
Journal of Cloud Computing:
Advances, Systems and Applications

Toczé et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:46
https://doi.org/10.1186/s13677-020-00190-x

RESEARCH Open Access

Characterization and modeling of an
edge computing mixed reality workload
Klervie Toczé* , Johan Lindqvist and Simin Nadjm-Tehrani

Abstract

The edge computing paradigm comes with a promise of lower application latency compared to the cloud. Moreover,
offloading user device computations to the edge enables running demanding applications on resource-constrained
mobile end devices. However, there is a lack of workload models specific to edge offloading using applications as
their basis.
In this work, we build upon the reconfigurable open-source mixed reality (MR) framework MR-Leo as a vehicle to
study resource utilisation and quality of service for a time-critical mobile application that would have to rely on the
edge to be widely deployed. We perform experiments to aid estimating the resource footprint and the generated
load by MR-Leo, and propose an application model and a statistical workload model for it. The idea is that such
empirically-driven models can be the basis of evaluations of edge algorithms within simulation or analytical studies.
A comparison with a workload model used in a recent work shows that the computational demand of MR-Leo
exhibits very different characteristics from those assumed for MR applications earlier.

Keywords: Edge/fog computing, Mixed reality, Open-source, Empirical performance evaluation, Workload
characterization and modeling, Application instrumentation for data collection, Resource footprint

Introduction
Edge computing is a recent paradigm attracting interest
from both researchers and industry practitioners [1]. It
is driven by the variety of smart devices upcoming in
new use cases that have strict latency requirements not
satisfied by the cloud computing paradigm. In an edge
network, resources such as computation or storage are
located in close vicinity to the end users, at the edge of the
network.
The envisioned application areas for edge computing

are very diverse: smart agriculture [2], smart city [2, 3],
healthcare [3, 4], and connected vehicles [4–7], among
others. However, most resource management studies do
not consider specific application load characteristics.
Either they do not use different application types in their
evaluation, or even when they do, the load is not based on

*Correspondence: klervie.tocze@liu.se
Linköping University, Linköping, Sweden

a real application, but on a standard theoretical abstrac-
tion of what the load may look like [8].
One application area that is especially relevant for edge

computing due to its latency requirements and high com-
putational demand is mobile mixed reality (MR). Sev-
eral surveys have highlighted this application area [3–6]
but few open-source applications are available for stud-
ies. Those freely available are not configurable in order
to study variations of offloading strategies and with no
released code base. We contribute to filling this gap by
illustrating the benefit of an open-source framework for
studying full or partial offloading of mixed reality to the
edge.
Our work with mixed reality in an edge computing

context aims at answering the following research ques-
tions: Is offloading all MR-related computations to the
edge with current technology feasible? If not, where are
bottlenecks, and where is the potential for improve-
ment of quality of experience highest? Once we have

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00190-x&domain=pdf
http://orcid.org/0000-0002-7300-3603
mailto: klervie.tocze@liu.se
http://creativecommons.org/licenses/by/4.0/

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 2 of 24

understood the different elements in a real applica-
tion workload, can this be successfully used to gener-
alise a statistical workload model for future edge stud-
ies or for meaningful analysis of resource allocation
algorithms?
In our earlier work [9], we started answering those

research questions by proposing MR-Leo, a generic
framework for offloading video streams to the edge,
released as an open-source code base. In that paper
a couple of alternative hardware platforms were used
as comparative platforms, and a couple of communi-
cation protocols and video compression formats were
used for transporting the frames. This paper is a sub-
stantial extension of the above paper with the following
contributions:

• A vehicle for a general study of the edge resource
demand of MR applications via the open source
MR-Leo prototype

• A workload characterization and modeling approach
used for understanding the workload created by
MR-Leo as an exemplary MR application

• An application model and a statistical workload
model based on MR-Leo that can be used for
simulation studies, and demonstrating its usefulness
compared to a theoretical model in the context of
edge orchestration.

The new studies highlight the necessity to create edge
application models that are based on real implementa-
tions before being used in simulation studies, so that
meaningful and relevant results can be obtained.
In particular, this study clearly illustrates that the CPU

resource demand of the prototype is strongly influenced
by the performance of the point cloud algorithm, and that
the task arrival pattern is important for MR workloads.
The paper is structured as follows. First we present

related works and introduce the problem tackled in
this paper: offloading mixed reality to the edge. Then,
we briefly present the MR-Leo prototype and high-
light some earlier results from the conference paper
[9] in the section “Performance evaluation”. The reader
already familiar with that paper can start reading from
section “Focus on the edge resource demand”, where we
investigate the resource demand of the prototype at the
edge. Next, we present a characterization and modeling
approach used for analyzing the workload created by the
prototype. The results of the analysis are then presented,
first the understanding obtained through characterization
and then an MR application model and an MR workload
model. In the following section, we discuss how these
models differ from previous ones, their impact on ear-
lier published results, and the benefits and relevance of
the chosen approach. Finally, we conclude the paper and
describe future works.

Related works
In this section, related research is presented, first with
regards to offloading mixed reality to the edge, and then
regarding edge workload characterization and modeling.

Offloadingmixed reality to the edge
When focusing on the edge computing area, there is active
research on MR and especially AR as it can be considered
as one of the killer applications for the edge [10].
In a recent survey, Chatzopoulos et al. [11] describe dif-

ferent alternatives for offloading the heavy computations
required by mobile augmented reality (AR). Offloading to
the edge is one of the possibilities investigated by current
works, together with offloading to a companion device in
close proximity or to the cloud. The current research can
also be separated into two different categories based on
what exactly is offloaded: either both the computing and
the rendering work, or only the computing, the rendering
being performed locally. In this paper, both rendering and
computing are offloaded to the edge.
Several other works also address the offloading of MR

applications. While this study considers one edge device
computing both the rendering and the encoding, Zhang et
al. [12] study the separation of the encoding and rendering
tasks onto different edge devices in order to improve qual-
ity of service compared to when encoding and rendering
are performed in the same edge device. On the other hand,
our work includes a real user device whereas Zhang et al.
used simulated user demand to evaluate their optimized
solution.
Another option is to perform some degree of pre-

processing at the end device as in the work by Zhang et al.
[13]. Their system called Jaguar can recognize an object
using machine learning (ML) with low latency, after an
offline training phase of the edge part and pre-processing
of the video frames on the end device. In our platform for
resource studies, no pre-processing is performed at the
end device.
A further option is to consider that the device creat-

ing the video stream is different from the one displaying
the MR-enhanced stream as in the NEAR framework pro-
posed by Trinelli et al. [14]. They investigated Network
Function Virtualization for computation acceleration for
MR at the edge. Their specific MR application was object
detection using machine learning techniques.
Closer to the work presented in this paper in terms

of the offloading alternatives chosen, Chen et al. [10]
study prototypes for seven different wearable cognitive
assistance applications implemented using their Gabriel
platform [15]. They study the latency of AR applications
in different setups (offloading the application to the edge
or to the cloud, using 4G or WiFi for the first hop connec-
tion), and using different hardware (mobile phones and
smart glasses). However, our work uses a novel type of

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 3 of 24

application (i.e. one that outputs to the user an enhanced
video stream and not only visual or auditive indications),
and presents an extensive study about the protocols and
video compression formats used for the communication
link , as well as the edge resource demand (in this paper).
In contrast, Gabriel only uses MJPEG over TCP for the
communication link and focus on latency only.
A similar study of offloading AR to the edge was pre-

sented recently by Bachhuber et al. [16]. They focus par-
ticularly on bringing down the end-to-end (E2E) delay on
the end device by optimizing the encoding and decod-
ing steps. They achieve a E2E delay of 83.5 ms, which
is comparable to state-of-the-art AR application running
locally on a smartphone such as Google ARCore or Apple
ARKit. However, those low latencies are achieved by using
a Gigabit Ethernet connection between the end and the
edge device as well as a laptop as the end device. While
future 5G stations are likely to have much better capacity
than our experimental wireless setup, their capacity limits
will perhaps be somewhere in between our communica-
tion channel and the one in that paper. The limitation of a
mobile wireless end device will most likely persist though.
Moreover, the application and the video stream used in
the evaluation are not publicly released, preventing a fair
comparison with MR-Leo.

Edge workload characterization andmodeling
Most of the research works in edge resource man-
agement use simulation or analytical tools [8], which
requires a model or a trace of the application consid-
ered. Although there is usually a need for a load profile
for edge applications, the currently used models are not
based on real applications but on characteristics that
are derived from how such an application is expected
to behave.
Works on benchmarking can be useful for describ-

ing application characteristics. In the edge comput-
ing area, those efforts are at an early stage. Current
edge benchmarking efforts, e.g. that by McChesney
et al. [17] and Toczé et al. [18], have application char-
acteristics described in broad terms such as “band-
width/computational intensive” or “close/far”. This is not
detailed enough to be used in simulations or analyzes that
provide deeper insights.
Some benchmarks focusing on cloud applications have

started looking at workloads using edge like the microser-
vice benchmark fromGan et al. [19]. Out of 6 open-source
applications, they propose one drone swarm coordination
service where part of the services are run on the drones.
In their work, only results regarding tail latency are pre-
sented for the six applications. Tail latency is the latency of
the lowest instances of the service. This is not enough to
be used in other applications without running the actual
code.

