
Automatically Proving the Correctness of Vehicle Coordination

Mikael Asplund

Department of Computer and Information Science,
Linköping University, Sweden

Abstract

In the next generation of road-based transportation systems, where vehicles exchange information and coordinate their
actions, a major challenge will be to ensure that the interaction rules are safe and lead to progress. In this paper we
address the problem of automatically verifying the correctness of such distributed vehicular coordination protocols.
We propose a novel modeling approach for communicating mobile entities based on the concept of satisfiability
modulo theories (SMT). We apply this method to an intersection collision avoidance protocol and show how the
method can be used to investigate the settings under which such a protocol achieves safety and progress.

Keywords: formal verification, vehicular coordination, SMT, intersection collision avoidance

1. Introduction

Advanced driver assistance systems (ADAS) are
becoming increasingly sophisticated and connected.
Emerging applications include vehicle platoons, colli-
sion avoidance, and emergency vehicle awareness. De-
spite the increasing interactions between vehicles, the
industry currently lacks methods to ensure safety and
correctness for collaborative vehicle systems. For ex-
ample the current ISO 26262 functional safety standard
is only concerned with in-vehicle functions.

In this paper, we present a novel approach to the
formal modeling and automatic verification of vehicu-
lar coordination, including models of the environment
and unreliable wireless communication. We propose us-
ing the concept of satisfiability modulo theories (SMT)
which allows complex domain-specific models to be ex-
pressed while also supporting automatic verification of
correctness properties. We discuss different modeling
choices regarding the expressitivity/tractability trade-
off, and present a system model that we demonstrate to
achieve a useful balance.

In previous work [1], we formalized a coordination
protocol [10] designed to achieve intersection collision
avoidance (ICA) using inter-vehicle communication. In
that work, we created a very basic model of the envi-
ronment, which only encompassed a single intersection.
We used this to prove the safety of the algorithm (i.e.,

Email address: mikael.asplund@liu.se (Mikael Asplund)

guaranteeing that it did not end up in a bad state). We
now present a general modeling framework for describ-
ing sets of roads, intersections, vehicles, and shared re-
sources. We expand the case study from our previous
work to account for this new more general environment
model. Moreover, we show the parameter conditions
under which the case study achieves both logical safety
and progress (as opposed to just logical safety in our
previous work).

The rest of this paper is organized as follows. Sec-
tion 2 presents our system model and our approach for
formalizing vehicle coordination. Section 3 contains a
validation of our approach. Finally, Section 4 describes
related work, and Section 5 concludes the paper.

2. System Model

Our approach to formalize the vehicle coordination
problem is to model the system as a set of time-
dependent constraints in combination with a traditional
hybrid automaton describing a specific subject vehicle.
In this section we describe our basic modeling frame-
work including how the physical environment and com-
munication capabilities are represented.

The goal of our modeling phase is to provide a set
of basic building blocks with which a sufficiently de-
tailed representation of a system with collaborating ve-
hicles can be constructed. Because we will use this
model to formally prove the correctness of a coordina-
tion approach it is important to balance the need of ex-

Preprint submitted to Elsevier January 14, 2018

Environment

Core
Automaton

Other
Entities

Coordination
Protocol

Network

Subject entity

Time-dependent
Constraints

Figure 1: System model overview

pressitivity (which allows realistic representations) with
tractability (i.e., to keep the model abstract enough for
automated proofs).

Figure 1 shows an overview of how our system model
is constructed. It is composed of a “core” automaton,
which encodes the behavior of a vehicle under different
circumstances and a set of time-dependent constraints,
which capture the properties of the surroundings (in-
cluding other vehicles). We model the system as a tuple
M = (E,R,X,Π,M,S, I,T,F,C) composed of a num-
ber of infinite and finite sets, and a mapping, as shown
in Table 1.

