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Abstract

Recent advances in machine learning and artificial intelligence are now being considered in safety-critical
autonomous systems where software defects may cause severe harm to humans and the environment. Design
organizations in these domains are currently unable to provide convincing arguments that their systems are
safe to operate when machine learning algorithms are used to implement their software.

In this paper, we present an efficient method to extract equivalence classes from decision trees and tree
ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is
that, given that safety requirements can be traced to desirable properties on system input-output patterns,
we can use positive verification outcomes in safety arguments. This paper presents the implementation of
the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies
presented in current literature. We demonstrate that our method is practical for tree ensembles trained on
low-dimensional data with up to 25 decision trees and tree depths of up to 20. Our work also studies the
limitations of the method with high-dimensional data and preliminarily investigates the trade-off between
large number of trees and time taken for verification.
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1. Introduction

In recent years, artificial intelligence utilizing machine learning algorithms has begun to outperform
humans at several tasks, e.g., playing board games [29] and diagnosing skin cancer [10]. These advances are
now being considered in safety-critical autonomous systems where software defects may cause severe harm
to humans and the environment, e.g, airborne collision avoidance systems [16].

Several researchers have raised concerns [5, 19, 26] regarding the lack of verification methods for these
kinds of systems in which machine learning algorithms are used to train software deployed in the system.
Within the avionics sector, guidelines [7] describe how design organizations may apply formal methods to
the verification of safety-critical software. Applying these methods to complex and safety-critical software
is a non-trivial task due to practical limitations in computing power and challenges in qualifying complex
verification tools. These challenges are often caused by a high expressiveness provided by the language
in which the software is implemented in. Most research that apply formal methods to the verification of
machine learning is so far focused on the verification of neural networks, but there are other models that
may be more appropriate when verifiability is important, e.g., decision trees [3], random forests [4] and
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gradient boosting machines [11]. Where neural networks are subject to verification of correctness, they are
usually adopted in non-safety-critical cases, e.g., fairness with respect to individual discrimination, where
probabilistic guarantees are plausible [2]. Since our aim is to support safety arguments for digital artefacts
that may be deployed in hazardous situations, we need to rely on guarantees of absence of misclassifications,
or at least recognize when such guarantees cannot be provided. The tree-based models provide such an
opportunity since their structural simplicity makes them easy to analyze systematically, but large (yet
simple) models may still prove hard to verify due to combinatorial explosion.

This paper is an improved and substantially extended version of our previous work [31]. In that work,
we developed a method to partition the input domain of decision trees into disjoint sets, and to explore all
path combinations in random forests in such a way that counteracts combinatorial path explosions. In this
paper, we generalize the method to also apply to gradient boosting machines and implement it in a tool
named VoTE. The paper also evaluates the tool with respect to performance. The VoTE source code (which
includes automation of the case studies) is published as free software.1 Compared to previous works, the
contributions of this paper are as follows.

• A generalization to include more tree ensembles, e.g., gradient boosting machines, with an updated
tool support (VoTE).

• A Soundness proof of the associated approximation technique used for this purpose.

• An improved node selection strategy that yields speed improvements in the range of 4%–91% for trees
with a depth of 10 or more in the two demonstrated case studies.

The rest of this paper is structured as follows. Section 2 presents preliminaries on decision trees, tree
ensembles, and a couple of interesting properties subject to verification. Section 3 discusses related works
on formal verification and machine learning, and Section 4 presents our method with our supporting tool
VoTE. Section 5 presents applications of our method on two case studies; a collision detection problem, and
a digit recognition problem. Finally, Section 6 concludes the paper and summarizes the lessons we learned.

2. Preliminaries

In this section, we present preliminaries on different machine learning models and their properties that
we consider for verification in this paper.

2.1. Decision Trees
In machine learning, decision trees are used as predictive models to capture statistical properties of a

system of interest.

Definition 1 (Decision Tree). A decision tree implements a prediction function t : Xn → Rm that maps
disjoint sets of points Xi ⊂ Xn to a single output point ȳi ∈ Rm, i.e.,

t(x̄) =


(y1,1, . . . , y1,m) x̄ ∈ X1

...
(yk,1, . . . , yk,m) x̄ ∈ Xk,

where k is the number of disjoint sets and Xn =
k⋃

i=1
Xi.

1https://github.com/john-tornblom/vote/tree/v0.1.1
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For perfectly balanced binary decision trees, k = 2d, where d is the tree depth. Each internal node is
associated with a decision function that separates points in the input space from each other, and the leaves
define output values. The n-dimensional input domain Xn includes elements x̄ as tuples in which each
element xi captures some feature of the system of interest as an input variable. The tree structure is
evaluated in a top-down manner, where decision functions determine which path to take towards the leaves.
When a leaf is hit, the output ȳ ∈ Rm associated with the leaf is emitted. Figure 1 depicts a decision tree
with one decision function (x ≤ 0) and two outputs (1 and 2).

x ≤ 0

1
true

2
false

Figure 1: A decision tree with two possible outputs, depending on the value of single input variable x.

In general, decision functions are defined by non-linear combinations of several input variables at each
internal node. In this paper, we only consider binary trees with linear decision functions with one input
variable, which Irsoy et al. call univariate hard decision trees [14]. As illustrated by Figure 2, a univariate
hard decision tree forms hyperrectangles (boxes) that split the input space along axes in the coordinate
system.

x1

x2

x̄ ∈ X1

x̄ ∈ X2

x̄ ∈ X3

Figure 2: The input space of a univariate hard decision tree, which splits the input space along axes in the coordinate system,
thus forming boxes.

Although researchers have demonstrated that non-linear [14] and multivariate decision trees [32] can be
useful, state-of-the-art implementations of tree ensembles normally use hard univariate decision trees, e.g.,
scikit-learn [23] and CatBoost [24].

2.2. Random Forests
Decision trees are known to suffer from a phenomenon called overfitting. Models suffering from this

phenomenon can be fitted so tightly to their training data that their performance on unseen data is reduced
the more you train them. To counteract these effects in decision trees, Breiman [4] proposes random forests.