Among recent edge works using MR applications, Son-
mez et al. [20] present three applications (including
an MR application) to be run in their EdgeCloudSim
simulator. These are mostly described in broad terms
such as “high/small” for the CPU resources required
and the amount of data transferred. Apart from the
upload/download data size for theMR application that are
derived based on a chosen image/text metadata size, the
other numerical data is not explicitly justified. Mukher-
jee et al. [21] summarize different mathematical models
used for capturing e.g. latency in edge computing in ear-
lier works [22, 23]. Such models are useful but they also
have limitations. Since they are generic they do not cap-
ture the specificity of different application types, e.g. they
include assumptions such as task arrivals following a Pois-
son process which is questionable in the case of MR, and
they do not provide numerical values based on empirical
measurements.
Other works build their analytical models on data com-

ing from application profiling, such as Zhang et al. [12],
who study the resource demand of the colocated encoding
for MR using three metrics (CPU utilization, GPU uti-
lization and network transmission). However, this study
presents only numerical data averaged over 90 seconds,
which can hide variations of the resource demand over
this period that are relevant to model.
Our work combines and enhances the above

approaches, by a methodical generation of workload
models, similar to earlier works in the cloud computing
area. It aims to ground our MR synthetic model in pro-
filed edge application data in order to create a realistic
workload model.
Earlier attempts to do this in a cloud context are

now briefly mentioned. Shen et al. [24] performed a
statistical characterization of business-critical workloads
for cloud computing. They used three different statis-
tical instruments, namely basic statistics, correlations
and time-pattern analysis. They found interesting find-
ings about how such a workload behaves. Their objec-
tive was improving the resource usage effectiveness and
handling peak loads in clouds. We share the same ambi-
tion, with application to mixed reality offloaded to the
edge. This work differs from the one considered by
Shen et al. on several points: 1) we study a specific
time-critical application area, 2) our study is based on
a reconfigurable open-source prototype and not a real
deployment as those do not yet exist (or not freely
available).
Talluri et al. [25] propose a characterization of real

workload traces from Big Data applications in a cloud
computing context. They perform statistical analysis of
the data and study different aspects such as long-term
trends, impact of file types, and clustering. The method
used in this paper shares some of the statistical tools

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 4 of 24

used by Talluri et al., as they have shown to give relevant
insights about the workload characteristics.

MR at the edge
In this section, the concept of offloading is first presented.
Then, anMR application as a means of understanding and
building workload models is introduced. We present here
an overview of the MR-Leo prototype developed earlier
with enough details that make the current paper accessi-
ble when the application is used as a vehicle of generating
workload models.

Offloading to the edge
One of the main ideas of edge computing is to use the
resources present at the edge level to perform compu-
tation instead of using the resources present inside the
end device. Using the edge CPU as a resource instead of
the user (end) device, i.e. offloading, has several benefits.
First, it makes it possible to run applications that the end
device is not capable of due to limited resources. Even
if execution at the end device would be possible from a
performance or thermal perspective, doing it elsewhere
should save battery, so that the end device can be used
for a longer period. Executing at the edge may also enable
to share the results between users in order to provide a
faster service, or higher resilience in case a node becomes
non-functional.
Hence, in an offloading scenario there will be a variety

of requests for execution sent to the edge devices from the
end devices. This is what we consider as the edge workload
and study in this paper.

MR case study
Mixed reality is an umbrella term for describing the part of
the reality-virtuality continuum [26] that combines reality
and virtuality, designating any technology that manages
mixes of reality and virtuality. It includes for example
augmented reality. An example of an MR output where
the Android mascot is added in a library environment is
shown in Fig. 1.
An MR application consists of different components

and its workflow (illustrated in Fig. 2) can be summarized
as follows:
1. Some sensor input (such as a video stream) is

gathered.
2. Complex MR algorithms are executed to create a

model of the environment present in the input
stream and add the virtual elements (VEs).

3. The resulting MR-enhanced scene is displayed back
to the user.

In the scenario considered in this paper, the second step
is offloaded to the edge while the other two are still
performed on the end device.

Fig. 1 Example of mixed reality output

MR-Leo prototype
We implemented our own interactive MR application
using edge computing, called MR-Leo, short for Mixed-
Reality Linköping edge offloading, which is released open-
source1,2. This implementation was a required step before
being able to perform the characterization presented in
this study. To the best of our knowledge, no MR applica-
tion offloading all the MR computations (i.e. step 2 above)
to the edge is currently available open-source.
MR-Leo uses open-source frameworks such as

Gstreamer3 for transmitting video, ORB-SLAM2 [27] for
creating the environment model using MR technologies,
and Pangolin4 for rendering the MR graphics to an image

1https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_server
2https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_client
3https://gstreamer.freedesktop.org
4https://github.com/stevenlovegrove/Pangolin

https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_server
https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_client
https://gstreamer.freedesktop.org
https://github.com/stevenlovegrove/Pangolin

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 5 of 24

Fig. 2MR application workflow

feed. Among the insights gained during the development
process, it can be highlighted that best quality of service
is achieved when it is possible to process a video frame
before the next one arrives to the edge and when frames
arrive regularly. More details about the MR-Leo imple-
mentation and insights gained during the development
phase can be found in [9].

Performance evaluation
In this section, the main insights from the performance
evaluation presented in our conference paper [9] that this
paper extends are presented. Readers interested in the
further details of the evaluation setup or all the alter-
native configurations studied therein are referred to the
mentioned paper.

Evaluation setup
The full experiment scenario consists in capturing a
dynamic scene with a smartphone and sending the cap-
tured video stream to an edge device that will analyze it
to create a point cloud. Then, the stream is augmented
with the output of the deployed MR framework. In this
case, it consists of a visualization of the point cloud, i.e.
the constructed virtual representation of the scene, sent
back to the smartphone. Figure 3 presents this scenario.
We can see that in addition to the steps present in Fig. 2,
the prototype requires additional steps related to the video
transmission between the end and the edge devices.
A variant of this scenario is when the smartphone user

presses a button in order to add a virtual element to the
scene. In this case, the steps performed are a bit different,
as shown with green elements on Fig. 3. The main differ-
ence is that the uplink transmission now only consists of
a message indicating the element to be added, and not of
the full video stream.
In both scenario variants, the video is streamed one

frame at a time at the rate at which the stream is captured
(i.e. 30 frames per second). When a frame is received at
the edge it goes through theMR algorithms and the result-
ing frame is transmitted back to the end device as soon as
it is available.
The performance evaluation includes comparing dif-

ferent configurations that can be used for the scenario
presented in Fig. 3.

Each experiment was conducted 30 times for the same
configuration in order to mask any network interfer-
ence or computing hardware performance fluctuations. In
order to ensure reproducibility between the runs, a video
play-back is used instead of the actual camera feed on the
end device. The test video used is 60 seconds long and is
set up in an indoor environment. The full video is avail-
able online5, and has a resolution of 640x480 pixels and a
frame rate of 30 fps.
In the performance study, in order to detect when a spe-

cific frame comes back to the end device (to be able to
measure round trip time or to detect that a virtual ele-
ment has been added), we use artificially added rows of
pixels with bright colors not present in the original video
on 11 specific frames spread in the video (which had in
total 1814 frames). This technique enables to easily detect
those frames in a very lightweight manner (by only hav-
ing to check the color of some specific pixels) that does
not require to track every individual frame (which would
be impractical) or use complex object recognition algo-
rithms (which would significantly increase the measured
times in a non-deterministic manner). This frame detec-
tion approach has a negligible probe effect which can be
isolated.
The experiments were first run with the following

edge device and end device, hereafter called the baseline
devices.
The baseline edge device is a Lenovo Thinkpad T450s

laptop. The laptop runs Ubuntu 18.04 and has 12GBRAM
and an Intel Core i5-5200U CPU (2.2 GHz, 2 cores, 4
threads), which is classified as a high mid-range CPU as
of July 2019 [28]. For the end device, the baseline device is
an LG G6 smartphone running Android 8.0 and equipped
with the Qualcomm Snapdragon 821 mobile platform. It
contains a Qualcomm Kryo CPU (2.4 GHz, 4 cores) and 4
GB RAM.
In addition, a second edge device was considered in

some of the results highlighted in this paper: it is an HP
Elitebook 840 G5. It runs Ubuntu 18.10 and has 16 GB
RAM and an Intel Core i7-8550U CPU (1.8 GHz, 4 cores,
8 threads), which is classified as a high end CPU as of

5https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_video

https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_video

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 6 of 24

Fig. 3MR scenario used in the experiments

July 2019 [29], thus being more powerful than the baseline
device.
The experiments were performed over a local network

set up using an Asus RT-N12 router disconnected from
the Internet. The edge device was connected to the net-
work using an Ethernet cable and Gigabit Ethernet (1000
Mbit/sec), and the end device was connected using an
802.11n wireless network. The end and edge devices were
placed within one meter from the network gateway, and
the same positions were used for all tests using the same
devices.

Performance metrics
Two different metrics were used when evaluating end-to-
end (E2E) latency:

1. the time elapsed between the moment the end user
presses the “Add virtual element” button and the
moment when the virtual element appears on the
display (Steps (a-bis) to (j) on Fig. 3) or time to virtual
element (T2VE),

2. the time it takes for a captured video frame to be
displayed with the MR enhancement on the display
(Steps (a) to (j) on Fig. 3), or frame round trip time
(FRTT).

As the FRTT requires the video frame to be transmit-
ted both to the edge and back, more resources are used
on the communication link than for T2VE. This commu-
nication part has been shown to account for 92% of the
whole FRTT. At the same time, the latency requirements
on frame handling are critical for the application to be per-
ceived as real-time. It is therefore crucial for performance

to bring the FRTT as low as possible. Therefore, this per-
formance metric is the most relevant one for studying the
overall performance of the MR application, when the MR
framework is performing as expected. In this normal sce-
nario the MR framework is able to create a point cloud
from the scene. By design and as verified by measure-
ments, the T2VE metric will always show lower latency
than FRTT when there is no problem in the point cloud
creation.
Therefore, only results relating to FRTT are presented in

this paper. For reading about the results regarding T2VE
or throughput, the readers are referred to [9].

