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ABSTRACT
The IEC-60870-5-104 (IEC-104) protocol is commonly used in Super-
visory Control and Data Acquisition (SCADA) networks to operate
critical infrastructures, such as power stations. As the importance
of SCADA security is growing, characterization and modeling of
SCADA traffic for developing defense mechanisms based on the
regularity of the polling mechanism used in SCADA systems has
been studied, whereas the characterization of traffic caused by non-
polling mechanisms, such as spontaneous events, has not been
well-studied. This paper provides a first look at how the traffic flow-
ing between SCADA components changes over time. It proposes a
method built upon Probabilistic Suffix Tree (PST) to discover the
underlying timing patterns of spontaneous events. In 11 out of 14
tested data sequences, we see evidence of existence of underlying
patterns. Next, the prediction capability of the approach, useful for
devising anomaly detection mechanisms, is studied. While some
data patterns enable an 80% prediction possibility, more work is
needed to tune the method for higher accuracy.
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1 INTRODUCTION
Modern Supervisory Control and Data Acquisition (SCADA) sys-
tems increasingly depend on information and communication tech-
nologies and become connected to the Internet to allow greater
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Figure 1: The repeated event inter-arrival times caused by a
process value following a time-series pattern.

flexibility and usability. These changes make SCADA systems into
attractive targets for malicious attackers [6, 7, 15].

With the emergence of these threats, many defense mechanisms
were developed to protect these critical cyber-physical systems.
Most existing solutions exploit the periodic patterns that are found
in synchronous communication mode between SCADA network
components [5, 13, 17]. In such a communication mode, a SCADA
master periodically sends requests to a field device (e.g., Remote
Terminate Unit, RTU) and receives corresponding responses later.
However, SCADA protocols such as IEC-104 [2] and DNP3 [1] also
allow asynchronous communication mode, which means there are
some spontaneous events that can be sent from a RTU without
receiving any request. Lack of modeling methodologies for spon-
taneous events has hampered attempts to detect unusual traffic in
these settings.

In order to improve the communication efficiency, most IEC-104-
compatible RTUs scan monitored data in certain addresses with a
fixed rate and generate spontaneous events when the monitored
data has changed (e.g., from 0 to 1) or fallen outside predefined
ranges. In addition to data changes caused by activation of com-
mands, data changes can only be caused by the process subject to
control. We expect that the underlying control loop for the physical
process presents some repeated behaviors and generates process
values containing certain time-series patterns in order to complete
its regular workflow. Consequently, we speculate that the inter-
arrival times of IEC-104 spontaneous events show repeated patterns
when the process values contain repeated patterns as illustrated in
Figure 1.

In this paper, we aim to study the inter-arrival times of IEC-
104 spontaneous events using the formalism of Probabilistic Suffix
Tree (PST) and analyzing the traffic regarding its phase transitions,
predictability, and frequent patterns. The contributions of this paper
are:
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• We provide a systematic approach to model the timing of
IEC-104 spontaneous traffic generated from a RTU and a
process that follows the above hypothesis.
• Using data from emulated traffic in test labs, we show that
there exists certain timing patterns in the IEC-104 sponta-
neous traffic and the patterns could provide prediction ability
over a long observation time.

The rest of the paper is organized as follows. Section 2 provides
the needed background about IEC-104 and PST. Section 3 discusses
the related work. Section 4 describes the proposed modeling ap-
proach. Section 5 provides the overview of datasets used in this
paper and presents the analysis of traffic. Finally, Section 6 con-
cludes the paper and describes the future works.

2 BACKGROUND
This section provides an overview of IEC-104 protocol and the
frame format used in this study. It also presents a brief introduction
of PST with a focus of calculation of conditional and zero-order
probabilities, which are used in our analysis.

2.1 IEC-60870-5-104
The IEC-104 protocol is widely used in modern SCADA systems.
The basic frame in the IEC-104 protocol is called Application Pro-
tocol Data Unit (APDU) and an APDU frame can be in U, S or I
format. The unnumbered control frame (U) is used for test, start
or stop communication flows. The supervisory format (S) is used
to perform numbered supervisory functions. The information in-
struction format (I) is used for sending numbered commands and
information. Spontaneous events can only be sent in the I format.