Definition 2 (Random Forest). A random forest implements a prediction function frf : Xn → Rm as
the arithmetic mean of the predictions from B decision trees, i.e.,

frf (x̄) = 1
B

B∑
b=1

tb(x̄),

where tb is the b-th tree.

To reduce correlation between trees, each tree is trained on a random subset of the training data, using
potentially overlapping random subsets of the input variables.
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2.3. Gradient Boosting Machines
Similarly, Freidman [11] introduces a machine learning model called gradient boosting machine that uses

several decision trees to implement a prediction function. Unlike random forests, these trees are trained
in a sequential manner. Each consecutive tree tries to compensate for errors made by previous trees by
estimating the gradient of errors (using gradient decent, hence the name).
Definition 3 (Gradient Boosting Machine). A gradient boosting machine implements a prediction func-
tion fgb : Xn → Rm as the sum of predictions from B decision trees, i.e.,

fgb(x̄) =
B∑

b=1
tb(x̄),

where tb is the b-th tree.
Typically, trees in a gradient boosting machine are significantly shallower than trees in a random forest, often
with a tree depth in the range 2–10. Gradient boosting machines instead capture complexity by growing
more trees.

2.4. Tree Ensemble
The learning algorithms used in random forests and gradient boosting machines are conceptually different

from each other. However, once training is completed, the prediction functions which are the subjects to
verification in this paper are similar. In a verification context, random forests and gradient boosting machines
can therefore be generalized as instances of a tree ensemble.
Definition 4 (Tree Ensemble). A tree ensemble implements a prediction function f : Xn → Rm as the
sum of predictions from B decision trees, post-processed by a function p : Rm → Rm, i.e.,

f(x̄) = p
( B∑

b=1
tb(x̄)

)
,

where tb is the b-th tree.
In a verification context, the only conceptual difference between a random forest and gradient boosting

machine is the post-processing function p, i.e., a constant division p(ȳ) = ȳ
B in the case of random forests,

and the identity function p(ȳ) = ȳ in the case of gradient boosting machines.

2.5. Classifiers
Decision trees and tree ensembles may also be used as classifiers. A classifier is a function that categorizes

samples from an input domain into one or more classes. In this paper, we only consider functions that map
each point from an input domain to exactly one class.
Definition 5 (Classifier). Let f(x̄) = (y1, . . . , ym) be a model trained to predict the probability yi asso-
ciated with a class i within disjoint regions in the input domain, where m is the number of classes. Then
we would expect that ∀i ∈ {1, . . . ,m}, 0 ≤ yi ≤ 1, and

m∑
i=1

yi = 1. A classifier fc(x̄) may then be defined as

fc(x̄) = argmax
i

yi.

A random forest typically infers probabilities by capturing the number of times a particular class has been
observed within some hyperrectangle in the input domain of a tree during training. Training a gradient
boosting machine to predict class membership probabilities is somewhat different, depending on the char-
acteristics of the used learning algorithm, and often involves additional post-processing of the sum of all
trees. For example, when training multiclass classifiers in CatBoost [24], individual trees emit values from
a logarithmic domain that are summed up, and finally transformed and normalized into probabilities using
the softmax function, i.e.,

p(ȳ) = softmax(y1, . . . , ym) = (ey1 , . . . , eym)
m∑

i=1
yi
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2.6. Safety Properties
In this paper, we consider two properties commonly used in related works; robustness against noise and

plausibility of range.2 Note that compliance with these two properties alone is generally not sufficient to
ensure safety. System safety engineers typically define requirements on software functions that are richer
than these two properties alone.

Property 1 (Robustness against Noise). Let f : Xn → Rm be the function subject to verification,
ε ∈ R≥0 a robustness margin, and ∆ = {δ ∈ R : −ε < δ < ε} noise. We denote by δ̄ an n-tuple of elements
drawn from ∆. The function is robust against noise iff

∀x̄ ∈ Xn, ∀δ̄ ∈ ∆n, f(x̄) = f(x̄+ δ̄).

Pulina and Tacchella [25] define a stability property that is similar to our notion of robustness here but use
scalar noise.

Property 2 (Plausibility of Range). Let f : Xn → Rm be the function subject to verification. The
function has a desired plausibility of range when its output values are within a stated boundary, i.e.,

∀x̄ ∈ Xn,∀i ∈ {1, . . . ,m}, f(x̄) = (y1, . . . , ym), αi ≤ yi ≤ βi.

for some αi, βi ∈ R.

In classification problems, the output tuple (y1, . . . , ym) contains probabilities, and thus αi = 0 and βi = 1.

3. Related Works

Significant progress has been made in the application of machine learning to autonomous systems, and
awareness regarding its security and safety implications has increased. Researchers from several fields are
now addressing these problems in their own way, often in collaboration across fields [28]. For example,
Bastani et al. [2] verify a property called path-specific causal fairness, which is similar to our notion of
robustness. In that work, a method that provides probabilistic guarantees of fairness is provided, whereas
our approach provides formal guarantees.

In the following sections, we group related works in to two categories; those that formally verify safety-
critical properties of neural networks, and those that verify tree-based models.

3.1. Formal Verification of Neural Networks
There has been extensive research on formal verification of neural networks. Pulina and Tacchella [25]

combine SMT solvers with an abstraction-refinement technique to analyze neural networks with non-linear
activation functions. They conclude that formal verification of realistically sized networks is still an open
challenge. Scheibler et al. [27] use bounded model checking to verify a non-linear neural network controlling
an inverted pendulum. They encode the neural network and differential equations of the system as an SMT
formula, and try to verify properties without success. These works [25, 27] suggest that SMT solvers are
currently unable to verify entire non-linear neural networks of realistic sizes.