Alternative configurations and highlights
In our previous work, different configurations were tested
with regards to the protocol and video compression for-
mat used for the communication link, as well as different
hardware for the edge and end device. We highlight some
outcomes in this section.
The two configurable parts of the communication link

for which different alternatives were evaluated were the
protocol used for the transmission and the video com-
pression format used for encoding/decoding of the video
stream.
Figure 4a shows the cumulative distribution function

(CDF) for the configuration where TCP is used as the
transmission protocol and H.264 as the video compres-
sion format. Those are widely used and act as a perfor-
mance baseline. At the 90th percentile, the FRTT is 538
ms, which ismore than 5 times higher than the limit of 100
ms that is perceived as an “immediate answer” according
to the literature [30]. Therefore, the first insight from the

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 7 of 24

Fig. 4 Latency CDFs for FRTT in different configurations

measurement study was the need for other alternatives for
decreasing the time spent in the transmission part of the
application (e.g. 5G transmission).
An alternative to replace TCP is UDP. The FRTT results

are shown in Fig. 4b. Using this protocol improved the
FRTT at the 90th percentile by 27% (392 ms instead of
538). However, this comes at the cost of higher band-
width required for the communication link and the MR
framework has to tolerate potential loss of frames.
The higher bandwidth required for UDP is due to the

fact that with TCP only the difference between frames
needs to be sent most of the time, so the amount of data
transmitted can be reduced without affecting the image
quality used as input in the MR framework. However,
UDP requires to transmit complete frames all the time
because some could be lost, and the MR framework can-
not track points on incomplete images. Therefore, to be
able to track the same number of feature points by the
MR framework, more data needs to be transmitted when
using UDP. Through measurements, we found that a suit-
able and stable number of feature points (around 250) can
be achieved for a bandwidth of 2000 kbit/sec for TCP and
4000 kbit/sec for UDP.
Using MJPEG instead of H.264 on the downlink was the

next configuration to explore. The results for the FRTT
are presented in Fig. 4c and show a 54% reduction at the
90th percentile (down to 245 ms). This is very promising,
especially considering that only the compression format
for the downlink was modified. Indeed, there were per-
formance issues (introduction of a significant delay) when
using the jpegenc Gstreamer plugin for MJPEG stream-
ing in the uplink, due to the way the plugin is imple-
mented. This prevented us from fully studying MJPEG
in the experiment. If this technical limitation is lifted,
the total transmission time is expected to go down even
further.
In addition to the time spent in the communication

link, another aspect of the application was identified as
a contributor to increased latency: frames queuing in the
communication service before being processed for point
cloud and graphics. This can be seen in Fig. 5 that shows

the part of the average FRTT dedicated to the MR-related
processing at the edge, i.e. excluding transmission and
encoding/decoding to make this queuing aspect visible.
Although it is possible to parallelize some parts of the

MR calculations, e.g. separate threads to handle video
reception, frame analysis for the point cloud creation,
addition of graphics into frame, and video sending, and
indeed this is how it is implemented in MR-Leo, the way
the point cloud algorithms work in ORB-SLAM2 require
that frames are analyzed sequentially in the order they
were captured. This analysis takes place as a pipeline com-
prising several operations. Therefore, it is not yet possible
to process several frames in parallel in the same operation
within the pipeline to reduce the queuing time. Different
frames are processed in different pipeline parts one at a
time.
In order to reduce the queuing time, the experiment

was therefore run on the second more powerful edge
device (presented in the experiment setup section) and
the results are labeled as High-end on Fig. 5. They show
that using a more powerful edge hardware contributes to
reducing the frame queuing time as well as the MR frame-
work execution time. However, the graphic rendering part

Fig. 5 Latency breakdown of the MR-related edge processing for
different configurations

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 8 of 24

was not impacted, probably because graphics accelera-
tors would be required for this and the current prototype
configurations do not support this.

Focus on the edge resource demand
In addition to studying the response times of the proto-
type, it is also interesting to look at its resource demand.
We focus on the edge part of resource demand as this is
where the computationally intensive parts of the applica-
tion are executed, as explained earlier.
Three resource types are considered: computation,

communication and memory demand. The main focus is
on the computation demand, which is the most common
resource considered in the literature [8].

Data collection and analysis method
The data collection process for this study was separated
into two steps. First, we observed the resource demand
of MR-Leo on the edge device when running the experi-
ments described in the “Performance evaluation” section.
The aim was to gather data and insights while keeping
the measurement complexity low. While it was possi-
ble to collect the required data for communication and
memory demand in this first step, only limited insights
about the computation demand were gathered. Therefore,
a deeper study in performed in the second step with more
detailed experiments in order to get a better picture of the
computation demand.
For the first step, MR-Leo is instrumented to record

the CPU and the memory use at every second on the
edge device. This is done using the Linux top tool as it
is a lightweight tool already part of the standard Ubuntu
distribution. This tool enables gathering of the required
memory demand data and the CPU utilization values
through the experiments. This keeps the impact on appli-
cation execution environment to a minimum.
However, while the top granularity level (per second) is

satisfactory for the memory demand, it is too coarse for
the computation demand, as a video frame is sent every
33 ms to the edge. Therefore, to get more fine-grained
data for the computation demand, a second study step was
performed. In this step, the aim is to collect the num-
ber of executed instructions per video frame. To obtain
it, a separate instrumentation of the application code was
performed using a custom code building on the Intel Pin
tool6 for binary code analysis. This tool enables to count
the number of instructions executed between two points
in the source code. In this second study step, the tool is
used to count the number of instructions executed when
processing a frame in the class that feeds the decoded

6https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-
downloads

frames to the MR function. Since binary code analysis sig-
nificantly slows down the execution of the application,
a dedicated set of experiments was performed for this
second step.
The experimental data presented in this section was

obtained by running the experiments on the high-end
edge device (HP) used for the performance evaluation.
Two sets of experiments are used, one for each step
presented above: first using the video play-back with auto-
matic user input as in the previous section (later denoted
as the reference video). Second, using a mocked smart-
phone client, i.e. the video frames are directly used as
input on the edge server, due to the slow down created
by the binary analysis tool. In this second experiment set,
separate runs were conducted for video input alone, and
for video and user input combined.
The experimental data gathered was analyzed using dif-

ferent statistical techniques. First, the data obtained is
plotted using histograms in order to visualize how the
data behaves. In addition, descriptive statistics such as the
mean, median, maximum and minimum values are pre-
sented. The presence of one or several modes in the data
is also studied. The mode of a set of values is the value
appearing most often [31]. It appears as a local maximum
in the probability density function of the data distribution.
In some distributions, there are several such local max-
ima. In this case the data is multimodal and the different
modes can be identified by statistical tools. When nec-
essary, the Kolmogorov-Smirnov (KS) test and Pearson’s
chi-squared test are used. These are two statistical tests
for studying different similarity indicators that are suitable
for comparing two distributions. The KS test measures
the maximum difference between two cumulative distri-
bution functions and its result can be seen as describing
the divergence of the two distributions, and the Pear-
son’s chi-squared test, measures the difference between
the histograms of two empirical distributions [25]. For this
statistical analysis, we used a significance level of 5%.

Computation demand
Characterizing the computation demand is not a straight-
forward task. In the literature, the computation demand
is sometimes not quantified but described in generic cat-
egories such as “High” or “Low” [17, 18]. When it is
quantified, the metric chosen varies and the numbers
are provided without explaining how they were obtained.
In this study, two metrics are used for quantifying the
computation demand: the number of cores used and the
number of instructions executed for running a task.

Number of cores
For characterizing the CPU load of MR-Leo, the CPU use
during running the edge processing part of the applica-
tion was logged on the edge device. The result is that the

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 9 of 24

application requires the power of three cores. This can be
seen in Fig. 6, showing a histogram of the CPU usage val-
ues recorded during 30 experimental runs. On the figure,
the maximum CPU utilization goes up to 226% , i.e. the
application requires the equivalent of two cores utilized at
100% and a third one utilized at 26%, so the power of three
cores is needed7.
Since the top tool needs to be started/ended a bit

before/after the video is streamed from the end device,
the measurements include a few seconds where MR-Leo
is almost idle. That is the reason for the leftmost bar on
Fig. 6.

Number of instructions per video frame
With regards to the number of instructions executed
and as described in the data collection method section,
a dynamic binary analysis is performed with a custom
adapted tool based on Pin.
The analysis was run 5 times on the reference video

stream. Figure 7 shows a histogram of the number of
instructions per frame over the 5 runs. Basic statistics over
the 5 runs, are presented in the first row of Table 1. On the
histogram, it can be seen that the numbers of instructions
are not spread homogeneously over the span between
the minimum and the maximum values. On the con-
trary, the data exhibits two modes: one at 158.43 million
instructions (MI) and a second one at 310.03 MI.
When plotting the data for each run separately, the

shape of the histogram is similar. In order to quantify
this similarity, the output of each run is compared to the
other ones using the Pearson’s chi-squared test. Twelve
bins were considered for grouping the data. The tests indi-
cate similarity between the distributions obtained from
the different runs (with p-values between 0.23 and 0.24).
We conjecture that the two modes of the distribution,

i.e. the two levels of computational intensity, correspond
to two situations in which the application can be: 1) it
needs to create a point cloud, and 2) it needs to update it.
The first situation being more computationally intensive
than the second one. In order to test this, two additional
series of tests were conducted with two other videos8.
The first one shows different objects disposed on a

table (referred to as the object video) while the second
one is shot in an outside environment on the campus of
Linköping University (referred to as the campus video).
The two additional videos contain the same number of
frames as the reference video. When using MR-Leo, those
two videos exhibit different behaviours compared to each
other and to the reference video. For the object video,
a point cloud can be found by the MR-Leo application
and once found, is kept until the end of the video. On

7i.e. equivalent to the Intel Core i7-8550U CPU cores
8Available at https://gitlab.liu.se/ida-rtslab/public-code/
2019_MRLEO_charac

the contrary, a point cloud can never be found for the
campus video since the scene is too complex for the
MR framework used (although it reflects the state-of-the-
art, as mentioned earlier). The reference video exhibits a
behaviour in between those two extremes, with a point
cloud being created but lost for a while around 30 seconds,
and then recovered. When the point cloud cannot be cre-
ated, MR-Leo sends back the received frame without any
modification and the user sees the original stream.
When plotting the histogram of 5 runs each using the

three videos, it can be seen that the number of instruc-
tions executed is different in the three different scenarios
captured by the three videos. Figure 8a shows the his-
togram for the campus video. This histogram is unimodal
with a mode at 287.46 MI. Figure 8b shows the histogram
for the object video. This histogram is actually trimodal,
with twomodes close to each other (160.45MI and 172.24
MI) that are aggregated in the first bin of the histogram,
and a third one at 269.59 MI, containing only 13% of the
data values. Basics statistics for the campus and object
videos can be found in Table 1 and compared to the
statistics of the reference video (in row 1).
The results here corroborate the conjecture made, i.e.

that the right mode of the distribution corresponds to
when MR-Leo needs to create a point cloud (illustrated
with the campus video). On the contrary, the left mode
corresponds to when MR-Leo only needs to update the
point cloud (illustrated with the object video).