Figure 2 presents the frame format for I type packets. An I format
APDU is formed of the Application Protocol Control Information
(APCI) and Application Service Data Unit (ASDU). The APCI con-
tains basic information such as length of packet and sequence
number and the ASDU contains the detailed attributes. There are
the three attributes used for event identification and extraction in
this study. Type identification contains the instruction code. Cause
of transmission is always Spont for a spontaneous event. Informa-
tion object addresses (IOA) are the addresses of the monitored data
within the RTU.

2.2 Probabilistic Suffix Tree
A PST is a tree structure that can be used to learn the underlying
pattern of a given sequence. Figure 3 is a PST learned from a se-
quence formed over a symbol set S = {A,B,C,D} where the length
of the sequence is 2000. The maximum depth of the tree is set to
2. L0 contains the root node e representing an empty string and
connecting to four child nodes representing four symbolsA,B,C,D
in L1. At this level, each node stores the number of occurrences of
this symbol in the sequence. We can easily calculate the empirical
zero-order probabilities P(A) = 387/2000, P(B) = 1304/2000, etc
and know the probability distribution of unique symbols.

However, with the existence of patterns in a sequence, the proba-
bility of each element is conditional on the recent observed elements
(i.e., the context). For the nodes in the L2 and following levels, they
record the number of occurrences of a symbol σ given the context
c formed of the symbols on the path in the tree up to the root node

Figure 2: The I type frame format.

Figure 3: Example PST for a sequence of length 2000 contain-
ing 4 symbols. The maximum depth is 2.

e . This allows us to efficiently calculate the conditional probability
P(σ |c) through:

P(σ |c) ≈ N (cσ )∑
ω ∈S N (cω)

(1)

where N(x) is the number of occurrences of a subsequence x and S
denotes the symbol set as mentioned above. Thus, in the example
above,

P(A|A) ≈ 6
378
≈ 0.0159 (2)

In ourwork (in section 5) we use the zero-order probabilities from
an earlier observed sequence of inter-arrival times to represent the
distribution of inter-arrival times and the conditional probabilities
to predict the next event timing in our analysis.

3 RELATEDWORK
Network analysis and characterization can be helpful for network
management, creating more accurate model for simulation or traffic
generation, designing and developingmore efficient intrusion detec-
tion algorithms, and device fingerprinting. In the SCADA domain,
Mahmood et al. [14] analyzed four traffic measurement methods
regarding traffic matrix, traffic volume, traffic dynamics and traffic
mixture. They proposed solutions to apply network traffic monitor-
ing techniques to SCADA systems. This work used frequent itemset
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mining techniques to cluster network traffic flows. However, no
analysis results of SCADA traffic was presented.

Research that contains analysis of SCADA traffic from real fa-
cilities has been published in a few instances. In 2012, Barbosa et
al.[3] compared the SCADA traffic of a water facility with tradi-
tional IT traffic and found that the SCADA traffic does not exhibit
characteristics used to model the traditional IT traffic including
diurnal patterns, self-similarity, log-normal connection sizes, and
heavy-tail distributions. In a separate work [4], Barbosa et al. com-
pared the SCADA traffic with SNMP traffic and showed that both
traffic types exhibit periodical behavior, as a consequence of the
polling mechanism used to retrieve data. In 2014, Jung et al. [11]
characterized the traffic of a power station network with variations
in frame size, TCP connections, TCP ephemeral port number, and
TCP initial sequence number. Formby et al. [8] characterized the
traffic from the same environment and found TCP vulnerabilities
in power grid devices. These approaches presented a high level
characterization using general attributes such as TCP headers and
traffic volume but not focused on a specific SCADA protocol.

There has been a particular interest in detailed characterization
of SCADA traffic more recently. Goldenberg and Wool [10] used
Deterministic Finite Automata (DFA) to model the cyclic behavior
of Modbus. Kleinman and Wool also applied the DFA approach to
S7 protocol [12]. In 2017, Formby et al. [9] characterized the power
grid traffic. This work focused on DNP3 protocol and examined
some common assumptions about the SCADA network such as
stable traffic volume, regularity of DNP3 poll time, and long avail-
ability of SCADA devices. Our work is different from the previous
work by providing analysis and detailed characterization of the
traffic generated from a non-polling mechanism within a different
standardized protocol. This extends our understanding of SCADA
traffic characteristics.