Huang et al. [13] present a method to verify the robustness of neural network classifiers against pertur-
bations which are specified by the user, e.g., change in lightning and axial rotation in images. The method
uses polyhedrons to capture intermediate perturbations that propagate recursively through the network,
and unlike Pulina and Tacchella [25], operates in a layer-by-layer fashion. In each iteration, an SMT solver
is used to detect if any manipulation captured by a polyhedral would cause a misclassification in the output

2Other works [25] refer to this property as “global safety”. To avoid confusion with the dependability term “safety”, we
instead refer to this property as “plausibility of range”.
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layer. They demonstrate that their method is capable of finding many adversarial examples, but struggle
when the recursion is exhaustive and the input dimension is large.

Katz et al. [17] combine the simplex method with a SAT solver to verify properties of deep neural networks
with piecewise linear activation functions. They successfully verify domain-specific safety properties of a
prototype airborne collision avoidance system trained using reinforcement learning. The verified neural
network contains a total of 300 nodes organized into 6 layers. Ehlers [9] combines an LP solver with a
modified SAT solver to verify neural networks. His method includes a technique to approximate the overall
behavior of the network to reduce the search space for the SAT solver. The method is evaluated on two case
studies; a collision detection problem, and a digit recognition problem. We reuse these two case studies in
our work, and also provide a global approximation of the overall model (in our cases, tree ensembles).

In [15], Ivanov et al. successfully verify safety properties of non-linear neural networks trained to approx-
imate closed-loop control systems. Their approach exploits the fact that the sigmoid function is a solution
to a quadratic differential equation, which enables them to transform sigmoid-based neural networks into
an equivalent non-linear hybrid system. They then leverage existing verification tools for hybrid systems
to verify the reachability property. Even though verification of non-linear hybrid systems is undecidable
in general, existing methods work on many practical examples. Dutta et al. [8] address the plausibility
of range property of feedback controllers realized by neural networks. Similar to Huang et al. [13], they
capture inputs as polyhedrons, but use mixed integer linear programming (MILP) to solve constraints, and
demonstrate practicality on neural networks with thousands of neurons.

Kouvaros and Lomuscio [18] analyze the robustness of convolutional neural networks against different
kinds of image perturbations, e.g., change in contrast and scaling. They use MILP to encode the problem
as a set of linear equations which are solved layer-by-layer and evaluate their approach on a neural network
with 1481 nodes trained on a digit recognition problem.

Tjeng et al. [30] further improve upon previous MILP-based approaches that verify the robustness of
neural networks. In particular, they use linear programming to improve approximations of inputs to non-
linearities throughout the verification process, and evaluate its contribution together with other MILP-based
optimisation techniques for neural networks available in the literature.

Wang et.al. [33] improve upon the work by Ehlers [9] by using a finer approximation technique, which
they also combine with a novel approach to identify which approximations are too conservative. When such
an overapproximation is identified, they iteratively split and branch the analysis into smaller pieces. They
demonstrate that their contributions improve performance of several orders of magnitude in several case
studies, e.g., airborne collision avoidance system, and a digit recognition problem (which we also address,
but for tree ensembles).

Narodytska et al. [22] verify binary neural networks, a class of machine learning models that mix floating-
point operations with Boolean operations, and as such use less memory and are more power efficient during
prediction compared to networks that use floating-point operations exclusively. They encode computations
that use Boolean operations into a SAT problem, while floating-point operations are first encoded using
MILP, which is then mapped into the SAT problem. They then use an off-the-shelf SAT-solver to verify
robustness and equivalence properties. They leverage a counterexample-guided search procedure and the
structure of neural network to speed up the search and demonstrate its effectiveness on the MNIST dataset.
Cheng et al. [6] also verify binary neural networks using a SAT-solver, and present a novel factorisation
technique made possible by the fact that weights in binary neural networks are Boolean-valued. They use
state-of-the-art hardware verification tools to check satisfiability and demonstrate that the factorisation
technique is beneficial on most of the problem instances included in their evaluation.

Mirman et al. [21] use abstract interpretation to verify robustness of neural networks with convolution
and fully connected layers. They evaluate their method on four image classification problems (one of which
we use in our work), and demonstrate promising performance.

In this paper, we address similar verification problems as the works mentioned above that analyze neural
networks. Unfortunately, there is currently no established benchmark in the literature that facilitates a
direct comparison between different machine learning models that takes both validation of, e.g., accuracy
on a data set, and formal verification of safety-critical requirements into account.
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3.2. Formal Verification of Decision Trees and Tree Ensembles
The idea that decision trees may be easier to verify than neural networks is demonstrated by Bastani

et al. [1]. They train a neural network to play the game Pong, then extract a decision tree policy from
the trained neural network. The extracted tree is significantly easier to verify than the neural network,
which they demonstrate by formally verifying properties within seconds using an of-the-shelf SMT solver.
Our method provides even better performance when verifying decision trees. However, our outlook is that
decision trees per se may not be sufficient for problems in non-trivial settings and hence we address tree
ensembles which provides a counter-measure to overfitting.

In our previous work [31], we verify safety-critical properties of random forests. Two techniques are
presented, a fast but approximate technique which yields conservative output bounds, and a slower but
precise technique employed when approximations are too conservative. In the precise technique, we partition
the input space of decision trees into disjoint sets, explore all feasible path combinations amongst the trees,
then compute equivalence classes of the entire random forest. Finally, these equivalence classes are checked
against requirements. In this paper, we generalize our original method to other tree ensembles such as
gradient boosting. We also improve the performance of the precise technique by changing the node selection
strategy, i.e., the order in which child nodes are considered while exploring feasible path combinations.

4. Analyzing Tree Ensembles

In this section, we define a process for verifying learning-based systems, and define a formal method
capable of verifying properties of decision trees and tree ensembles. We also describe VoTE (Verifier of
Tree Ensembles) that implements our method, and illustrate its usage with an example that verifies the
plausibility of range property of tree ensemble classifiers.

4.1. Problem Definition
The software verification process for learning-based systems can be formulated as the following problem

definitions.