Number of instructions in presence of user input
The next aspect we study is the difference in terms of
instructions executed depending on whether user input
has been sent to the edge node or not. The experiment
performed for obtaining the number of instructions per
video frame is adapted to include an automatic trigger of
a user input adding a virtual element during 100 frames,
and then removing the virtual element during the next
100 frames and so on during the whole experiment length.
This adapted experiment is run 5 times.
We plot the histogram of the frames including a virtual

element on Fig. 9a and of the frames not including a vir-
tual element on Fig. 9b. The hypothesis here is that the
extra computation needed to render the virtual element
(a simple 3D object) is low compared to the rest of the
MR calculations executed for every frame. The two dis-
tributions are compared using the KS test and Pearson’s
chi-squared test. The KS output is 0.028 and the p-value
obtained is 0.086 for the Pearson’s chi-squared test. This
indicates that the two distributions are not significantly
different.
Note that, due to the way that the MR framework used

works, every run of the experiment is unique and the
quality of the point cloud created (i.e. the distribution
between the two modes) are similar but unique to each

https://gitlab.liu.se/ida-rtslab/public-code/2019_MRLEO_charac
https://gitlab.liu.se/ida-rtslab/public-code/2019_MRLEO_charac

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 10 of 24

Fig. 6Measured CPU use per second

run. The point cloud quality depends on how well the MR
framework succeeds into identifying and keeping track of
feature points, as well as which feature points it chooses
during a specific run. A lower point cloud quality (e.g. a
bad choice of feature points) will lead to a need for more
recalculations, hence a higher computational demand.
This is why, for example, the twomodes in this experiment
have similar bar heights, compared to Fig. 7 where the left
mode had a higher bar than the right one.

Communication demand
Here it needs to be highlighted that MR-Leo will have an
almost symmetric amount of data transmitted for upload
and download, contrary to what is sometimes assumed
for MR applications (e.g. in [32]). This is because all the
MR parts, including rendering, are offloaded to the edge.
Thus, a full frame is transmitted to the edge, and also a
full frame back to the end device. The only part that is
not symmetric is the one corresponding to user tasks, as

that are only transmitted from the end device to the edge
device. Those tasks however represent only a tiny fraction
of all tasks.
Regarding video tasks, we look at their characteristics

when generated on the end device. The reference video
stream is an example scenario for the MR-Leo applica-
tion. This video stream includes 1814 frames for a size
of 75.5MB, which corresponds to each frame having a
size of around 41kB before encoding. How much data is
going to be actually transmitted between the end device
and the edge device will depend on the video compression
standard chosen. Modelling the behaviour of different
compression standards (such as H.264 or MJPEG that are
included in MR-Leo) is relevant but out of the scope of
this paper.
For user tasks, the size of a request is fixed and can be

obtained by studying the MR-Leo implementation. It con-
sists of 60 bytes: 10 bytes for the header and 50 data bytes.

Fig. 7Measured number of instructions per frame for the reference video

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 11 of 24

Table 1 Basic statistics for the instruction count (MI)

Avg σ Median Min Max Mode(s)

Reference video 244.08 98.53 185.30 119.48 563.91 158.43 and 310.03

Object video 185.41 43.98 164.03 133.03 316.02 160.45, 172.24 and 269.59

Campus video 269.41 42.43 282.42 140.52 384.54 287.46

The user tasks are not encoded so their size is independent
of the compression format used.

Memory demand
MR-Leo is implemented so that it does not store data
permanently on the edge server but only requires mem-
ory during run time. Figure 10 shows a histogram of the
memory usage measurements, with a measurement taken
each second during 32 experimental runs. This includes
the memory used by the application before the end device
connects, during the time it is connected, and after the
end device disconnection.
Two levels of memory occupation clearly appear in

Fig. 10. The first one, around 1 281 MB (on the x axis)
corresponds to the memory usage of the application when
no end device is connected. The second, at on average 3
735MB (with a standard deviation of 82MB) corresponds
to the memory usage when an end device is connected,
i.e. representing the size of the application and the envi-
ronment model associated to the connected end device.
During the connection time of the end device, the mem-
ory occupied usually increases and decreases by a few tens
of MB, but without any obvious pattern related to the
video stream used for the test.

Workload characterization andmodeling
The previous two sections studied the performance and
resource demand of different parts of MR-Leo. In this
section, the approach used for characterizing and mod-
eling the workload created by MR-Leo is described. The
obtained insights and models derived from MR-Leo can

then be used in studies that cannot use the implementa-
tion, e.g. in large scale simulations of many such applica-
tions running in parallel in edge computing simulations.
We focus on characterizing and modeling the workload

incoming to the edge (i.e. the demand), so that the per-
formance of potential edge algorithms orMR components
can be evaluated. For example, how long the tasks gener-
ated by the workload will take to complete is dependent
on the system under evaluation (and how it is simulated
in different simulators). Note that we consider here the
case where each end device will run an instance of the
application in isolation (e.g. a MR-Leo container).
There are a lot of aspects that could be studied when

performing workload characterization. Our objective is
that the characterization and modeling presented in this
paper is of relevance for researchers and developers of
edge computing platforms and algorithms. The resulting
models are intended to be used for evaluating algorithm
or tools, e.g. resource allocation algorithms and orchestra-
tion tools.

Overview
Our proposed workflow is inspired by workflows used
for characterizing other type of workloads such as big
data applications [25]. In addition to describing the
behaviour of the application, i.e. characterizing it, it also
includes modeling it in order to be able to synthet-
ically generate a workload that will exhibit the same
characteristics in repeated experiments. An overview of
the characterization and modeling workflow is presented
in Fig. 11.

Fig. 8Measured number of instructions per frame

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 12 of 24

Fig. 9Measured number of instructions per frame

As an input, the workflow takes an application and
relevant load indicators to gain insights about (blue pen-
tagons). The characterization part of the workflow is com-
posed of three main steps represented by boxes with yel-
low background: 1) application understanding, 2) applica-
tion instrumentation and data collection, and 3) statistical
analysis. Out of these steps, two models (green ovals) are
created that can be used as input to a load generator.
In the rest of the section, the different inputs, charac-

terization steps, and modeling outputs are described with
more details.

Inputs
The first input to the characterization andmodeling work-
flow is the application that is to be characterized and
modeled. It is considered that one has access to the code
base of an application, i.e. it should be possible to review
it and to instrument it, hence this input is designed as the
application code in Fig. 11.
In addition, information about relevant load indicators,

i.e. what characteristics of the workload are interesting to

study for the application area, is the second input to the
workflow. This enables the characterization and modeling
to be tailored to the pertinent aspects for the domain it
will be used in.

Characterization workflow
The first step of the workflow consists of getting a deep
understanding of the application. With regards to the
selected load indicators mentioned previously, this step
aims at defining what is an offloadable task in the con-
text of this particular application. If earlier quantitative
data based on experimental performance evaluation of the
application are available, they can be used as an entry
point to define the offloadable tasks. Examples are timing
data for segments that make up the end-to-end latency of
the application.
The second step consists of instrumenting the appli-

cation code in order to gather experimental data with
regards to the selected load indicators. This data consists
of various measurements. At a general level, the focus
should be on studying the tasks (as defined in the first

Fig. 10 Histogram of the memory usage of the MR application

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 13 of 24

Fig. 11 Characterization and modeling workflow

step), how often they are created on the end device and
how they are handled by the edge device, at which pace
and using what amount of resources. Once the code is
instrumented, the data collection process takes place.
The last step of the workflow, the statistical analysis is

performed on the experimental data gathered in the sec-
ond step. Using descriptive statistics and other statistical
tools, the data can be visualized and analyzed in order
to get quantitative data to be used for creating a statis-
tical workload model. Statistical tools such as similarity
tests (e.g. Pearson’s test) can also be used to find reoccur-
ring patterns in the experimental data, when relevant for
the application according to the knowledge gained in the
application understanding part.

Modeling outputs
The first modeling output, the application model, is cre-
ated from the application understanding step. When an
offloaded task is precisely defined, the application can be
modeled as a directed acyclic graph (DAG) that shows
the flow of tasks within the application. In such a graph,
the vertices are computational functions and the edges are
communication links. Creating the application model, i.e.
detailing what are the offloaded tasks and how they will be
transmitted and computed, contributes to knowing what
parts of the application need to be instrumented.
The purpose of creating the secondmodeling output, i.e.

the statistical workload model, is to generate a synthetic
workload that will be similar to the workload generated
by the real application. Probability distribution fitting for
the selected load indicators is applied to experimental

data gathered in the second step of the characterization
workflow.

Characterization derived fromMR-Leo
In the following subsections, we first review relevant load
indicators. Then, the outcome of applying the workload
characterization and modeling workflow to MR-Leo is
presented according to the selected load indicators.

Relevant load indicators for edge computing
For a proposed workload model to be relevant, it needs
to include the load indicators relevant for the users of the
model.
This study is not the first one to look into workload

characteristics that are of interest for edge computing.
Researchers working in benchmarking for edge comput-
ing have proposed characteristics to be taken into account
when creating or using application workloads in their
benchmarks. To compare edge computing platforms, Das
et al. [33] utilize workloads from three different applica-
tions that have different computation resource demands.
When comparing the deployment of applications using
different modes, McChesney et al. [17] use six applica-
tions that are characterized with one or several of the fol-
lowing type of tags: latency-critical, bandwidth-intensive,
location-aware and computation-intensive. Finally, the
load indicators considered by Toczé et al. [18] in the con-
text of benchmarking edge algorithms and techniques are
the resource demand (relative to communication, compu-
tation and storage), the deadline, the arrival type (to be
understood as arrival pattern) and the interrarrival time.