Table 1: Components of the system model
Component Description
E a set of entities (vehicles)
R a set of routes
X a set of intersections
Π a set of resources
M a set of messages
S a set of states
I ⊂ S a set of initial states
T : S × S→ Bool a transition function
F a finite set of predicates
C a finite set of constraints

Note that the sets E,R,X,Π,M,S, and I can all be
infinite, thereby allowing us to model an unbounded
number of cars, routes, intersections and communica-
tion messages. The set of predicates (or uninterpreted
functions), F, provides the semantics for the states of the
core automaton. The allowed domains and ranges of the
functions are the real numbers (time), integers, and any
of the sets in our model. An example of an uninterpreted
function that we use in our model is tsnd : M → R,
which denotes the sending time of a given message.

The constraints in C provide us with a way to de-
scribe the properties of the environment and other as-
sumptions that we need to adopt. The constraints ap-
ply over the same domains as the uninterpreted func-
tions, F, and may also contain quantifiers. An exam-

ple of a constraint (which we do not use) could be
∀m ∈ M : tsnd(m) ≤ 10, which would say that no mes-
sage is sent after the time point 10.

We let the states in S and the transition function T de-
note the state and behavior of the specific subject entity.
The behavior of other entities in the system is modeled
using the constraints in C. This allows us to provide
a more detailed internal model of a single entity, and
model other entities using assumptions regarding their
observable behavior (including communication).

Finally, consider the transition function T (i, j), where
i and j are states, which is used to characterize the
behavior of the subject entity. We encode the hybrid
automaton as a transition function that alternates be-
tween timed and non-timed transitions which is a com-
mon procedure when modeling hybrid systems. The full
model cannot be described here due to space restric-
tions, but can be shared with the research community.

3. Validation

We implemented our model using Z3Py, which pro-
vides a Python API to the Z3 v4.3.1 theorem prover.
Essentially, we have a number of first-order predicate
logic formulae which we express as python functions.
These can be combined into a model M. The goal of the
verification is to show that the model M logically entails
a safe state for all reachable states Sr ⊂ S:

M |= ∀i ∈ Sr : safei

where safei is a safety predicate. The most basic def-
inition of the safety predicate is to require no collisions
between entities. We call this the noCollision predicate
which states that if the subject entity is in an intersec-
tion, then no other car can be in the same physical re-
source. We employed limited k-induction [9] and safety
invariants to ensure that the model could be tractably
handled by the Z3 theorem prover [1].

In the remainder of this section we present a valida-
tion of our approach using three important aspects: con-
sistency, crash-freedom, and progress. We use the term
consistency to mean that the model is logically sound
so that at least some basic behaviors are supported by
the model. Crash-freedom means we can prove that if
the vehicles adhere to the coordination protocol, then
no crashes will occur due to faults in the protocol. Note
that we cannot guarantee crash-freedom in the general
case, because this depends on many other factors in a
real-life traffic scenario. We simply prove that the coor-
dination protocol works as intended. Finally, we prove
that the protocol also guarantees progress in the sense

2

that vehicles must not wait forever to pass the intersec-
tion.

3.1. Scenario

We have applied our formal modeling approach to an
intersection collision avoidance case study. The sce-
nario is based on a four-way intersection where vehi-
cles can arrive from all four directions. The vehicle un-
der study approaches the intersection, and executes a
coordnation protocol (CwoRIS) to agree with the other
vehicles when it is safe to pass the intersection. De-
tails of the core automaton and protocol formalization
is published elsewhere [1], albeit for a simpler environ-
ment and communication model than we have used in
this work.

The CwoRIS protocol ensures vehicle coordination
through the use of resources that correspond to a physi-
cal area of the road. Every entity is responsible for not
entering a resource without having made sure that it has
exclusive access to that resource. The protocol uses a
series of exchanged messages and local data structures
to infer whether there are potential conflicts for a re-
source. The protocol also uses priorities to avoid circu-
lar deadlocks.

3.2. Consistency

The first step of the validation is to ensure that the
model is sound in the sense that we have not made it
overly restrictive. In particular, it should always be pos-
sible to transition to a new state in the automaton of the
system. If the model is stuck, this means that there is an
error in the representation of the real world.