Problem 1 (Constraint Satisfaction). Let f : Xn → Rm be a function that is known to implement
some desirable behavior in a system, and a property P specifying additional constraints on the relationship
between x̄ ∈ Xn and ȳ ∈ Rm. Verify that ∀x̄ ∈ Xn, the property P holds for the computations from f .

Since the prediction function in a tree ensemble is a pure function and thus there is no state space
to explore, this problem may be addressed by considering all combinations of paths through trees in the
ensemble. Furthermore, by partitioning the input domain into equivalence classes, i.e., sets of points in
the input space that yield the same output, constraint satisfaction may be verified for regions in the input
domain, rather than for individual points explicitly.

Problem 2 (Equivalence Class Partitioning). For each path combination p in a tree ensemble with
the prediction function f : Xn → Rm, determine the complete set of inputs Xp ⊆ Xn that lead to traversing
p, and the corresponding output ȳp ∈ Rm.

Our method efficiently generates equivalence classes as pairs of (Xp, ȳp), and automatically verifies the
satisfaction of a property P. Assuming that the trees in an ensemble are of equal size, the number of
path combinations in the tree ensemble is 2d·B . In practice, decisions made by the individual trees are
influenced by a subset of features shared amongst several trees within the same ensemble, and thus several
path combinations are infeasible and may be discarded from analysis.

Example 1 (Discarded Path Combination). Consider a tree ensemble with the trees depicted in Fig-
ure 3. There are four path combinations. However, x cannot be less than or equal to zero at the same time
as being greater than five. Consequently, Tree 1 cannot emit 1 at the same time as Tree 2 emits 3, and thus
one path combination may be discarded from analysis.
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Tree 1 Tree 2
x ≤ 0

0
true

1
false

x ≤ 5

2
true

3
false

Figure 3: Two decision trees that when combined into a tree ensemble, contains three feasible path combinations and one
discarded path combination.

We postulate that since several path combinations may be discarded from analysis, all equivalence classes
in a tree ensemble may be computed and enumerated within reasonable time for practical applications.
To explore this idea, we developed the tool VoTE which automates the computation, enumeration, and
verification of equivalence classes.

4.2. Tool Overview
VoTE consists of two distinct components, VoTE Core and VoTE Property Checker. VoTE Core takes

as input a tree ensemble with prediction function f : Xn → Rm, a hyperrectangle defining the input domain
Xn (which may include ±∞), and computes all equivalence classes in f . These equivalence classes are then
processed by VoTE Property Checker that checks if all input-output mappings captured by each equivalence
class are valid according to a property P, as illustrated by Figure 4.

Equivalence
Class
(Xp,	y̅p)

Input	Domain
Definition

(Xn)

VoTE
Core

Tree
Ensemble

(f)

VoTE
Property	
Checker

Property
(ℙ)

Result
(PASS/FAIL)

Figure 4: Overview of VoTE.

4.3. Computing Equivalence Classes
There are three distinct tasks being carried out by VoTE Core while computing equivalence classes of a

tree ensemble:

• partitioning the input domain of decision trees into disjoint sets,

• exploring all feasible path combinations in the tree ensemble,

• deriving output tuples from leaves.

Path exploration is performed by walking the trees depth-first. The order in which intermediate nodes are
considered is described in Section 4.4. When a leaf is hit, the output ȳp for the traversed path combination
p is incremented with the value associated with the leaf, and path exploration continues with the next tree.
The set of inputs Xp is captured by a set of constraints derived from decision functions associated with
internal nodes encountered while traversing p. When all leaves in a path combination have been processed,
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an optional post-processing function is applied to ȳp, e.g., a division by the number of trees in the case of
random forests, and the softmax function in the case of a gradient boosting machine classifier (recall the
definition of a random forest in Section 2.2 which includes a division, and the use of the softmax function for
classifiers in Section 2.5). Finally, the VoTE Property Checker checks if the mappings from Xp to ȳp comply
with the property P. If the property holds, the next available path combination is traversed, otherwise
verification terminates with a “FAIL” and provides the most recent (Xp, ȳp) mapping as a counterexample.

4.4. Node Selection Strategy
Each decision function effectively splits the input domain into smaller pieces throughout the analysis.

When a joint evaluation of two decision functions yields an empty set of points, our method concludes
an infeasible path combination and continues with the next path combination. One way of improving the
performance is to reduce the time spent on analyzing infeasible path combination by discovering them early.
Consider the example depicted in Figure 5. When performing the split as illustrated by the dashed line, the
left-hand slice X4 contains significantly fewer points than the right-hand slice X5. Our method is based on
the idea that by selecting the child nodes in an order based on the number of points captured by each slice,
splits that yield empty sets of points are encountered earlier.

x1

x2

X1

X2

X4 X5

X3

Figure 5: An example used to illustrate our node selection strategy. The dashed line indicates a split of a hyperrectangle into
two pieces. Our node selection strategy considers the piece with the least number of points first.

We believe that by choosing the child node which captures the least number of points first, significant
performance is to be expected compared to a static selection strategy, e.g., by always selecting the left child
first as implemented in previous work [31].

4.5. Approximating Output Bounds
The output of a tree ensemble may be bounded by analyzing each leaf in the collection of trees exactly

once. Assuming that all trees are of equal size, the number of leaves in a tree ensemble is B · 2d, where B is
the number of trees and d the tree depth, thus making the analysis scale linearly with respect to the number
of trees.

Definition 6 (Approximate Tree Output Bounds). Let t : Xn → Rm be a decision tree with k leaves,
and T = {t(x̄) : ∀x̄ ∈ Xn} the image of t, i.e., the set of output tuples associated with those leaves. We
then approximate the output of t as an interval [t̄min, t̄max], where

t̄min = (min{T1,1, . . . , Tk,1}, . . . ,min{T1,m, . . . , Tk,m}),
t̄max = (max{T1,1, . . . , Tk,1}, . . . ,max{T1,m, . . . , Tk,m}),

and Ti,j denotes the j-th element in the i-th output tuple in T .

