 0.268 0.381 0.957 3.870 9.620 20.000
Ryu CPE 1.010 1.430 1.650 2.070 5.030 7.850 18.700

When comparing the controllers in the SPE, the latency
is almost identical. This was expected, since when the flow
entries are pre-installed, the controller will never be involved
in the experiment, which effectively turns the tests identical
to each other.

Comparing the latencies from CPE shows that Ryu is
around five times slower for the 50th percentile, with Ruy
never resulting in latencies lower than a millisecond and
Beacon being able to produce latencies less than 200 microsec-
onds. For the slowest requests, however, the results show that
the controller has little effect on the resulting latency. This
is likely due to the communication between the switch and
controller being the slower factor rather than the performance
of the controller itself in some cases.

Based on these results we can conclude that the latency
caused by the controller communication plays a major part
in the total latency of the slowest requests. When striving for

minimal latency, it would be beneficial to pre-install as many
flow entries as possible into the switch in order to minimise
the number of requests communicated to the controller.

B. Microservice Architecture Experiment

For the MAE-Static and MAE-Random, the results consist
of the the ping requests latencies in the Main Client as well
as the load imbalance chart of the system. The balance chart
depicts, for each controller/load balancer combination, how the
load imbalance percentage of the system changes throughout
the session. A higher value in the y-axis indicates a more
unfair balance of the workload between the server-nodes.

The ping table consists of the percentiles in the RTT
achieved for each controller and load balancer. Thus, a higher
value in the table indicates a higher latency for that con-
troller/load balancer combination.

Static Workload. The upper chart in Figure 2 shows that the
load imbalance percentage is almost identical when comparing
the controllers for each load balancing algorithm. The chart
shows that the imbalance is rather high and volatile in the
beginning, especially for the random load balancers, then
turning stable around halfway through the experiment. The
chart shows a rapid decline in load imbalance for both the
Server- and Round Robin load balancers, settling at less than
10%. For the Random load balancer, the imbalance declines
to about 70% shortly after its volatile start, only to increase
to 80% and then starting its slow decline towards 50% after
20 seconds.

Observing Table III, the latency increases in an almost
equal pace for all load balancer and controller combinations,
starting at 3 microseconds and slowly increasing to about
50 microseconds at 99.9th percentile. In the remaining 0.1
percent of the requests, the latency of all requests increases
drastically, having around 1 millisecond of latency for the
99.99th percentile almost 10 milliseconds for the 99.999th
percentile and at least 25 milliseconds for the slowest request.
For the Beacon controller the slowest requests took around 30
milliseconds, whereas for Ruy the slowest requests averaged
around 40 milliseconds.

Random Workload. Similarly to the static workload ex-
periment, Figure 2 also shows that the controller have no
noticeable effect on the load imbalance. In this experiment,
all three load balancers yield different results. Random load
balancing results in an initial decline to 70%, followed by an
incline to 80% and then a slow decline towards 50% load
imbalance. Using the Round Robin approach resulted in 60-
70% load imbalance initially, and then slowly declining to
30% after a slight increase to 70-80%. For the server aware
load balancer, the first 25 seconds show a steady decrease to
70% in load balance, followed by a steep decrease from 70%
to 20% in around 5 seconds. Thereafter, the load imbalance
stabilises at around 10%.

Table III shows that the latencies are quite similar for the
lowest 99.9 percent of the requests. The last 0.1 percent greatly
varies as well showing a major increase in latency.

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

L
oa

d
Im

ba
la

nc
e

Pe
rc

en
ta

ge
(%

)

Beacon - Random
Ryu - Random

Beacon - Round Robin
Ryu - Round Robin

Beacon - Server
Ryu - Server

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

L
oa

d
Im

ba
la

nc
e

Pe
rc

en
ta

ge
(%

)

Beacon - Random
Ryu - Random

Beacon - Round Robin
Ryu - Round Robin

Beacon - Server
Ryu - Server

Fig. 2. Server Load Imbalance in the Microservice Archtecture
Experiments - These charts show how the load imbalance of the
server-node workloads changes throughout the experiments. The
upper chart depicts the results from MAE-Static, while the bottom
chart shows the results of the MAE-Random.

Analysing the Microservice Architecture Experiments.
The results of both MAE experiments show that, in terms
of load balancing, the chosen controller had no significant
impact. This is expected, since the controller does not alter
the logic of the load balancing implementation. The charts
also show that the the Random load balancer results in a 50%
load imbalance, regardless if the requests have a randomised
imposed load or all requests have the same load. This high
imbalance is probably due to the balancer being client-aware,
due to installing flow entries for each host, which, in turn,
causes the amount of requests being randomly chosen to
drastically decrease. This results in the randomness of the
system being too low for the random load balancer to distribute
requests evenly enough.

The results also show that the Round Robin is really
well suited for servers where each request results in similar
workload for the server, but is somewhat lacking when the
request workload is randomised. The adaptiveness of the
server-aware load balancer makes it able to handle both request
types without an issue, and for the experiments in this study,
the extra network load imposed by constantly communicating
the current workload to the switch, did not seem to affect the
network to any noticeable effect.

The latency measurements made in these experiments show
that for the vast majority of all requests, the response time

TABLE III
LATENCY PERCENTILES IN ALL THE REQUEST EXPERIMENTS. THE EXPERIMENT COLUMN INDICATES THE TYPE OF MAE BEING MEASURED.