We introduce a successor function succ : S → S,
where for each state this returns a new state to which
there is a valid transition. The successor function can
be derived from the definition of the transition function
without major effort. Because succ is always guaran-
teed to provide an output for every input state, we can
prove freedom from deadlock by proving the following
formula:

M |= ∀i, j : T (i, j)⇒ T (j, succ(j))

3.3. Crash-freedom

The protocol studied here can be shown to guarantee
freedom from crashes under certain assumptions on the
parameters. Figure 2 shows a matrix of parameter com-
binations for which the system can be proven to avoid
collisions. The rows (y-axis) in the matrix represent the
distance to the intersection center at which the vehicle

P
re

p
a
ra

ti
o
n
 d

is
ta

n
ce

 [
m

]

Braking capacity [m/s^2]

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9 10

Not proved

Proved

Figure 2: Matrix showing the combination of parameters (the distance
from the center of the intersection at which to start preparing for an
intersection, and the braking capacity of the vehicle) for which the
system can be proven to avoid collisions.

must brake unless it has negotiated access to the inter-
section. The columns (x-axis) represents the maximum
braking (deceleration) capacity of the vehicle.

The results are intuitive and expected. If the car has
a higher braking capacity, then it can approach closer to
the intersection before it has to brake. However, what
is interesting in these results is that the light green ar-
eas represent values where we have mathematically and
automatically proved that the system is correct, in the
sense that collisions cannot occur (under the assump-
tions of the formal model).

3.4. Progress
It is easy to design a provably safe protocol for inter-

section collision avoidance by forcing some or all cars
to stop indefinitely. However, such a scheme is obvi-
ously faulty, because it does not guarantee that the vehi-
cles will reach their respective destinations. Therefore,
it is important to be able to prove not only freedom from
collisions, but also that there is a bound on the time that
vehicles must wait “in limbo.” To achieve this, we add
the assumption that all messages are delivered (an as-
sumption that is not required to prove safety). The pro-
tocol can only guarantee progress during periods when
messages are not dropped.

Figure 3 shows a matrix with the cases for which it
is possible to prove progress in the system. By progress
we mean that an entity will not be stuck in a state where
its request for access is infinitely delayed. The rows
in the matrix (y-axis) represents the maximum time for
which a vehicle can be forced to wait before deciding on
whether its request to access the intersection is granted
or not. The columns (x-axis) represent how long an ac-
knowledgment message can be delayed for before being
sent. The interpretation of the green areas is that if the
acknowledgment delay is below the given value, then

3

M
a
x
im

u
m

 w
a
it

in
g

 t
im

e
 [

s]

Ack delay [s]

 1

 2

 3

 4

 5

 0 0.5 1 1.5 2 2.5

Not proved

Proved

Figure 3: Matrix showing the combination of parameters (the maxi-
mum acceptable waiting time and the maximum time from receiving
a message to sending an acknowledgment) for which the system can
be proven to maintain progress.

the system can be proved to achieve progress, with wait-
ing times no longer than the value shown on the x-axis.

The bottom line of this investigation is that for all
the parameter combinations resulting in green cells in
the figures, we have demonstrated that the coordination
protocol is provably safe and without deadlock. Given
the complexities involved with an unbounded number
of participants, an explicit model of communication and
continuous time and space, this is clearly a step forward
in what has been previously described in the literature.

4. Related Work

Several studies such as that by Huang et al. [7], use
SMT solvers to verify real-time communication proto-
cols, but do not consider mobility and spatial safety con-
straints. The problem of how autonomous traffic agents
should avoid collisions has also been treated formally
with manual proof strategies. For example, Damm et
al. [4] present a proof rule for the collision freedom of
two vehicles. Other studies have also employed SMT
to verify vehicular applications (e.g., [6, 5]). However,
to our knowledge we are the first to show how a sys-
tem with an unbounded number of participants, explicit
modeling of communication, and continuous time and
space can be automatically verified using a constraint
solver.