Lemma 1 (Sound Tree Output Approximation). The approximate tree output bounds [t̄min, t̄max] of
a decision tree t : Xn → Rm are sound, i.e.,

∀x̄ ∈ Xn, t̄min ≤ t(x̄) ≤ t̄max.
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Proof. For an arbitrary x̄ ∈ Xn, let t(x̄) = (v1, . . . , vm). Expansion of t̄min ≤ t(x̄) ≤ t̄max then yields
min{T1,1, . . . , Tk,1} ≤ v1 ≤ max{T1,1, . . . , Tk,1}
...
min{T1,m, . . . , Tk,m} ≤ vm ≤ max{T1,m, . . . , Tk,m}.

Since x̄ is drawn from the domain of t, and T is the image of t, then the output scalar vj is captured by T .

Specifically, vj ∈
k⋃

i=1
{Ti,j}. Hence, as per the definition of the max and min set operators,

∀j ∈ {1, . . . ,m},min{T1,j , . . . , Tk,j} ≤ vj ≤ max{T1,j , . . . , Tk,j}.

Definition 7 (Approximate Ensemble Output Bounds). Let f : Xn → Rm be an ensemble of B trees
with a post processing function p : Rm → Rm, i.e.,

f(x̄) = p(t1(x̄) + . . .+ tB(x̄)),

where ti : Xn → Rm is the i-th tree in the ensemble. We then approximate the output of f as an interval
[ȳmin, ȳmax], where

ȳmin = p(t̄min1 + . . .+ t̄minB
),

ȳmax = p(t̄max1 + . . .+ t̄maxB
),

and [t̄mini
, t̄maxi

] is the approximate tree output bounds of the i-th tree.

Theorem 1 (Sound Ensemble Output Approximation). The approximate ensemble output bounds
[ȳmin, ȳmax] of an ensemble f : Xn → Rm with a post processing function p : Rm → Rm are sound if p is
monotonic, i.e.,

∀x̄ ∈ Xn, ȳmin ≤ f(x̄) ≤ ȳmax.

Proof. Using Lemma 1, we know that ∀i ∈ {1, . . . , B},∀x̄ ∈ Xn, ti(x̄) ≤ t̄maxi
, and that

t1(x̄) + . . .+ tB(x̄) ≤ t̄max1 + . . .+ t̄maxB
.

Since p is monotonic, for v̄1, v̄2 ∈ Rm, v̄1 ≤ v̄2 =⇒ p(v̄1) ≤ p(v̄2), it follows that ∀x̄ ∈ Xn,

t1(x̄) + . . .+ tB(x̄) ≤ tmax1 + . . .+ tmaxB
=⇒

p(t1(x̄) + . . .+ tB(x̄)) ≤ p(tmax1 + . . .+ tmaxB
) ⇐⇒

f(x̄) ≤ ȳmax.

Analogously, the lower bound ȳmin is also sound.

These output bounds may be used by a property checker to approximate f in, e.g., the plausibility of range
property from Section 2.6, assuming that the used post-processing function is monotonic. This assumption
holds for random forests since the post-processing function is simply a constant division. Several promi-
nent gradient boosting machines, e.g., CatBoost [24], use the softmax function to post-process multiclass
classifications, a function which is also known to be monotonic [12].

Note that this approximation technique is sound, but not complete. If property checking does not yield
“PASS” with the approximation (see details below), the property P may still hold, and further analysis of
the tree ensemble is required, e.g., by computing all possible equivalence classes (which is exhaustive and
precise).
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4.6. Implementation
This section presents implementation details of VoTE Core and VoTE Property Checker, aspects that

impact accuracy in floating-point computations, and how VoTE can be adapted to tree ensembles with
user-defined post-processing functions.

4.6.1. VoTE Core
For efficiency, core features in VoTE are implemented as a library in C, and utilize a pipeline architecture

as illustrated by Figure 6 to compute and enumerate equivalence classes. The first processing element in

Initialize

Tree	1
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Figure 6: Control flow of equivalence class partitioning in VoTE Core.

the pipeline constructs an intermediate mapping from the entire input domain to an output tuple of zeros.
The final processing element applies an optional post-processing function to output tuples, e.g., a division
by the number of trees as in the case of a random forest, and the softmax function in the case of a gradient
boosting machine classifier. In between, there is one refinery element for each tree that splits intermediate
mappings into disjoint regions according to decision functions in the trees, and increments the output with
values carried by the leaves.

To decouple VoTE from any particular machine learning library, a tree ensemble is loaded into memory
by reading a JSON-formatted file from disk. VoTE includes support tools to convert random forests trained
by the library scikit-learn [23] and gradient boosting machines trained with CatBoost [24] to this file format.3

Currently, VoTE Core includes post-processing functions for random forests and gradient boosting clas-
sifiers. Which one to use for a particular problem instance is specified in the JSON file. VoTE can be easily
adapted to support additional post-processing functions by simply implementing them inside VoTE Core,
or integrating them with a user-defined property checker.

4.6.2. VoTE Property Checker
VoTE includes two pre-defined property checkers which are parameterized and executed from a command-

line interface; the plausibility of range property checker, and the robustness property checker.
The plausibility of range property checker first uses the output bound approximation to check for prop-

erty violations, and resorts to equivalence-class analysis only when a violation is detected when using the
approximation.

The robustness property checker checks that all points Xr within a hypercube with sides ε, centered
around a test point x̄t, map to the same output. Note that selecting which test points to include in the

3The support tools are published (as free software) at https://github.com/john-tornblom/vote/tree/v0.1.1/support
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verification may be problematic. In principle, all points in the input domain should be checked for robustness,
but with classifiers, there is always a hyperplane separating two classes from each other, and thus there are
always points which violate the robustness property (adjacent to each side of the hyperplane). Hence, the
property is only applicable to points at distances greater than ε from any classification boundaries.

VoTE also includes Python bindings for easy prototyping of domain-specific property checkers. Exam-
ple 2 depicts an implementation of the plausibility of range property that uses these Python bindings to
perform sanity checking for a classifier’s output.