4 PROPOSED MODELING APPROACH
Our proposed approach starts by collecting a data set from oper-
ations of a SCADA system, and uses this data set to characterize
non-polling data. In addition to the data collection, it contains three
main components as shown in Figure 4. First, the extractor module
extracts timestamps of events with the same attributes as event
sets. We will call the sequence of event inter-arrival times ∆, and
denote each inter-arrival time appearing in the set by δi .

Second, the cluster module creates symbols (e.g., δA,δB , ...) for
groups of inter-arrival times which are "similar" and uses these
symbols to create symbolic sequences corresponding to ∆. We call
the symbolic representation ∆cateдor ical .

Finally, the symbolic sequences are input to the PST builder
module and build a PST for each extracted event set.

The processes in Figure 4 where the solid rectangles are com-
ponents and the round-shaped boxes are the input/output objects
are described in more detail in the next subsections. The extractor
is written in Python and the cluster module is in the R language.
The PST builder is mainly based on method calls from the PST1

package.

1http://CRAN.R-project.org/package=PST

Figure 4: Modeling flow of the system components.

4.1 Extractor
The extractor module reads a pcap file collected in a single master-
RTU flow in text format and identifies spontaneous events when
it finds the Cause of transmission of a packet is Spont as presented
in section 2.1. The module then extracts the timestamps of sponta-
neous events using the time each packet was captured and outputs
the timestamps in csv files. Each csv file represents a unique event
set having the same Type identification (instruction code) and Infor-
mation object address (IOA). Note that the extractor extracts events
belonging to different event sets when a packet contains multiple
information objects.

From the timestamps extracted the inter-arrival times (δi ) can
now be created.

4.2 Cluster
The cluster module is responsible for transforming the numeric
sequence of n inter-arrival times ∆ = δ1 . . . δn in each event set into
a symbolic sequence ∆cateдor ical = δAδB . . . δA of size n formed
over a symbol set S of sizem. Each symbol in S is a categorized
representation of a group of inter-arrival times.

The sequence ∆ is divided into equal length segments ∆i where
the first segment will be used for learning by clustering and PST
generation. The whole process contains three steps: (1) smoothing,
(2) finding boundaries, and (3) sequence generation.

Smoothing. This module first uses kernel density estimation
function density() in R standard library to smooth the distribu-
tion of ∆1. Figure 5(a) shows part of the frequency distribution
of inter-arrival times which is less than 10 seconds and Figure
5(b) is corresponding smoothing results, called ∆1_smoothed . The
bandwidth parameter for kernel density estimation decides the
smoothness level. Its value is manually selected through a variety
of tests until the space in each cluster (i.e., the distance between
the right boundary and left boundary of a cluster) is almost even
because the IEC-104 compatible RTUs usually scan the monitored
data in a fixed rate. However, it is not set to optimize the prediction
results in the later analysis section.

Finding boundaries. The next step the finds the cluster bound-
aries on the smoothed distribution with Algorithm 1. For the
∆1_smoothed where we can find MAX_SYMBOL_NUM or more
clusters, we will only report theMAX_SYMBOL_NUM − 1 largest
clusters and then categorize the others into the undefined (X) clus-
ter. Each cluster in ClusterList will be denoted by a symbol in S .
This limitation of theMAX_SYMBOL_NUM in Algorithm 1 gives
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Figure 5: Distribution of inter-arrival times from a se-
quence within an event set in our data: (a) Histogram of
δi ≤ 10 seconds. (b) The smoothed version of the sequence,
bandwidth=0.008.

the number of unique symbols we can use for modeling the traffic,
m ≤ MAX_SYMBOL_NUM .