Autonomous intersection management has been ex-
tensively explored in the intelligent transportation com-
munity [3], although usually not with a focus on prov-
ing correctness. The Comhordú coordination scheme,
on which the coordination approach presented here is
based, was formalized by Bhandal et al. [2] using a pro-
cess algebraic approach. Vehicular platoons have been
studied in several works on vehicular verification, in-
cluding recently Kamali et al. [8], who use a combina-

tion of the Uppaal model checker and logic program-
ming.

Our work differs from existing studies that treat the
safety of coordinating vehicles, by explicitly model-
ing communication protocols and message passing as
well as using an approach that allows mostly automatic
rather than manual verification.

5. Discussion and Conclusion

In this paper, we have proposed a modeling approach
for vehicular coordination algorithms. We showed that,
with the help of SMT and carefully choosing appropri-
ate model abstractions, it is possible to automatically
prove properties of the system that would not otherwise
be attainable. We have been able to verify the correct-
ness of a fully distributed intersection collision avoid-
ance protocol, in terms of both the logical safety and
progress. The model is not without limitations. For
example, we have not included lateral movements and
control, and the longitudinal model is very basic. How-
ever, we have made significant progress over the cur-
rent state-of-the-art by modeling and verifying an intel-
ligent transportation system with an unbounded num-
ber of vehicles, explicitly modeled communication mes-
sages, and continuous time and space.

Acknowledgment

This work was supported by Centrum för industriell
informationsteknologi (CENIIT), project 14.04.

[1] M. Asplund, A. Manzoor, M. Bouroche, S. Clarke, and V. Cahill. A for-
mal approach to autonomous vehicle coordination. In D. Giannakopoulou
and D. Mry, editors, FM 2012: Formal Methods, volume 7436 of Lecture
Notes in Computer Science, pages 52–67. Springer Berlin Heidelberg,
2012. doi: 10.1007/978-3-642-32759-9˙8.

[2] C. Bhandal, M. Bouroche, and A. Hughes. A process algebraic descrip-
tion of a temporal wireless network protocol. In Proceedings of the
Fourth International Workshop on Formal Methods for Interactive Sys-
tems, 2011.

[3] L. Chen and C. Englund. Cooperative intersection management: A sur-
vey. IEEE Transactions on Intelligent Transportation Systems, 17(2),
2016. doi: 10.1109/TITS.2015.2471812.

[4] W. Damm, H. Hungar, and E.-R. Olderog. Verification of cooper-
ating traffic agents. International Journal of Control, 79(5), 2006.
doi: 10.1080/00207170600587531.

[5] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hy-
brid systems. In A. Gupta and S. Malik, editors, Computer Aided Verifica-
tion, volume 5123 of Lecture Notes in Computer Science, pages 190–203.
Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-70545-1 18.

[6] C. Herde, A. Eggers, M. Franzle, and T. Teige. Analysis of hybrid sys-
tems using hysat. In Third International Conference on Systems (ICONS),
2008. doi: 10.1109/ICONS.2008.17.

[7] J. Huang, J. Blech, A. Raabe, C. Buckl, and A. Knoll. Static scheduling
of a time-triggered network-on-chip based on SMT solving. In Design,
Automation Test in Europe Conference Exhibition (DATE), pages 509 –
514, 2012.

[8] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres. For-
mal verification of autonomous vehicle platooning. Science of Computer
Programming, 2017. doi: http://dx.doi.org/10.1016/j.scico.2017.05.006.

4

[9] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using
induction and a sat-solver. In W. Hunt and S. Johnson, editors, Formal
Methods in Computer-Aided Design, volume 1954 of Lecture Notes in
Computer Science, pages 127–144. Springer Berlin / Heidelberg, 2000.
doi: 10.1007/3-540-40922-X˙8.

[10] M. L. Sin, M. Bouroche, and V. Cahill. Scheduling of dynamic par-
ticipants in real-time distributed systems. In 30th IEEE Symposium on
Reliable Distributed Systems, SRDS, 2011. doi: 10.1109/SRDS.2011.37.

5