Experiment Controller Balancer min P50.0 P90.0 P99.0 P99.9 P99.99 P99.999 max
Static Beacon Random 0.003 0.004 0.006 0.016 0.045 0.940 9.504 39.420
Static Beacon Round Robin 0.003 0.004 0.006 0.020 0.089 1.798 8.920 27.360
Static Beacon Server 0.003 0.004 0.006 0.018 0.054 1.304 7.906 25.940
Static Ryu Random 0.003 0.004 0.006 0.016 0.045 1.039 9.344 53.860
Static Ryu Round Robin 0.003 0.004 0.006 0.015 0.042 0.903 8.206 47.620
Static Ryu Server 0.003 0.004 0.006 0.016 0.044 0.944 8.408 27.740
Random Beacon Random 0.003 0.004 0.006 0.020 0.065 1.392 10.800 39.280
Random Beacon Round Robin 0.003 0.004 0.006 0.017 0.047 1.072 11.008 49.120
Random Beacon Server 0.003 0.004 0.006 0.017 0.054 1.442 9.956 28.020
Random Ryu Random 0.003 0.004 0.006 0.015 0.043 0.990 11.628 54.200
Random Ryu Round Robin 0.003 0.004 0.006 0.018 0.050 1.058 10.482 51.700
Random Ryu Server 0.003 0.004 0.006 0.016 0.045 0.985 9.098 44.300

will be less than a millisecond in this architecture, even when
the network is flooded with other requests. However, looking
at the requests past the 99.999th percentile, we see that the
slowest requests measured are even slower than those made
in the CPE experiment. This would indicate that when the
network is flooding with requests, the communication with
the switch is also affected to some extent, with the response
time being more than doubled in some scenarios compared to
the worst case of the CPE results.

When comparing the latency of using each controller in the
MAE experiments, the difference is not nearly as significant
as the differences shown in the CPE experiment. This could
be explained by there being such few requests being measured
where the request is handled by the controller, since the first
request between a client and the microservice results in a flow
entry installation.

VI. CONCLUSION

In this paper we have investigated the effects of trans-
forming a monolithic server architecture to a microservice
architecture orchestrated by an SDN switch. To conduct ex-
periments a microservice architecture has been created using
an SDN switch as the microservice orchestrator. The effects of
employing said system have been evaluated both with regular
and varying request workload using different load balancing
algorithms. From this work, we draw three main conclusions.

First, the study shows that for the vast majority of requests,
the latency for a SDN-supported microservice orchestrator
is about three times slower than an optimistic estimate of
a monolithic solution, which led to approximately 40 extra
microseconds in response time. However, for a small portion of
requests, the latency increases significantly, resulting in more
than 20x slower requests in some cases and hundreds of times
slower for the slowest requests.

Second, comparing Beacon and Ryu, the Beacon controller
resulted in the lowest latency when considering the fastest
99.9% of all requests.

Third, comparing different load balancing algorithms, since
the OpenFlow architecture enforces a client-aware load-
balancing model, we conclude that for requests of varying
imposed workload, a server-aware load-balancing algorithm is
needed. However, when all requests result in similar workload,

the round robin load balancer is encouraged, due to its
simplicity and slightly better performance.

Our results show that using SDN to implement the microser-
vice orchestration directly into the switch is feasible. It does
increase the latency compared to a corresponding monolithic
version, but if a microservice approach is desired, our solution
is a good option to consider.

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, et al. ONOS: towards an open, distributed
SDN OS. In Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014. doi: 10.1145/2620728.2620744.

[2] L. DeRose, B. Homer, and D. Johnson. Detecting application load imbalance
on high end massively parallel systems. In European Conference on Parallel
Processing. Springer, 2007. doi: 10.1007/978-3-540-74466-5 17.

[3] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L. Safina. Microservices: yesterday, today, and tomorrow. In Present and
Ulterior Software Engineering. Springer, 2017. doi: 10.1007/978-3-319-67425-
4 12.

[4] D. Erickson. The beacon openflow controller. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking. ACM, 2013.
doi: 10.1145/2491185.2491189.

[5] Y. Gan and C. Delimitrou. The architectural implications of cloud microservices.
IEEE Computer Architecture Letters, 17(2):155–158, 2018.

[6] Y. Jarraya, T. Madi, and M. Debbabi. A survey and a layered taxonomy of
software-defined networking. IEEE communications surveys & tutorials, 2014.
doi: 10.1109/COMST.2014.2320094.

[7] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 2015. doi: 10.1109/JPROC.2014.2371999.

[8] L. Mamushiane, A. Lysko, and S. Dlamini. A comparative evaluation of the
performance of popular sdn controllers. In 2018 Wireless Days (WD). IEEE,
2018. doi: 10.1109/WD.2018.8361694.

[9] M. Paliwal, D. Shrimankar, and O. Tembhurne. Controllers in SDN: A review
report. IEEE Access, 2018. doi: 10.1109/ACCESS.2018.2846236.

[10] D. Shadija, M. Rezai, and R. Hill. Microservices: granularity vs. performance. In
Companion Proceedings of the10th International Conference on Utility and Cloud
Computing, 2017. doi: 10.1145/3147234.3148093.

[11] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky. Advanced
study of SDN/OpenFlow controllers. In 9th Central & Eastern European Software
Engineering Conference in Russia. ACM, 2013. doi: 10.1145/2556610.2556621.

[12] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu, and E. C. Popovici.
A comparison between several software defined networking controllers. In 12th
International Conference on Telecommunication in Modern Satellite, Cable and
Broadcasting Services. IEEE, 2015. doi: 10.1109/TELSKS.2015.7357774.

[13] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. On
controller performance in software-defined networks. In 2nd USENIX Workshop
on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE 12), 2012.

[14] T. Ueda, T. Nakaike, and M. Ohara. Workload characterization for microservices.
In 2016 IEEE international symposium on workload characterization (IISWC).
IEEE, 2016. doi: 10.1109/IISWC.2016.7581269.

[15] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani. Sdn
controllers: A comprehensive analysis and performance evaluation study. ACM
Comput. Surv., 53(6), 2020. doi: 10.1145/3421764.