Algorithm 1: Finding cluster boundaries
1 Cluster;
Input :∆smoothed
Output :A list of cluster boundaries

2 ClusterList ← empty // list for output

3 for i := 1 toMAX_SYMBOL_NUM − 1 do
4 peak ← IndexO f MaxElement(∆smoothed );
5 L = R = peak ;
6 while ∆smoothed [R + 1] < ∆smoothed [R] do
7 R ← R + 1;
8 end
9 while ∆smoothed [L − 1] < ∆smoothed [L] do

10 L← L − 1;
11 end
12 ClusterList[i] ← (L,R)
13 if (L == R) then
14 break;
15 end
16 end

Sequence generation. Finally, the next step categorizes each
inter-arrival time δi in ∆ by mapping it into a symbol in S and
generates sequence ∆cateдor ical .

4.3 PST builder
The PST builder module uses the pstree() function of PST package
to learn the PST models from the output ∆1_cateдor ical without
setting any pruning or smoothing parameters. The height of the PST
has to be fixed in order to manage the computational complexity.
The datasets typically include repeated patterns of few symbols
long which may guide the choice of height to capture those frequent
patterns. This has to be determined experimentally.

5 ANALYSIS
This section first presents the overview of the used datasets and
then describes the analysis part of the work in detail. Our analysis
consists of three different aspects that provide a detailed charac-
terization of the datasets. The phase transition analysis is used to
show that there exists a few numbers of phases, in which the distri-
bution of inter-arrival times are relatively stable (Section 5.2). The
predictability analysis validates the existence of sequence patterns
of inter-arrival times by comparing the prediction capability of the
built PST models and pseudo models. A pseudo model is built upon
a dataset that is synthetically generated from the zero-order prob-
abilities of the built model using the random walk methodology.
Therefore, the generated dataset follows the same distribution as
the original dataset but there’s no dependencies between any pair
of adjacent symbols (Section 5.3). The third analysis, the frequent
pattern analysis, presents the most frequent patterns for different
event sets and explains the predictability analysis results (Section
5.4).

5.1 Datasets and parameter settings
In this study we analyze two different datasets: One is from a small-
scale SCADA laboratory maintained by the Department of Indus-
trial Information and Control Systems at KTH (Royal Institute of
Technology) with real hardware components [16]. This laboratory
contains 4 RTUs but the available dataset includes only traces of
RTU 1 and 4, which are further used for modeling and analysis. The
second dataset is from the virtual SCADA network RICS-EL that
is developed in our project. RICS-EL emulates an electricity utility
network extending FOI2 Cyber Range And Training Environment
(CRATE). The process dynamics are generated and provided by a
major SCADA vendor in an emulated environment that uses their
product. Both of the datasets are network traces in the pcap format.

Table 1 shows the overview of the used traces and the extracted
event sets. We separate the extracted events into roughly two-hour
segments with the following equation:

number of segments = ⌊duration/2⌋, (3)

where the duration is the length of time (hours) over which the
event sequence was collected. We then use the first segment for
training the model and the remaining ones for analysis. Since the
learning sequence may be formed of underlying patterns with
missed or additional elements, the size of the training segment
must be large enough to avoid biased learning results. Therefore,
we only use event sets where the number of elements in a two-hour
segment is larger than 100 events. We give each used event set a
unique name and refer to it with its name in the rest of the paper.

In our experiments we chose the height of the PSTs to be 6
since we found repeated patterns found of 2-4 symbols long in our
datasets. The PST library we used has a default value of 12 symbols
as the limit in Algorithm 1. The default value was kept to explore
its suitability for the model and retain the known performance
properties of the package.

2Swedish Defense Research Agency (https://www.foi.se)
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Table 1: Overview of used traces and the extracted event sets

Traces Duration Size Instruction IOA # of events Name

KTH-RTU1 6 days 468,199KB M_ME_NA_1 1 387340 K_1_1
2 1130288 K_1_2
3 467223 K_1_3
4 1132359 K_1_4

KTH-RTU4 6 days 278,519KB M_ME_NA_1 2 333676 K_4_2
3 1141439 K_4_3
4 177922 K_4_4

RICS 12 days 448,002KB M_ME_NA_1 10001 2 —
10002 18899 R_02
10004 2 —
10005 39512 R_05
10010 1057 —
10011 236315 R_11
10012 7059 —
10013 1233 —
10014 17256 R_14
10015 3835 —
10016 17609 R_16
10017 3818 —
10020 1 —
10091 198844 R_91
10092 207893 R_92

5.2 Phase transitions
As observed in earlier works [10, 12], SCADA traffic sometimes
contains phase transitions. In this study, we define a phase as a
period of time that the distribution of inter-arrival times is stable.
A phase transition happens when the changes of the distribution
falls outside a certain range.