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 14 of 24

In addition to the above, recent edge computing papers
that use simulations as a means of evaluation are also con-
sidered. We review 5 works published in 2018 or 2019
in relevant edge computing conferences where evalua-
tions were based on a simulator. The simulators used are:
iFogSim [34], EdgeCloudSim [20], SimGrid [35], and Fog-
TorchPi [36]. They are all open-source and have been used
by several groups of researchers. Table 2 presents the out-
come of this review. For each work, we check whether the
workload used considers the computation demand, the
communication demand, the storage demand, the arrival
pattern of tasks, some timing aspect (e.g. deadlines), the
location of tasks or any other parameter. The focus is on
those aspects that were considered in the benchmarking
efforts presented earlier.
As Table 2 shows, the computation and communica-

tion resource demand are indeed of high interest for
edge computing research and it is therefore important to
study applications with regards to those load indicators.
Similarly the task arrival pattern and timing are impor-
tant to study. The storage resource demand, although
not considered by all works is still considered by some.
When reviewing the literature, it could be noted that the
location-related indicators come from the locality of the
end devices (and its mobility, when relevant) and not from
the task itself. Therefore, this indicator is not considered
further in this study.
Based on the above load indicators, it appears that when

characterizing an edge application, specific care should be
taken in terms of:

• Task definition
• Task arrival pattern
• Resource demand (especially regarding computation

and communication)
• Timing

To summarize, after performing the characterization and
modeling, it should be clear what an offloaded task is in
the context of the application, and how often those tasks
are offloaded to the edge. Further, it is important to char-
acterize and model the resource demand of those tasks as
well as their timing constraints, for example whether they
have a deadline.

Task definition
As part of the application understanding step, the inputs
and outputs to the application are analyzed in order to
define what an offloadable task is in the context of MR-
Leo, which is an interactive MR application.
As presented in Fig. 3, in a typical use case scenario

of the application the user will capture some environ-
ment with her end device and then press a button on
the screen to add a virtual element to the environment.
This element can also be interactively removed, by press-
ing another button on the screen. The user moves the
end device and can add another element at another place,
and so on. Note that hereafter we focus on a coarse char-
acterisation of MR-Leo tasks, not at the granularity of
point cloud generation rendering or similar. This allows
using the current prototype as one among a family of
many such applications that will have similar high level
activities.
With this view, the application has two types of input:

video input (the video stream captured by the device cam-
era) and user input (the user pressing a button to add or
remove a virtual element). However, it only has one out-
put: the resulting video stream that contains the original
stream enhanced with the virtual elements.
These two types of input have very different charac-

teristics and therefore create two different types of task
that the server part of the application will have to handle.
We look deeper at those two to define the task types for
MR-Leo.
Regarding the video input, each video frame is sent to

the MR function on the edge device, that will perform
analysis of the incoming frame. For obtaining good qual-
ity of service, each input frame is analyzed and results in
an output frame displayed to the end user. This output
may or may not include virtual elements. Therefore, it is
natural to define a task for the video input as the han-
dling of one frame. This first task type is referred to as
video task.
Regarding the user input, each such input is handled by

the MR function at the edge, before the MR service is pro-
vided to the end user. Therefore, handling the user input
is also defined as a task. This second task type is referred
to as a user task.

Table 2 What load indicators are considered in selected works using simulation

Article Computation Communication Storage Arrival Timing Location Other Simulator tool

De Maio [37] ✓ ✓ ✓ ✓ FogTorchPi

Toczé [38] ✓ ✓ ✓ ✓ ✓ EdgeCloudSim

Sonmez [32] ✓ ✓ ✓ ✓ ✓ EdgeCloudSim

Xia [39] ✓ ✓ ✓ ✓ ✓ SimGrid

Mahmud [40] ✓ ✓ ✓ iFogSim

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 15 of 24

Task arrival pattern
The task arrival pattern corresponds to how often a task
will have to be handled at the edge. In the MR-Leo pro-
totype, this is possible to obtain by instrumentation at
the edge side. Doing so necessarily include a measure the
performance of the communication link, as it will have
an impact on how often the tasks arrive at the edge.
While relevant from an application QoS perspective (as
we saw in earlier charts), this is not the focus of workload
modeling since it is not a characteristic of the workload
itself. Indeed the load indicator can also be investigated
using application knowledge as the understanding of the
application progresses.
Theoretically, the task arrival pattern should be the

same as the task generation pattern at the end device.
However, we observe that, orthogonal to the choice of
communication link, the arrival pattern at the edge can
differ from the sending pattern at the user device. To
understand this, we logged the video task in terms of the
number of frames received per second at the edge (pre-
sented in Fig. 12 for 30 experimental runs). This shows
that although the video frames are generated at a fixed
rates of 30 fps, those same frames arrive at the edge with
a frame rate varying between 20 and 32 when considering
the first 59 seconds (i.e. 98%) of the video. This is due to
the choice of the video encoding and transport protocol
adopted for the implementation, which are not intrin-
sic application characteristics. Thus, when we perform
edge-side applicationmodeling, the transport and coding-
induced jitter is ignored and the task arrival pattern is
modeled based on the task generation pattern9.
Starting with the video tasks, the task generation pattern

is the same as the frame generation pattern, per definition.
Since the video considered for the MR-Leo implementa-
tion is shot at 30fps, the task generation rate is 30 tasks
per second and the interarrival time is constant. There-
fore, the video tasks should be generated periodically with
an interarrival time of 33ms.
For the user tasks, the task generation pattern depends

on how often the user will press the button on the screen.
Of course, extensive experiments can be carried out to
record and quantify user-dependent input rates. However,
we show an adopted model based on limited observations
from 4 “typical” (i.e. non-expert) users who tried the appli-
cation during the test phase of MR-Leo. The observed
users press the button to add/remove a virtual object and
do this a few times per minute. For user tasks, the arrival
can thus be modelled as a Poisson process with an inten-
sity of λ = 5 tasks per minute. This is a parameter that
one can change upon configuring the model differently.
Note that this will mean that there are 1800 video tasks

generated per minute in parallel with around 5 user tasks.

9Modeling additional variations can be added at a later stage if needed.

In such a model, video tasks therefore represent 99% of all
tasks.

Resource demand
We use the experimental data gathered for the resource
demand study (presented in earlier sections of the paper)
to derive numerical data for the statistical workload
model. The technique used is distribution fitting. The fit
of the obtained distribution is checked using the KS tests
and Pearson’s chi-squared test and visualized by plotting
the quantile-quantile (QQ) plot between the experimen-
tal data points and a set of data points generated from the
obtained distribution. In such a plot, the points are aligned
along the line y=x if the two distributions are similar.
Recall from the resource demand study that the data

for the computation demand of a video frame (i.e. a video
task) has two modes as shown on Fig. 7. For modeling it,
a distribution fitting was performed using the R library
mixtools. This assumes that the distribution is a mix of
two normal distributions, which seemed reasonable hav-
ing seen the shape of the histogram presented in Fig. 7.
The density function of the obtained distribution is pre-
sented in Fig. 13. The two distributions composing it are
a normal distribution with mean μ = 155.62 MI and
standard deviation σ = 14.10 for 47% of the values and
a normal distribution with mean μ = 322.38 MI and
standard deviation σ = 71.18 for the remaining 53%.
The fit is tested using a QQ plot shown on Fig. 14 and

by using the Pearson’s chi-squared test and the KS test
between sampled data from the fitted distribution and the
experimental data. All show a good fit. The p-value for the
Pearson’s chi-squared test was 0.23 and the output of the
KS test was 0.026.
With regards to user tasks, the results from the resource

demand study showed no significant difference between
computation when including the user input (i.e. when
considering a user task) and not including it. Consid-
ering as well that user tasks only account for 1% of all
tasks, we do not include a separate model for the com-
putation demand of a user task. Instead the model for
computation demand of video tasks is deemed sufficient
for frames including a virtual element and frames not
including a virtual element. It is possible that this result
depends on the complexity of the graphic object added.
In this study, the graphic rendering consists of a point
cloud visualization with an added simple 3D object when
a user input request is received by the edge. Applying
the same approach on a version of the prototype ren-
dering other 3D models might lead to different data.
If the data is significantly different, the current model
can be adapted to include specific values for the user
tasks.
For creating the model for the communication demand,

the numerical data presented in the earlier section

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 16 of 24

Fig. 12 Experimental frame arrival rate at the edge device

“Focus on the edge resource demand” is used directly.
There is indeed no need for a deeper statistical analysis on
that aspect.
Regarding the memory footprint and based on the

results presented in Fig. 10, the proposed model of the
consideredMR application is as follows: an individual task
(video or user) does not have a specific storage require-
ment but the edge device needs to provide 1.3 GB of
memory for MR-Leo to execute on it (without any con-
nected device) and an additional 2.4 GB per end device
connected to this edge device.

Timing
The timing aspect includes defining a task deadline and
expressing the latency-sensitivity of the application. This
is characterized as a part of the first step, application
understanding.

In this context, the task deadline is the maximum time
elapsed until the MR output is seen on the end device,
starting from one “action” (i.e. recording a frame or ask-
ing for a virtual element to be inserted) initiated on that
device.
As any application relying on live video streaming,

the considered MR application is very sensitive to jit-
ter. Getting video frames late and at an unsteady pace
will degrade the quality of experience of the user. There-
fore, when using an MR workload, it will be impor-
tant to measure how many tasks met their deadline
to determine whether the solution on average meets
the per task delay requirements inherent to such an
application.
In order to determine a suitable deadline for the two

types of tasks, the performance evaluation of the MR-Leo
implementation presented earlier is used. In particular,

Fig. 13 Density function of the fitted distribution

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 17 of 24

Fig. 14 QQ-plot of the data vs. the fitted distribution

this study highlights the need for processing one frame
before the next one comes, to avoid both outdated and
discarded frames. Hence since the frame rate of the proto-
type is 30 fps, the video task deadline can be set to 33ms.
Missing this deadline will not prevent the application to
work but will degrade the quality of service.
Regarding the user task deadline, the graphics will be

added or removed in the next coming video task. There-
fore the deadline for such a task is at least twice the
deadline for a video task, i.e. 66 ms. This is under 100 ms,
which is the limit considered for perceiving the response
as immediate [30].

MRmodels derived fromMR-Leo
In this section, the two models obtained as a result
of applying the workload characterization and modeling
workflow to MR-Leo are presented.

Application model
The application model is a DAG where vertices are com-
putational functions and the edges communication links.
Some simulators, such as iFogSim, require the application
to be modeled in this way.
The application model for MR-Leo is shown in Fig. 15.