Example 2 (Plausibility of Range for a Classifier). Ensure that the probability of all classes in every
prediction is within [0, 1].

import sys
import vote

def p l au s i b i l i t y_o f_range (mapping , alpha=0, beta =1):
minval = min ( [ mapping . outputs [ dim ] . lower

for dim in range (mapping . nb_outputs ) ] )

maxval = max( [ mapping . outputs [ dim ] . upper
for dim in range (mapping . nb_outputs ) ] )

return ( minval >= alpha ) and (maxval <= beta )

e = vote . Ensemble ( sys . argv [ 1 ] ) # load model from d i s k
assert e . f o r a l l ( p l au s i b i l i t y_o f_range )

4.6.3. Computational Accuracy
Implementations of tree ensembles normally approximate real values as floating-point numbers, and

thus may suffer from inaccurate computations. In general, VoTE and the software subject to verification
must use the same precision on floating-point numbers and prediction function in, e.g., Definition 2 to
get a compatible property satisfaction. In this version of VoTE, we use the same representation so that
the calculation errors are the same as in the machine learning library scikit-learn [23] and CatBoost [24].
Specifically, we approximate real values as 32-bit floating-point numbers, and implement the prediction
functions literally as presented in, e.g., Definition 2, i.e., by first computing the sum of all individual trees,
then dividing by the number of trees. Other machine learning libraries may use 64-bit floating-point numbers,
and may implement the prediction function differently, e.g.,

f(x̄) =
B∑

b=1

tb(x̄)
B

.

This would be easily changeable in VoTE.

5. Case Studies

In this section, we present an evaluation of VoTE on two case studies from the literature where neural
networks have been analyzed for compliance with interesting properties. Each case study defines a training
set and a test set. We used scikit-learn [23] to train random forests, and CatBoost [24] to train gradient
boosting machines. For random forests, all training parameters except the number of trees and maximum
tree depth were kept constant and at their default values. When training gradient boosting machines, we
also adjusted the learning rate to 0.5 since the default value demonstrated poor accuracy on our case studies.
Furthermore, since gradient boosting machines typically use shallower trees than random forests, we used
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different tree depths and different number of trees for these types of ensembles. In fact, CatBoost is limited
to a maximum tree depth of 16.

We evaluated accuracy on each trained model against its test set, i.e., the percentage of samples from
the test set where there are no misclassifications, in order to ensure that we were verifying instances that
were interesting enough to evaluate. We then developed verification cases for the plausibility of range
and robustness against noise properties (from Section 2.6) using VoTE. The time spent on verification was
recorded for each trained model as presented below. Next, we evaluated the least-points-first node selection
strategy (from Section 4.4) against two baselines on all case studies (always picking the left child first, and
always picking the right child first).

Experiments were conducted on a single machine with an Intel Core i5 2500K CPU and 16GB RAM.
Furthermore, we used a GeForce GTX 1050 Ti GPU with 4GB of memory to speed up training of gradient
boosting machines.

5.1. Vehicle Collision Detection
In this case study, we verified properties of tree ensembles trained to detect collisions between two

moving vehicles traveling along curved trajectories at different speeds. Each verified model accepts six input
variables, emits two output variables, and contains 20–25 trees with depths between 5–20.

5.1.1. Dataset
We used a simulation tool from Ehlers [9] to generate 30,000 training samples and 3,000 test samples.

Unlike neural networks which Ehlers used in his case study, the size of a tree ensemble is limited by the
amount of data available during training. Hence, we generated ten times more training data than Ehlers
to ensure that sufficient data is available for the size and number of trees assessed in our case study. Each
sample contains the relative distance between the two vehicles, the speed and starting direction of the second
vehicle, and the rotation speed of both vehicles. Each feature in the dataset is given in normalized form
(position, speed, and direction fall in the range [0, 1], and rotation speed in the range [−1, 1]).

5.1.2. Robustness
We verified the robustness against noise for all trained models by defining input regions surrounding

each sample in the test set with the robustness margin ε = 0.05, which amounts to a 5% change since the
data is normalized. Table 1 lists tree ensembles included in the experiment with their maximum tree depth
d, number of trees B, accuracy of the classifications (Accuracy), elapsed time T during verification, and the
percentage of samples from the test set where there were no misclassifications within the robustness region
(Robustness).

Table 1: Accuracy, robustness, and elapsed verification time (T) of tree ensembles in the vehicle collision detection case study.
Type d B Accuracy (%) Robustness (%) T (s)
RF 10 20 90.4 48.9 56
RF 10 25 90.0 50.3 286
RF 15 20 93.0 34.1 273
RF 15 25 92.9 35.1 1651
RF 20 20 94.2 29.5 367
RF 20 25 94.5 29.6 2520
GB 5 20 93.4 44.5 1
GB 5 25 93.8 40.4 2
GB 10 20 95.5 34.4 26
GB 10 25 95.7 34.0 69
GB 15 20 95.8 34.0 222
GB 15 25 96.0 33.8 511
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Increasing the maximum depth of trees increased accuracy on the test set, but reduced the robustness
against noise. Adding more trees to a random forest slightly improves its robustness, while gradient boosting
machines decreased their robustness against noise as more trees were added. These observations suggest
that the models were over-fitted with noiseless examples during training, and thus adding noisy examples
to the training set may improve robustness. The elapsed time during verification was significantly less for
gradient boosting machines than random forests (using the same parameters). The significant difference
in elapsed time between, e.g., gradient boosting machines with {d = 5, B = 20} and {d = 15, B = 25},
may seem counter-intuitive at first. However, recall that the theoretical upper limit of the number of path
combinations in a tree ensemble is 2d·B , and that 25·20 � 215·25.

Since our observations suggest that the models were over-fitted, we generated a new training data set
which contains 750,000 additional samples with additive noise drawn from the uniform distribution. Specif-
ically, for each sample in the noiseless training data set with an input tuple x̄, we added 25 new samples
with the input x̄ + z̄ and the same output, where z̄ is a tuple of elements drawn from U(−ε, ε). We then
reran the experiments after training new models on the noisy data set. The results from these experiments
are listed in Table 2 in the same format as before.