Because the transition probabilities from a L0 node to the L1
nodes represents the distribution of the unique symbols (i.e., inter-
arrival times) in a PST as described in section 2.2, we build a PST for
each ∆i_cateдor ical and calculate the distances from the L0 node of
the first segment to every L0 node of the remaining segments using
the following steps. For any given two L0 nodes e1, e2 from two dif-
ferent trees, there exists two sets of L1 symbols S1 = {σ 1

1 , . . . ,σ
1
p }

and S2 = {σ 2
1 , . . . ,σ

2
q }. For each L1 symbol, the transition probabil-

ity is denoted as p(σki ) for k ∈ {1, 2}. The L0 distance D between
e1, e2 is defined as:

D =
∑

σ 1
i =σ

2
i

(p(σ 1
i ) − p(σ

2
i ))

2 +
∑

σ 1
i ,σ

2
i

p(σki )
2 (4)

The left term of equation (4) captures the difference between fre-
quency of the same symbol appearing at L1 level in two different
segments. The right term captures the case where some symbol ap-
pears in one tree but not in the other. Hence, the larger the distance
the more different the patterns are in the two segments.

Figure 6 shows the changes of L0 distance over time for different
event sets from Table 1. We observed five groups of traffic pattern.
The group I event sets contain strongly cyclic patterns of change
in the distribution of inter-arrival times. The group II event sets
contain weakly cyclic patterns in the sense that the changes of

the distribution are relatively small. The group III event sets have
almost no change of distribution. The group IV presents irregular
bursts over time. Finally, the group V event sets contain a series
of bursts for a period of time, which are collectively considered
as a phase. The red lines indicate the starting or stopping point of
another phase.

In order to discover phase transitions, for the group V event
sets, we find the starting and stopping point of another phase by
detecting bursts when the changes of L0 distance exceeds a phase
transition threshold (PTT). We do this by locating the first and last
burst, and setting the interval between the first and last burst as
another phase if the last burst is not found in the end of the event
set.

In order to standardize the threshold selection procedure, we
consider an acceptable deviation ϵ which is small enough so that
even if it accumulates for every symbol it will not signify a phase
transition. This value has to be chosen experimentally and used to
determine phase transition threshold through equation (5).

PTT =m ∗ ϵ2 (5)

wherem is the previously mentioned number of unique symbols
learned in the first segment (Section 4.2).

Next section presents the predictability of event sets in different
groups, together with the selected ϵ and length of phases for group
V. For the sake of clarity, we refer to the first phase of an event set
as ϕ for the following analysis.
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Figure 6: L0 distances over time (hours) for different event sets.

5.3 Predictability
There are two metrics used in the predictability analysis, prediction
accuracy and Kappa value. To calculate the prediction accuracy of
each segment, we run a sliding window of size 6 (tree height) within
each ∆i_cateдor ical , i , 1, and input the sequence in the sliding
window as a context to the predict() function. The function queries
the built PST from ∆1_cateдor ical and returns the probability of
each symbol calculated by equation (1). We choose the symbol
with the highest likelihood as our predicted value for a position. In
each segment, we calculate the observed prediction accuracy with
equation (6) using the resulting confusion matrix. Here, N is the
number of predictions performed based on the size of the sliding
window and the size of the segment. c is the number of unique
symbols appearing in predictions or actually in the segment, which
is the number of rows and columns in the matrix. ni j is the number
of times the symbol i (ground truth) is predicted as j.

observed accuracy =
∑c
i=1 nii

N
(6)

In order to get the Kappa value, we also calculate the expected
accuracy by summing up the probability that the predicted value
and the ground truth happens to be the same.

expected accuracy =
c∑
i=1
(ni+
N
× n+i

N
) (7)

where ni+ is the total number of times the symbol i appears in
the segment and n+i is the total number of times any symbol is
predicted as i . Kappa value is

Kappa =
observed accuracy − expected accuracy

1 − expected accuracy
(8)

The Kappa value of the prediction results is used to indicate when
the observed accuracies are higher than the expected accuracies
(Kappa is not around 0).