It includes computational functions for processing the
user input and the video input, as well as functions
to create the output of the application, which is dis-
played to the end user. Those three functions depicted
in blue are the only ones executing on the user device.
On the edge device, the two other modeled functions
are executed. Those are the offloaded functions depicted
with an orange background. The first and main one
is the Mixed Reality function, where all the computa-
tions related to providing the MR service are performed.
The second one, called Communication service is in
charge of receiving, queuing and sending the inputs to

the MR functions and sending the output to the end
device.
It should be noted that this application model can be

used for any interactive MR application offloading all the
MR computations to the edge, not only MR-Leo. Indeed,
all implementation specifics are abstracted away in this
representation, such as the choice of encoders or content
of the MR framework used. However, we used our knowl-
edge about the architecture of a known application to
provide the abstraction that we believe is implementation-
independent. In a case that some part of the MR func-
tionality is offloaded and some part remains on the end
device, the model can be conveniently changed creating
one bubble at each end.

Statistical workloadmodel
The proposed statistical workload model based on
the characterization of MR-Leo presented in Section
“Characterization derived from MR-Leo” is summarized
in Table 3. It can be used as an input to simulators and
other types of load generators. The model is composed of
three parts: one for the video tasks and one for the user
tasks both being inputs to the edge server, and one for the
edge device, with regards to memory.

How to use anMRmodel and why?
In the previous sections, we presented a characterization
and modeling workflow as well as the results of apply-
ing it to an MR application, MR-Leo. In this section, we
compare our models to an alternative one and thereby
emphasize the benefits of using our approach. We also
discuss the relevance and validity of the approach.

Alternative theoretical model
When evaluating edge algorithms or techniques, few
works actually consider models for specific application

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 18 of 24

Fig. 15 Interactive MR application model

areas [8], although those will exhibit very different work-
loads. One of these works that includes (among others) an
AR application model in their evaluation is the simulation
study by Sonmez et al. [32]. It uses similar load indicators
to the one identified in this work and is therefore used for
illustrating the benefit of our approach. The model from
the Sonmez study, as it is not derived from a real applica-
tion, will be referred to as the theoretical model in the rest
of this section. Values for selected load indicators used in
the theoretical model are presented in Table 4.

Table 3 Overview of the proposed MR workload model

Aspect Model

Video task Task arrival Periodic with interarrival time 33 ms

Computation For 47%:N (μ = 155.62MI, σ = 14.10)

For 53%:N (μ = 322.38MI, σ = 71.18)

Communication 41 kB (full frame, upload and download)

Deadline 33 ms

User task Task arrival Poisson distributed with λ = 5 (min)

Communication 60B

Deadline 66 ms

Edge device Memory Application alone: 1.3 GB

Additional per end device: 2.4 GB

Comparison of the twomodels
We compare the two models in two steps. First, we go
through the selected load indicators and detail what are
the differences between the two models relative to the
metrics. Then, we go further and study how those differ-
ences may impact algorithm evaluations. This is exempli-
fied by comparing the results of the orchestration algo-
rithm proposed in [32] evaluated on a workload based
on their proposed theoretical model and on the derived
MR-Leo model.

Load indicator differences
The first load indicator in our approach is based on defin-
ing what is a task in the model. The theoretical model [32]
does not give any details on what a task is in their context,
and thus what is the basis of the GI computation numbers

Table 4 Overview of selected load indicators from the
theoretical model according to [32]

Task arrival Exponentially distributed with λ = 2 (sec)

Communication
(upload)

Exponentially distributed with λ = 1500 (kB)

Communication
(download)

Exponentially distributed with λ = 25 (kB)

Computation Exponentially distributed with λ = 9 (GI)

Duration of the
active/idle periods

40/20 sec

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 19 of 24

Fig. 16 Task arrival times for one sample of generated tasks using different models

presented in Table 4. It is a generic model for all kinds of
tasks. Therefore, we cannot be sure whether the taskmod-
els are comparable or not (ours is more grounded, theirs
more general), but both aim to capture the same phe-
nomenon, the behavior of MR algorithms on input data
that needs to be analyzed returning an output.
With regards to the second load indicator, task arrival

pattern, the theoretical model considers exponentially dis-
tributed task interarrival time (with λ = 2 seconds)
combined with the concept of active and idle periods. This
means that the application alternates between a phase
where no tasks are generated (the idle period, of length
20 seconds) and a phase where tasks are generated with a
mean interarrival time of 2 seconds (the active period, of
length 40 seconds). Clearly, the load generated with such
a model will have a very different profile from the MR-
Leo load in terms of how often the tasks arrive at the edge
node. This is illustrated in Fig. 16 that shows an example of
the arrival times of tasks during 3 seconds when using the

two models for generating tasks. The theoretical model is
considered in the active phase. The duration of 3 seconds
is arbitrary taken so that the tasks can still be visualized
individually on Fig. 16. The number of tasks is more than
8 times higher using themodel based onMR-Leo (90 tasks
vs 11), which can strain the resources more. Therefore,
testing a task placement algorithm with an underestimat-
ing model may lead to unreliable conclusions. This load is
simply not representative for the real application load.
Moving on to resource demand, the computational

demand is modeled by two parameters in the theoretical
model: the task length in number of instructions and the
percentage of VM utilization. With regards to task length,
the model [32] uses an exponential distribution (with a
mean of 9 Giga instructions) to model it. Fig. 17 shows the
density function for this distribution. If compared with the
density function of the MR-Leo-based model (see Fig. 13),
the different shapes speak for themselves. For example,
when generating 100 000 samples using both distribu-

Fig. 17 Density function of the number of instructions per task in the theoretical model

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 20 of 24

tions, themode for the theoretical model is at around 1260
MI while the two modes of the model based on MR-Leo
are at around 156 MI and 322 MI. Thus, although gener-
ating less tasks as shown in Table 6, the theoretical model
will generate tasks that are 4 to 8 times more computa-
tionally intensive. The difference might be explained by
different application parameters, but the validity of the
assumed CPU load can still be questioned as the paper
does not give a ground for selecting this profile.
For the communication demand, the theoretical model

considers different sizes for the upload (1500 KB) and the
download (25 KB) messages, the assumption being that a
frame is uploaded but only metadata is send back from
the edge. This may well be a reasonable assumption, but
MR-Leo functions differently, justifying a different model
to be used as an alternative. The lower size of the upload
message in the MR-Leo model (41 kB according to the
resource demand study) is conjectured to be due to a
different frame resolution considered by the theoretical
model. Finally, this theoretical model does not include the
memory demand.
Finally, with regards to the timing aspect, the theoreti-

cal model only includes a delay sensitivity parameter for a
task that indicates if the task is delay-tolerant or not, but
no deadline. Asmentioned earlier, avoiding frame queuing
is critical for the QoS of an MR application like MR-Leo.
Identifying a deadline enables measuring the proportion
of tasks missing their deadline. It allows answering a ques-
tion like “How will the user experience likely be with a
placement strategy or offloading strategy of this kind?”

Orchestration algorithm performance
As the workload created with the two models exhibits
different characteristics, especially with regards to task
arrival patterns and computation demand, it is reason-
able to conjecture that an orchestration algorithm would
behave differently in presence of the two workloads. This
idea is further investigated by running the fuzzy algorithm
proposed by Sonmez et al. [32] with a load generator using
the workload based onMR-Leo and comparing the results
to when the same algorithm is run with a load generator
using the theoretical model.
For this experiment, we use the EdgeCloudSim simula-

tor provided by Sonmez et al. and reuse the same param-
eters as in their work [32]. The only changes required in
the earlier code released by Sonmez et al. to adapt for this
experiment were 1) changing the simulation step to one
millisecond instead of one second, and 2) implementing
the MR-Leo based load generator10. In order to obtain
comparable data for the two models, the deadline part of
the MR-Leo model was not included, since this indicator

10Available at https://gitlab.liu.se/ida-rtslab/public-code/2020_mrleo_loadgen

was not included in the original code base. For the com-
putational demand of each task, the distributions from
Table 3 were used to generate the number of instructions,
and the number of required cores was set to 3 according
to the study presented in Section “Number of cores”.
As this experiment aims at highlighting how the same

algorithm may behave differently with different workload
models, we perform the same study as the one performed
in an earlier paper by Sonmez et al. [32]. In this study, they
propose an orchestrator using fuzzy logic that decides
on which virtual machine located in which edge/cloud
device the incoming tasks should be executed (i.e. where
to offload the task). The constraints taken into account
for the decision are network and server capacity as well
as task characteristics such as its number of instructions.
The aim is to show how these will influence the task
service time (i.e. how long a task will take to be sent, pro-
cessed and sent back to the end device). If the network
or the edge/cloud infrastructure gets overloaded, tasks
fail due to lack of capacity and do not get a calculated
service time. Hence, the average task service time is cal-
culated for successful tasks only. Finally, we use the same
edge/cloud infrastructure as in the original study, which is
summarized in Table 5.
The first finding was that due to the more dense arrival

of frames in the MR-Leo-based model, the time period
simulated (i.e. the scenario interval for which tasks are
generated) had to be severely reduced, from 33 minutes to
1 minute, in order to keep reasonable simulator execution
times (i.e. how long the simulation program had to run
to simulate that interval). This is not surprising given that
the number of tasks generated by mobile devices has been
pinpointed to have a strong impact on EdgeCloudSim in
a previous study [38]. Table 6 shows the difference in the
number of MR tasks generated, percentage of MR tasks
that failed, and simulator execution times for the load
generation using the theoretical model and the MR-Leo
model. The number of tasks generated by the MR-Leo
model is on average 73 times higher than the ones gen-
erated with the theoretical model, which creates a system
overload. One manifestation of this overload is the num-
ber of MR tasks failed that is up to 85 times higher with
the MR-Leo workload.