Table 2: Accuracy, robustness, and elapsed verification time (T) of tree ensembles in the vehicle collision detection case study,
trained on a data set with additive random noise.

Type d B Accuracy (%) Robustness (%) T (s)
RF 10 20 89.3 59.4 209
RF 10 25 89.1 60.0 904
RF 15 20 92.4 42.4 2779
RF 15 25 92.2 42.4 12833
RF 20 20 93.6 31.3 7640
RF 20 25 93.7 32.7 53387
GB 5 20 92.7 50.7 2
GB 5 25 93.1 46.2 4
GB 10 20 94.6 35.7 44
GB 10 25 94.7 34.2 142
GB 15 20 94.6 33.3 391
GB 15 25 94.8 32.5 1642

Adding noise to the training data reduced the accuracy with at most 1.2%, but improved on the ro-
bustness against perturbations with up to 10.5%. More interestingly, models trained on noisy data were
more time-consuming to verify compared to those trained on noiseless data, particularly when using random
forests. After careful inspection of trees trained on the different data sets, we noticed that random forests
trained on the noiseless data contain branches that are shorter than the maximum tree depth. Consequently,
there are fewer path combinations in these random forests compared to those trained on the noisy data,
which could explain the differing measurements in elapsed verification times.

5.1.3. Node Selection Strategy
Next, we evaluated the least-points-first node selection strategy against the two baseline strategies.

Table 3 lists the elapsed verification time for the evaluated models when using the least-points-first node
selection strategy (T ), always selecting the left child first as implemented in the tool VoRF from previous
work [31] (TVoRF), and always selecting the right child first (Tright). The least-points-first node selection
strategy was more effective on random forests than on gradient boosting machines, with speedup factors in
the range 1.3–2.5 versus 1.0–1.5, respectively. However, gradient boosting machines were already significantly
easier to verify than random forests (with the same number of trees and depth).

5.1.4. Scalability
Next, we assessed the scalability of VoTE Core when the number of trees grows by verifying the trivial

property P = true which accepts all input-output mappings. We implemented this trivial property in a
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Table 3: Elapsed time for different node selection strategies in the vehicle collision detection case study.
Type d B TVoRF (s) Tright (s) T (s)
RF 10 20 79 74 56
RF 10 25 422 374 286
RF 15 20 399 441 273
RF 15 25 2351 2457 1651
RF 20 20 930 847 367
RF 20 25 5499 4522 2520
GB 5 20 1 1 1
GB 5 25 3 3 2
GB 10 20 30 31 26
GB 10 25 84 85 69
GB 15 20 265 259 222
GB 15 25 618 616 511

verification case that also counts the number of equivalence classes emitted by VoTE Core. We then executed
the verification case for models trained with a maximum tree depth of d = 10. The recorded number of
equivalence classes C for different number of trees B is depicted in Figure 7 on a logarithmic scale. The
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Figure 7: Number of equivalence classes C on a logarithmic scale from the vehicle collision detection case study for different
number of trees B with a depth d = 10.

number of equivalence classes increased exponentially as more trees were added, but the magnitude of the
growth decreased for each added tree. The number of equivalence classes for large number of trees are
significantly smaller than the upper limit of 2d·B (which occurs when there are no shared features amongst
trees, and thus each path combination yields a distinct equivalence class). Furthermore, the gradient boosting
machines consistently yield significantly fewer equivalence classes than random forests, which could explain
the differences in verification times we observed between the two types of models (with the same number of
trees and depth).

5.1.5. Plausibility of Range
Finally, we verified the plausibility of range property (here ensuring that all predicted probabilities are in

the range [0, 1]). All random forests passed the verification case within fractions of a second thanks to the fast
output bound approximation algorithm. For gradient boosting machines however, the output approximations
were too conservative; hence we resorted the precise technique. All gradient boosting machines passed the

15



verification case, and the elapsed time during verification for different node selection strategies are listed in
Table 4.

Table 4: Elapsed time for different node selection strategies when verifying gradient boosting machines in the vehicle collision
detection case study.

d B TVoRF (s) Tright (s) TVoTE (s)
5 20 2 2 2
5 25 10 10 9

10 20 304 289 260
10 25 1067 1015 917
15 20 3032 3230 2910
15 25 10582 9900 8750

The least-points-first node selection strategy consistently outperformed the two baseline strategies, with
speedup factors in the range 1.0–1.2.

5.2. Digit Recognition
In this case study, we verified properties of tree ensembles trained to recognize images of hand-written

digits.

5.2.1. Dataset
The MNIST dataset [20] is a collection of hand-written digits commonly used to evaluate machine

learning algorithms. The dataset contains 70,000 gray-scale images with a resolution of 28 × 28 pixels at
8 bpp, encoded as tuples of 784 scalars. We randomized the dataset and split into two subsets; a 85%
training set, and a 15% test set (a similar split was used in [20]).

5.2.2. Robustness
We defined input regions surrounding each sample in the test set with the robustness margin ε = 1,

which amounts to a 0.5% lighting change per pixel in a 8 bpp gray-scaled image. Each input region contains
2784 noisy images, which would be too many for VoTE to handle within a reasonable amount of time.
Consequently, we reduced the complexity of the problem significantly by only considering robustness against
noise within a sliding window of 5× 5 pixels. For a given sample from the test set, noise was added within
the 5× 5 window, yielding 25·5 noisy images. This operation was then repeated on the original image, but
with the window placed at an offset of 1px relative to its previous position. Applying this operation on an
entire image yields 25·5 · (28− 5)2 ≈ 234 distinct noisy images per sample from the test set, and about 1014

noisy images when applied to the entire test set.
Figure 8 depicts one of many examples from the MNIST dataset that were misclassified by the tree

ensemble with B = 25 and d = 10. Since the added noise is invisible to the naked eye, the noise (a single
pixel) is highlighted in red inside the circle.