The observed prediction accuracy and Kappa value are applied to
both the built model and the pseudo mode (the randomly generated
model described at the beginning of section 5) for each event set in
order to confirm the existence of sequence patterns. For a pseudo
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model we expect the Kappa values to be around 0 and for a built
model we expect the Kappa values and prediction accuracies to be
higher than the values produced by the pseudo model due to the
presence of repeated sequences.

Figure 7 presents the results of the predictability analysis over
time (hours). The Kappa value of a pseudo model is always around
0 for all the event sets as expected. Except for the group I event sets
and R_05, all of the event sets present ideal results: the prediction
accuracies and Kappa values of the built model are higher than
the values of the pseudo model in the whole duration even for the
group V event sets with phase transitions.

Table 2 summarizes the selected ϵ , length of ϕ, and the predic-
tion accuracies for the four event sets with phase transitions. We
can see that K_4_3 and K_4_4 have better average accuracy and
Kappa value in the first phase (column 4 and 5) than the whole
duration. However, the impact of phase transitions of K_4_2 and
K_1_3 is not significant. This may be caused by the low prediction
capability of the built models. That is, the built models only capture
a small amount of underlying patterns and these patterns are not
significantly changed after the phase transitions.

On the other hand, the group I event sets and R_05 do not present
such ideal behaviors. In the case of R_05 the Kappa values and
accuracies of built model are better than the values of the pseudo
model for most of the time, but in the case of the R_14 and R_16,
the values of the built model are no better than the values of the
pseudo model. All of them have cyclic drops of prediction ability.
We present a further study and explanations of these cases in the
next section.

5.4 Frequent patterns
In this section, we look into the frequent patterns of the built models
for all event sets by using the pmine() function of PST package
in order to understand the challenges of modeling spontaneous
events and the limitations of our approach. For cases where the
predictability was high we expect a frequently appearing set of
patterns.

Figure 8 illustrates pattern mining results. For each dataset we
have depicted the 10 most frequent patterns of length 6 (correspond-
ing to the tree height and sliding window in the previous sections)
extracted by mining, shown as a block of colored cells. The y axis
of a block gives the order of the frequent patterns. 1 denotes the
most frequent pattern. The symbol 0-10 in the legend denotes the
inter-arrival times located in the first to eleventh largest cluster.
Symbol 11 denotes the inter-arrival times in the undefined cluster X.
Note that the same symbol can represent different time for different
event sets. We can conclude the following points from Figure 8.

• For the event sets that present stable L0 distance distribu-
tions in the whole duration or before phase transition, but
have low average prediction accuracy around 20% (K_1_2,
K_1_4, K_4_2), we can observe a lot of symbols from the
undefined cluster in the learned frequent patterns (shown as
dark yellow cells). This indicates the need of a larger symbol
set, which is currently limited by the default setting of the
used PST package.
• In contrast, the event sets that show non-ideal results in
the predictability analysis (R_14, R_16, R_05) have just a

few or no symbols from the undefined cluster in the learned
frequent patterns. This was somewhat unexpected. How-
ever, after examining the whole event sets, we found that
the number of undefined symbols highly increases in the
non-learning segments. This indicates the need for longer
learning period up to the length of the cycle and perhaps
leads to the need of larger symbols sets as well. Since the
length of the observed cycles is around 24 hours, the needed
size of sequence for prediction could be over 3900 events.
• There are 6 event sets, R_91, R_92, R_11, K_1_1, K_4_3 and
K_4_4, that show moderate to high level of prediction accu-
racy (40%-80%). They have two common characteristics. First,
there is no undefined symbol in the learned frequent pat-
terns of these event sets. This means the undefined symbols
occur infrequently. Second, there are some short underlying
patterns that are repeatedly visible. For example in R_91
and R_92, we can find the unique and most frequent se-
quence "0002" appearing several times. For K_4_4, there are
instances of "10" and "12" sequences appearing repeatedly.