Table 5 Edge infrastructure simulation parameters as in [32]

edge servers 14

cloud servers 1

of VMs per Edge/Cloud server 8/4

of CPU cores per Edge/Cloud VM 2/4

CPU speed per Edge/Cloud VM 10/100 GIPS

Transmission delay Edge-Cloud 100 ms

https://gitlab.liu.se/ida-rtslab/public-code/2020_mrleo_loadgen

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 21 of 24

Table 6 Simulation results (only numbers for MR tasks are shown)

Theoretical model MR-Leo model

mobile devices # tasks generated % failed tasks Sim. exec. time # tasks generated % failed tasks Sim. exec. time

200 1541 0.3% 7sec 94902 0.1% 4min58

400 2325 0.5% 12sec 166196 0.1% 10min51

600 3259 0.5% 15sec 215776 0.1% 15min4

800 4283 0.6% 19sec 364617 29.8% 27min48

1000 6072 0.7% 25sec 409831 36.9% 29min24

1200 7128 0.6% 34sec 508578 47.3% 46min17

1400 7778 0.6% 36sec 586399 54.4% 51min7

1600 8859 1.0% 38sec 658548 59.1 54min59

1800 9464 1.1% 44sec 767977 64.5% 1h0min25

2000 11389 1.2% 48sec 829519 67.3% 1h13min45

2200 12123 1.8% 57sec 931417 70.7% 59min40

2400 13815 5.8% 1min14 990562 72.8% 57min4

The second insight is that this system overload when
using the MR-Leo model will lead to the orchestra-
tion algorithm having to use the cloud resources more,
compared to when the theoretical model generates the
load. Note that since Sonmez et al. [32] did not have the
notion of deadline in their evaluation, instead of tasks
meeting their deadline we look at where completed MR
tasks have been executed. This is shown in Figs. 18a and
18b. The overload leads to the orchestration algorithm
having to use cloud resources already with 400 mobile
devices when using the MR-Leo model, when this was
only necessary starting with 1800 mobile devices for the
theoretical model. Another visible behavior is that a steady
state is achieved from 800 mobile devices with the MR-
Leo model: increasing the number of tasks generated will
only lead to more tasks failing but the number ofMR tasks
completed on both the edge and the cloud is stable. We
use the same criteria for task completion and failure as
Sonmez et al. [32], i.e. a task can fail due to a lack of com-
putational capacity, to a lack of network capacity, and to
user mobility.
The third finding is that the difference in workload will

also lead to the proposed algorithm behaving very dif-
ferently. Considering the average task service times the
two loads are compared in Fig. 19. In fact, the algorithm
performs better according to the criteria used in the Son-
mez study (lower average task service time for completed
tasks) with the MR-Leo-based workload compared with
running with the theoretical load. This may seem counter
intuitive as the system has to handle a lot more tasks11
but it is explained by the fact that in the experiment

11The fact that a higher number of failed tasks are seen with the “realistic”
load is a consequence of the edge/cloud infrastructure in their setup being
provisioned for the load of the original study. This simply is the evidence that
the same simulation platform gives completely different answers with
different load models.

considered in [32], the MR tasks arriving in a Poisson dis-
tribution have a higher CPU resource demand in terms of
number of instructions (see Table 4), so they will occupy
the edge CPU for longer. Service times with the MR-Leo
model are, moreover, quite stable irrespective of the num-
ber of mobile devices considered due to the steady-state
incurred by the system overload. This makes reliance on
the conclusions drawn from a given placement strategy
very hard due to lack of representative data modelling.

Relevance and validity
The lesson learned from this comparison is the need
to move away from non-validated theoretical workload
models, and anchoring models in empirical data. We
already know the necessity to evaluate edge algorithms
with different workloads, as applications envisioned for
the edge paradigm exhibit different characteristics [17,
18]. The question is what should be the input to evalua-
tions. Only evaluating with a Poisson distribution is not
going to give representative results about the actual per-
formance of proposed edge solutions. Our comparison
shows that models which are not based on real appli-
cations, but instead on standard theoretical loads can
produce significantly different evaluation results for the
same edge algorithm. Therefore, creating workload mod-
els anchored in empirical data contributes to more rele-
vant evaluations of algorithms and tools, and perhaps ease
the adoption and deployment of edge computing solu-
tions. In this work, we have been focusing on MR as the
application area. This provides evidence that it may be
worth looking at more cases and derive a generality for the
wisdom.
One obvious concern with this work may be that the

numerical data used for the characterization and as an
input to the MR application model comes from a spe-
cific MR implementation, when used in a specific configu-

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 22 of 24

Fig. 18 Distribution of the completed MR tasks between edge and cloud resources using the orchestration algorithm in [32]

ration (H.264 video transmitted over TCP) using some
specific hardware. This MR implementation is of the type
fully-offloaded, which is the extreme case at the oppo-
site side to a full end-device realization. The choice of
this application is relevant as 1) Any other variants of an
edge-deployed MR application (e.g. [13]) will be a less
demanding version of this application. Applying the same
method would characterize their load. 2) The MR-Leo
prototype is to the best of our knowledge the only avail-
able open-source implementation for such an application
type. 3) The combination of H.264 over TCP is widely
used for video streaming, but by nomeans the only option.
Any video compression format or protocol replacements
can be added as new members in a benchmark family.
4) The hardware used is currently not far from a con-
ceived edge device, but again the actual numbers associ-
ated to measurements can be changed with new hardware
becoming available, and reapplying the method with the
new hardware.
In this work, the numerical data was obtained using

a limited set of pre-recorded videos. Thus, it is possible

that the application will perform differently when get-
ting another type of input. However, the reference video
stream was shot to include some challenging features for
the MR framework used (e.g. it moves out of the origi-
nal scene and then comes back again). This is confirmed
by the performance study presented in detail in our ear-
lier work [9]. We thus believe that the measurements pre-
sented are representative for a good enough combination
of situations where the computational demand on the
MR framework varies over the scenario time. To make
the workload model representative of other video types,
the open-source prototype can be used by others and a
weighted mix of potential videos can be reflected in the
statistical model by applying a small extension of the same
approach.
In a nutshell, this work is a first step towards getting

more realistic models compared to standard theoretical
ones.We have been focusing onMR-Leo but more work is
needed to study the applicability of the approach to other
MR applications and other time-constrained applications.
This is made possible since the approach is illustrated in

Fig. 19 Performance evaluation of the fuzzy algorithm proposed in [32] when using the two compared MR workload models

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 23 of 24

detail and the MR-Leo code can be used as a basis for
developing new variations.

Conclusion
In this work, we extend our study of edge computing
mixed reality using MR-Leo for which timing and band-
width requirements were studied earlier. This extension
includes a resource demand study detailing the computa-
tional demand, a characterization and modelling app-
roach, and its demonstration by applying to MR-Leo.
These results highlight the significance of task arrival
patterns in time-constrained applications like MR. The
understanding gained enables the creation of an appli-
cation model and a realistic statistical model that are
intended to be used in simulation studies. We have shown
why this may be a valuable input to algorithm evaluations.
Future works include studying andmodeling other alter-

natives for the different MR-Leo components such as
different communication protocols or video compression
formats, other MR frameworks, and investigating hard-
ware acceleration in order to determine their impact on
the application performance and workload. The proposed
workload model is planned to be used for further evalua-
tions of orchestration solutions at the edge.
Acknowledgements
The authors would like to thank Marcus Gårdman and his team at Ericsson for
our discussions that led to this work and Ulf Kargén for his expertise on binary
code analysis and the Pin-based tool.

Authors’ contributions
Klervie Toczé designed the experiments, collected data for the number of
instructions executed, performed the characterization and modeling, and
wrote the first draft of the paper. Johan Lindqvist implemented the MR-Leo
prototype, ran the experiments for the performance study and collected data
for the memory and CPU usage. Simin Nadjm-Tehrani critically reviewed the
method used and contributed to structuring and writing the paper.

Funding
This work was supported by the Swedish National Graduate School in
Computer Science (CUGS).

Availability of data andmaterial
The paper includes links to public Gitlab repositories where the code for
MR-Leo, the videos used for the resource demand study, and the code and
data used for the model comparison are provided. Any users of the code and
the data in scientific work are expected to cite this paper as a source.

Competing interests
The authors declare that they have no competing interests.

Received: 26 March 2020 Accepted: 14 July 2020

References
1. Satyanarayanan M (2017) The emergence of edge computing. Computer

50(1):30–39. https://doi.org/10.1109/MC.2017.9
2. Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV (2017) Fog

computing for sustainable smart cities: A survey. ACM Comput Surv
50(3):32–13243. https://doi.org/10.1145/3057266

3. Naha RK, Garg S, Georgakopoulos D, Jayaraman PP, Gao L, Xiang Y, Ranjan
R (2018) Fog computing: Survey of trends, architectures, requirements,
and research directions. IEEE Access 6:47980–48009. https://doi.org/10.
1109/ACCESS.2018.2866491

4. Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: A
survey. IEEE Internet Things J 5(1):450–465. https://doi.org/10.1109/JIOT.
2017.2750180

5. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile
edge computing: The communication perspective. IEEE Commun Surv
Tutorials 19(4):2322–2358. https://doi.org/10.1109/COMST.2017.2745201

6. Baktir AC, Ozgovde A, Ersoy C (2017) How can edge computing benefit
from software-defined networking: A survey, use cases, and future
directions. IEEE Commun Surv Tutorials 19(4):2359–2391. https://doi.org/
10.1109/COMST.2017.2717482

7. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in
the internet of things. In: Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing (MCC ’12). pp 13–16. https://doi.
org/10.1145/2342509.2342513

8. Toczé K, Nadjm-Tehrani S (2018) A taxonomy for management and
optimization of multiple resources in edge computing. Wirel Commun
Mob Comput 2018:7476201–1747620123. https://doi.org/10.1155/2018/
7476201

9. Toczé K, Lindqvist J, Nadjm-Tehrani S (2019) Performance study of mixed
reality for edge computing. In: Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing. UCC’19.
pp 285–294. https://doi.org/10.1145/3344341.3368816

10. Chen Z, Hu W, Wang J, Zhao S, Amos B, Wu G, Ha K, Elgazzar K, Pillai P,
Klatzky R, Siewiorek D, Satyanarayanan M (2017) An empirical study of
latency in an emerging class of edge computing applications for
wearable cognitive assistance. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. SEC ’17. pp 14–11414. http://doi.acm.
org/10.1145/3132211.3134458