Figure 8: A misclassified noisy sample from the MNIST dataset.
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Table 5 lists tree ensembles included in the experiment with their maximum tree depth d, number of trees
B, accuracy on the test set (Accuracy), elapsed time T during verification, and the percentage of samples
from the test set where there were no misclassifications within the robustness region (Robustness).

Table 5: Accuracy and robustness of tree ensembles in the digit recognition case study.
Type d B Accuracy (%) Robustness (%) T (s)
RF 10 20 93.8 75.2 254
RF 10 25 94.2 74.8 1217
RF 15 20 95.8 82.8 436
RF 15 25 96.0 84.0 2141
RF 20 20 96.0 82.3 391
RF 20 25 96.4 83.7 1552
GB 5 75 94.5 60.9 129
GB 5 150 95.3 67.3 301
GB 5 300 95.7 68.6 1551
GB 10 25 94.9 65.8 82
GB 10 50 95.7 73.9 159
GB 10 100 96.3 78.8 486

Increasing the complexity of a tree ensemble slightly increased its accuracy, and significantly increased
its robustness against noise. The elapsed time during verification was significantly less for gradient boosting
machines than random forests (using the same parameters).

5.2.3. Node Selection Strategy
Next, we evaluated the least-points-first node selection strategy against the two baseline strategies.

Table 6 lists the elapsed verification time for the evaluated models when using the least-points-first node
selection strategy (T ), always selecting the left child first as implemented in the tool VoRF from previous
work [31] (TVoRF), and always selecting the right child first (Tright).

Table 6: Elapsed time for different child node selection strategies in the digit recognition case study.
Type d B TVoRF (s) Tright (s) T (s)
RF 10 20 2009 1093 254
RF 10 25 10724 5386 1217
RF 15 20 4474 1837 436
RF 15 25 23718 8960 2141
RF 20 20 4037 1817 391
RF 20 25 17360 7228 1552
GB 5 75 836 376 129
GB 5 150 2419 848 301
GB 5 300 18829 4717 1551
GB 10 25 442 268 82
GB 10 50 1157 561 159
GB 10 100 5772 1618 486

The effectiveness of our node selection strategy was similar for both random forests and gradient boosting
machines, with significant speed up factors in the range 4.2–11.2 and 2.8–12.1, respectively.

5.2.4. Scalability
Next, we assessed the scalability of VoTE Core when the number of trees grows by verifying the trivial

property P = true. This was done in a similar way as described in the vehicle collision detection use case
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presented in Section 5.1.4. We then executed the verification case for all models with a tree depth of d = 10.
Enumerating all possible equivalence classes was intractable for tree ensembles with more than B = 4 trees.
We aborted the experiment after running the verification case with a tree ensembles of B = 5 for 72 h.
Figure 9 depicts the four data points we managed to acquire for the two types of models.
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Figure 9: Number of equivalence classes C on a logarithmic scale from the digit recognition case study for different number of
trees B with a depth d = 10.

The number of equivalence classes increased exponentially as more trees were added, without demon-
strating any signs of stagnation. The ability to discard infeasible path combinations in a tree ensembles
is an essential ingredient to our method. When tree ensembles are trained on high-dimensional data, the
number of features shared between trees is relatively low, so it is not surprising that our method experiences
combinatorial path explosion.

As described in Section 5.2.2, state explosion was already anticipated when considering robustness to
noise when changing arbitrary pixels in the whole state space. This was the underlying reason why the
property P to verify was formulated as robustness to noise when changing pixels within a sliding window
of 5× 5 pixels, which significantly reduced the search space. This reduction in space was anticipated based
on some intuition about the application domain. Not having this intuition may lead to trying to prove
properties that are tougher than required, or eliminating a class of applications (e.g., image processing) with
long verification times.

5.2.5. Plausibility of Range
Finally, we verified the plausibility of range property (again ensuring that that all predicted probabilities

are in the range [0, 1]). All random forests passed the verification case within fractions of a second thanks
to the fast output bound approximation algorithm. For gradient boosting machines however, the output
approximations were too conservative. Since the precise technique does not scale well on models trained
on high-dimensional data, we were unable to verify the plausibility of range property of gradient boosting
machines in this case study.

6. Conclusions and Future Work

In this paper, we proposed a method to formally verify properties of tree ensembles. Our method exploits
the fact that several trees make decisions based on a shared subset of the input variables, and thus several
path combinations in tree ensembles are infeasible. We implemented the method in a tool called VoTE, and
demonstrated its scalability on two case studies.

In the first case study, a collision detection problem with six input variables, we demonstrated that
problems with a low-dimensional input space can be verified using our method within a reasonable amount
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of time. In the second case study, a digit recognition problem with 784 input variables, we demonstrated
that our method copes with high-dimensional input space when verifying robustness against noise. But it
does so only if the systematically introduced noise does not attempt to exhaustively cover all possibilities.
Since the number of shared input variables between trees is low, we observed a combinatorial explosion of
paths in the tree ensembles. This combinatorial explosion also appeared when we verified the plausibility of
range property of gradient boosting machines where the fast approximation technique was too conservative.
However, when verifying the plausibility of range property of random forests, the approximation technique
was sufficiently accurate, and verification was completed within seconds.

There exist properties and systems for which formal verification may not be successfully deployed. Con-
versely, using random sampling for testing robustness may not be acceptable as an argument in a safety
assurance case, unless a clear relation between the test samples and the property needed for safety can be
mathematically established. Additional work to identify where to apply testing and where formal verification
saves time is a useful direction to explore.

For future work, we plan to investigate different tree selection strategies, i.e., strategies that determine
in which order trees in an ensemble are analyzed. We also consider combining our approximation technique
with our precise technique into an abstraction-refinement scheme. Other directions of work include creating
new properties that are meaningful in the context of the problem at hand, e.g., decisive classifications, and
applying to use cases where control is involved (and not only sensing).
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