5.5 Insights
This section briefly summarizes the insights obtained after our
analysis.

Before performing this work we were not aware of any inter-
arrival patterns for spontaneous events in our datasets. Our phase
transition analysis disclosed 5 categories (groups I to V from Figure
6) in our datasets. Getting to know your data is the first step in
building suitable anomaly detection systems.

Our hypothesis was that predictability is a function of length
of learning interval and potential patterns in data, but we had no
idea about any patterns in our data. Having done the frequent
pattern analysis (Figure 8) we discovered the diverse variations of
patterns in our data. These are orthogonal to the category groups.
Our learning period, using 2-hour segments, turned out to be too
short for cyclic and some weakly cyclic datasets. The analysis led
us to a more detailed examination of some datasets where 24 hours
(corresponding to the 3900 events above) would be a more suitable
learning interval.

Based on this work PST can be a useful method for getting
insights on timing patterns in collected data. In 11 out of 14 of
our event sets we could get reasonable predictability. Hence, it is
worthwhile to explore anomaly detection of spontaneous events at
least in these cases.

6 CONCLUSIONS AND FUTUREWORK
This paper applies probabilistic suffix tree to model and analyze two
emulated IEC-104 datasets regarding the timing of the spontaneous
events.

Using the changes of distribution of different event inter-arrival
times over time, we categorize the traffic into 5 different groups,
namely strongly cyclic, weakly cyclic, stable, bursty, and phase
transitional groups. Using the prediction capability of the PSTs we
tried to ascertain whether patterns present in the learned data set
segments could be seen to appear in the test segments. 11 out of
14 event sets show evidence of presence of underlying patterns.
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Figure 7: Predictability analysis results.

Table 2: Summary of predictabilities in the first phase and the whole event sets

Event set ϵ Len. of ϕ Avg. accuracy in ϕ [%] Avg. Kappa in ϕ Avg. accuracy (full) [%] Avg. Kappa (full)

K_4_2 0.03 77 hours 20 0.03 22 0.02
K_4_3 0.03 61.7 hours 52 0.33 41 0.26
K_4_4 0.03 61.6 hours 52 0.33 50 0.26
K_1_3 0.04 89.9 hours 27 0.07 27 0.06

6 event sets show moderate to high level of prediction accuracy
(40%-80%) with our modeling approach.

Although the datasets used in this paper are emulated, they
show a diverse set of possible timing patterns in SCADA networks.
Irrespective of dataset, the probability distributions of event inter-
arrival times present clear peaks similar to those presented in Figure
5. These distributions can be stable over tens to hundreds of hours.
Based on the observation of the positive predictability results we
have an indication that building an anomaly detector to detect
inserted attack packets from machine-generated streams is worth
pursuing in more detail.

While the preliminary results show the idea of modeling tim-
ing patterns of spontaneous events using PST is satisfactory, there
are some challenges to model the timing of spontaneous events

as well as some observed limitations in our approach. PSTs have
a computation complexity which may not work with tree heights
exceeding a certain level. Considering the computation capability of
a current computer, creating and using an accurate timing model of
spontaneous events with a long cycle (e.g., 3900 events in a 24-hour
cyclic pattern observed in one of our event sets) becomes quite chal-
lenging. The current setting in the ptree() function of PST package
limits the maximum number of used symbols to 12. This means we
can only model the inter-arrival times with the eleven highest prob-
abilities. This setting works when the distribution of inter-arrival
times are centered. A dispersed distribution of inter-arrival times
will cause too many undefined symbols and lose the prediction
ability. In the current state, the approach was not applicable to all
variation of event sets in our data.
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Figure 8: Pattern mining results.

This work discovered the potential of modeling the timing of IEC-
104 spontaneous events. The obvious future work includes studying
the properties of a PST library with a higher maximum number of
symbols limitation. This allows to explore the strongly cyclic group
of traffic as a foundation for future research on anomaly detection.

We plan to collect longer datasets from real SCADA systems in
different domains, conduct an empirical analysis, and compare the
results with the insights from the synthetic datasets. This will be
a basis for generating emulated data in our test bed that closely
resembles the real datasets. Understanding different patterns allows
creating data that resembles data from different domains, stake-
holders, or SCADA configurations. This means specially crafted
attacks can be generated and studied in a "safe" environment that
resembles real networks, and mitigation strategies created to deal
with them.
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