11. Chatzopoulos D, Bermejo C, Huang Z, Hui P (2017) Mobile augmented
reality survey: From where we are to where we go. IEEE Access
5:6917–6950. https://doi.org/10.1109/ACCESS.2017.2698164

12. Zhang L, Sun A, Shea R, Liu J, Zhang M (2019) Rendering multi-party
mobile augmented reality from edge. In: Proceedings of the 29th ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video. NOSSDAV ’19. pp 67–72. http://doi.acm.org/10.1145/3304112.
3325612

13. Zhang W, Han B, Hui P (2018) Jaguar: Low latency mobile augmented
reality with flexible tracking. In: Proceedings of the 26th ACM
International Conference on Multimedia. MM ’18. pp 355–363. http://doi.
acm.org/10.1145/3240508.3240561

14. Trinelli M, Gallo M, Rifai M, Pianese F (2019) Transparent ar processing
acceleration at the edge. In: Proceedings of the 2Nd International
Workshop on Edge Systems, Analytics and Networking. EdgeSys ’19.
pp 30–35. http://doi.acm.org/10.1145/3301418.3313942

15. Ha K, Chen Z, Hu W, Richter W, Pillai P, Satyanarayanan M (2014) Towards
wearable cognitive assistance. In: Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services.
MobiSys ’14. pp 68–81. http://doi.acm.org/10.1145/2594368.2594383

16. Bachhuber C, Martinez AS, Pries R, Eger S, Steinbach E (2019) Edge
cloud-based augmented reality. In: 2019 IEEE 21st International Workshop
on Multimedia Signal Processing (MMSP). pp 1–6. https://doi.org/10.
1109/MMSP.2019.8901715

17. McChesney J, Wang N, Tanwer A, de Lara E, Varghese B (2019) DeFog: Fog
Computing Benchmarks. In: Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing (SEC’19). pp 47–58. https://doi.org/10.
1145/3318216.3363299

18. Toczé K, Schmitt N, Brandic I, Aral A, Nadjm-Tehrani S (2019) Towards
edge benchmarking: A methodology for characterizing edge workloads.
In: Proceedings of the 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS*W). pp 70–71.
https://doi.org/10.1109/FAS-W.2019.00030

19. Gan Y, Zhang Y, Cheng D, Shetty A, Rathi P, Katarki N, Bruno A, Hu J,
Ritchken B, Jackson B, et. al (2019) An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge
systems. In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’19. Association for Computing Machinery, New York,
USA. pp 3–18. https://doi.org/10.1145/3297858.3304013

20. Sonmez C, Ozgovde A, Ersoy C (2018) Edgecloudsim: An environment for
performance evaluation of edge computing systems. Transactions on
Emerging Telecommunications Technologies 29(11):3493–1349317.
https://doi.org/10.1002/ett.3493

https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1145/3057266
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1155/2018/7476201
https://doi.org/10.1155/2018/7476201
https://doi.org/10.1145/3344341.3368816
http://doi.acm.org/10.1145/3132211.3134458
http://doi.acm.org/10.1145/3132211.3134458
https://doi.org/10.1109/ACCESS.2017.2698164
http://doi.acm.org/10.1145/3304112.3325612
http://doi.acm.org/10.1145/3304112.3325612
http://doi.acm.org/10.1145/3240508.3240561
http://doi.acm.org/10.1145/3240508.3240561
http://doi.acm.org/10.1145/3301418.3313942
http://doi.acm.org/10.1145/2594368.2594383
https://doi.org/10.1109/MMSP.2019.8901715
https://doi.org/10.1109/MMSP.2019.8901715
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1109/FAS-W.2019.00030
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1002/ett.3493

Toczé et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:46 Page 24 of 24

21. Mukherjee M, Shu L, Wang D (2018) Survey of fog computing:
Fundamental, network applications, and research challenges. IEEE
Communications Surveys Tutorials 20(3):1826–1857. https://doi.org/10.
1109/COMST.2018.2814571

22. Intharawijitr K, Iida K, Koga H (2016) Analysis of fog model considering
computing and communication latency in 5g cellular networks. In: 2016
IEEE International Conference on Pervasive Computing and
Communication Workshops (PerComWorkshops). pp 1–4. https://doi.
org/10.1109/PERCOMW.2016.7457059

23. Lee G, Saad W, Bennis M (2017) An online secretary framework for fog
network formation with minimal latency. In: 2017 IEEE International
Conference on Communications (ICC). pp 1–6. https://doi.org/10.1109/
ICC.2017.7996574

24. Shen S, v. Beek V., Iosup A (2015) Statistical characterization of
business-critical workloads hosted in cloud datacenters. In: 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. pp 465–474. https://doi.org/10.1109/CCGrid.2015.60

25. Talluri S, Luszczak A, Abad CL, Iosup A (2019) Characterization of a big data
storage workload in the cloud. In: Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering. ICPE ’19. ACM,
New York, USA. pp 33–44. http://doi.acm.org/10.1145/3297663.3310302

26. Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays.
IEICE Trans Inf Syst 77(12):1321–1329

27. Mur-Artal R, Tardós JD (2017) Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras. IEEE Trans Robot 33(5):1255–1262.
https://doi.org/10.1109/TRO.2017.2705103

28. PassMark Software PassMark CPU Benchmarks - High Mid Range CPUs.
Accessed 19th July 2019. https://www.cpubenchmark.net/
mid_range_cpus.html

29. PassMark Software PassMark Intel Vs AMD CPU Benchmarks - High End.
Accessed 19th July 2019. https://www.cpubenchmark.net/
high_end_cpus.html

30. Miller RB (1968) Response time in man-computer conversational
transactions. In: Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I. AFIPS ’68 (Fall, part I). ACM, New York, USA.
pp 267–277. http://doi.acm.org/10.1145/1476589.1476628

31. Hand DJ (2008) Statistics. a Very Short Introduction. Oxford University
Press

32. Sonmez C, Ozgovde A, Ersoy C (2019) Fuzzy workload orchestration for
edge computing. IEEE Transactions on Network and Service Management
16(2):769–782. https://doi.org/10.1109/TNSM.2019.2901346

33. Das A, Patterson S, Wittie M (2018) Edgebench: Benchmarking edge
computing platforms. In: 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion). pp 175–180.
https://doi.org/10.1109/UCC-Companion.2018.00053

34. Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) ifogsim: A toolkit for
modeling and simulation of resource management techniques in the
internet of things, edge and fog computing environments. Software:
Practice and Experience 47(9):1275–1296. https://doi.org/10.1002/spe.
2509

35. Casanova H, Giersch A, Legrand A, Quinson M, Suter F (2014) Versatile,
scalable, and accurate simulation of distributed applications and
platforms. Journal of Parallel and Distributed Computing
74(10):2899–2917. https://doi.org/10.1016/j.jpdc.2014.06.008

36. Brogi A, Forti S, Ibrahim A (2017) How to best deploy your fog applications,
probably. In: 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). pp 105–114. https://doi.org/10.1109/ICFEC.2017.8

37. De Maio V, Brandic I (2019) Multi-objective mobile edge provisioning in
small cell clouds. In: Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering. ICPE ’19. pp 127–138. http://
doi.acm.org/10.1145/3297663.3310301

38. Toczé K, Nadjm-Tehrani S (2019) Orch: Distributed orchestration
framework using mobile edge devices. In: 2019 IEEE 3rd International
Conference on Fog and Edge Computing (ICFEC). pp 1–10. https://doi.
org/10.1109/CFEC.2019.8733152

39. Xia Y, Etchevers X, Letondeur L, Lebre A, Coupaye T, Desprez F (2018)
Combining heuristics to optimize and scale the placement of iot
applications in the fog. In: 2018 IEEE/ACM 11th International Conference
on Utility and Cloud Computing (UCC). pp 153–163. https://doi.org/10.
1109/UCC.2018.00024

40. Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware application
module management for fog computing environments. ACM Trans
Internet Technol 19(1):9–1921. https://doi.org/10.1145/3186592

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/PERCOMW.2016.7457059
https://doi.org/10.1109/PERCOMW.2016.7457059
https://doi.org/10.1109/ICC.2017.7996574
https://doi.org/10.1109/ICC.2017.7996574
https://doi.org/10.1109/CCGrid.2015.60
http://doi.acm.org/10.1145/3297663.3310302
https://doi.org/10.1109/TRO.2017.2705103
https://www.cpubenchmark.net/mid_range_cpus.html
https://www.cpubenchmark.net/mid_range_cpus.html
https://www.cpubenchmark.net/high_end_cpus.html
https://www.cpubenchmark.net/high_end_cpus.html
http://doi.acm.org/10.1145/1476589.1476628
https://doi.org/10.1109/TNSM.2019.2901346
https://doi.org/10.1109/UCC-Companion.2018.00053
https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/spe.2509
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1109/ICFEC.2017.8
http://doi.acm.org/10.1145/3297663.3310301
http://doi.acm.org/10.1145/3297663.3310301
https://doi.org/10.1109/CFEC.2019.8733152
https://doi.org/10.1109/CFEC.2019.8733152
https://doi.org/10.1109/UCC.2018.00024
https://doi.org/10.1109/UCC.2018.00024
https://doi.org/10.1145/3186592

	Abstract
	Keywords

	Introduction
	Related works
	Offloading mixed reality to the edge
	Edge workload characterization and modeling

	MR at the edge
	Offloading to the edge
	MR case study
	MR-Leo prototype

	Performance evaluation
	Evaluation setup
	Performance metrics
	Alternative configurations and highlights

	Focus on the edge resource demand
	Data collection and analysis method
	Computation demand
	Number of cores
	Number of instructions per video frame
	Number of instructions in presence of user input

	Communication demand
	Memory demand

	Workload characterization and modeling
	Overview
	Inputs
	Characterization workflow
	Modeling outputs

	Characterization derived from MR-Leo
	Relevant load indicators for edge computing
	Task definition
	Task arrival pattern
	Resource demand
	Timing

	MR models derived from MR-Leo
	Application model
	Statistical workload model

	How to use an MR model and why?
	Alternative theoretical model
	Comparison of the two models
	Load indicator differences
	Orchestration algorithm performance

	Relevance and validity

	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and material
	Competing interests
	References
	Publisher's Note

