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Abstract—New advanced traffic management solutions with
fully or semi-autonomous vehicles that communicate over a
wireless interface to coordinate their driving decisions create new
challenges in distributed computing. In this paper we address the
problem of dynamic group membership in three stages. First, we
propose three criteria to specify correctness and performance
of the group views created by such algorithms in terms of
soundness, completeness and freshness. Second, we develop a
group membership protocol tailored for vehicular coordination.
Finally, we show through simulation and model-based verification
that the protocol does indeed meet the criteria and provide at
least 95% perfect group membership views under as adverse
conditions as 70% packet loss or very high churn rate.

I. INTRODUCTION

Modern vehicles are becoming increasingly more sophisti-
cated with a multitude of sensors, computers and communica-
tion capabilities. Advanced driver assistance systems provide
improved comfort and increased safety by taking over much
of the vehicle control. The first steps to complete autonomous
driving are being taken by major automotive companies and
road authorities. Inter-vehicle communication (IVC) has the
potential to further improve current transportation systems by
facilitating efficient coordination between vehicles.

There are numerous potential applications for such tech-
nology, including platooning for heavy duty vehicles [4],
virtual traffic lights, automated lane merging [19] and highway
management, and collision avoidance [20]. However, these
applications all require vehicles to form groups and make col-
lective decisions. Since the vehicles are effectively controlled
by computers with communication capabilities, this is clearly
a distributed systems problem.

Historically much of the research on distributed agreement
was motivated by the problem of keeping a consistent state
among a set of replicas, thereby providing fault tolerance
through replication. The problem of vehicle coordination share
some of the characteristics of state replication, also differ in
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several respects. There are some factors making this problem
more challenging such as dynamic interaction groups and very
unreliable communication links. On the other hand, satellite
navigation protocols provide accurate clock synchronisation
to the level of nanoseconds. Moreover, in many cases strict
agreement is not required for successful coordination [3], [8].
Often, it suffices for most vehicles to refrain from a certain
action for the situation to be safe.

There is, however, a corner stone required for virtually all
forms of coordination which is some form of acknowledge-
ment of having received and possibly accepted a request from
another node. Provided there is a notion of well-defined groups
of collaboration, then having received acknowledgement from
all other members in a group allows a vehicle to for example
safely perform a lane switch.

In this paper we are concerned with the forming and
maintaining of such collaboration groups. Group membership
has been extensively investigated as an underlying mechanism
for achieving consensus through a concept known as virtual
synchrony [7]. However, given the differences between state
machine replication and vehicular coordination a new set of
requirements are needed also with respect to the performance
of group membership.

We propose a new set of correctness and performance
criteria for dynamic group membership motivated by the
vehicular coordination scenario, but also applicable in other
situations where dynamic group formation can occur (includ-
ing swarms, aerial vehicles, and peer-to-peer systems). The
criteria, soundness, completeness and freshness are concerned
with properties of views and nodes and intended to be intuitive,
well-defined, and verifiable through automated reasoning.

Furthermore, we present a group membership proto-
col called Synchronous Leader-based Membership Protocol
(SLMP) targeted at fulfilling these properties. The protocol has
a simple design yet contains some subtleties that make it robust
to both packet loss and network churn (nodes leaving and



joining the system). We assess the performance of this protocol
with respect to the proposed criteria through simulation as
well as model-based verification. The latter is done with the
help of the probabilistic model checker Prism [16]. The results
demonstrate that the views provided by the algorithm are
always sound. Moreover, the other properties (completeness
and freshness) are satisfied in at least 95% of the time unless
the system suffers from extreme packet loss (more than 70%).
In summary, we make the following contributions.

« A new set of performance and correctness criteria for dy-
namic group membership targeted towards collaborative
systems.

o A synchronous leader-based protocol for dynamic group
membership including an experimental evaluation using
simulation.

o Proof of correctness and probabilistic analysis using the
probabilistic model checker Prism.

The rest of this paper is organised as follows. Section II
presents related work, and is followed by a description of the
system model in Section III, where also the proposed view cri-
teria are presented. The proposed SLMP protocol is described
in Section IV. Sections V and VI presents the experimental
evaluation and model-based verification respectively. Finally,
Section VII provides conclusions and future work.

II. RELATED WORK

The concept of group membership emerged as an elegant
abstraction layer for tackling the consensus problem in dis-
tributed systems. While the node crash was the dominating
fault model, there has been significant work on tackling
network partition faults as well. Transis [2] was the first system
that allowed partitions to continue with independent groups.
It has been followed by several other such as Totem [18],
Moshe [14], Relacs [5], Jgroups [6], Newtop [10], and
RMP [13]. For a comprehensive comparison of different
group communication services, we recommend the paper by
Chockler et al. [9].

Our work is related to leader election since the group
membership is dictated by the leader. In traditional leader
election algorithms (e.g., see Aguilera et al. [1]), the system
model requires a static set of participating nodes, whereas in
our work nodes can enter and leave the system dynamically.
There are also works that allow dynamic groups with moderate
mobility, such as that of Vasudevan et al. [22] but we are not
aware of any work on leader election that can handle high
churn.

More recently Lim and Conan [17] thoroughly address the
problem of group membership in mobile ad-hoc networks.
The authors propose a new group membership specification
that avoids some of the problems that existed with earlier
work. Our work differs from that of Lim and Conan in several
respects. First of all, we assume fully synchrony from the
onset, which considerably simplify the problem. Moreover, we
make no attempt to connect the exact characteristics of which
channel properties that will result in group partitions as is done
by Lim and Conan. Our approach allows a more performance

oriented approach where the ratio of perfect views can be
measured.

Ferrari et al. [12] also assume synchronous rounds in a
cyber-physical system. Their group communication protocol
Virtus is built on top of the Low Power Wireless (LWB)
bus protocol. This protocol is primarily aimed at very re-
source constrained devices, with statically encoded nodes, and
moderate packet loss. However, while the LWB and SLMP
protocols target very disparate types of system, it would not
be unreasonable to implement a variant of Virtus on top of
SLMP.

There are several other approaches for group membership
in vehicular environments including the proposal by Slot and
Cahill [21]. They take a hardware-based approach in which
laser-scanners provide the vehicle with information about
empty areas around it. By combining this information from
several vehicles and some non-trivial computation it becomes
possible to derive exactly the set of vehicles in a given area.

Fathollahnejad et al. [11] analyse the problem of group
formation algorithm in vehicular networks. The authors make
a distinction between safe and unsafe disagreement where
unsafe disagreement occurs if nodes decide on different non-
empty views. They propose a decision algorithm based on
very similar assumptions that we make in this paper with
synchronous rounds and unreliable communication. However,
they also assume the existence of (unreliable) oracles that
estimate the number of participating processes. If the oracles
never underestimate this number, then the authors show that
they nodes will never disagree in an unsafe manner. Similar
to our work they use the PRISM model checker [16] to check
properties of models where such probabilities are encoded.
In their results a packet loss probability of 40% results in
approximately 50% chance of agreement on the group and
50% chance of safe disagreement.

Finally, Konur et al [15] present an interesting study where
PRISM was used to behaviours of large robotic swarms. Since
the behaviour of each robot does not depend on the precise
behaviour of the other robots the authors used a counting
abstraction to deal with a large number of entities.

III. SYSTEM MODEL AND VIEW CRITERIA

In this section we first establish some basic terminology
and system model assumptions, and then proceed to present
the three view criteria that we believe are suitable for assessing
correctness and performance of dynamic group membership in
vehicular networks.

We consider a system to be composed of a dynamic number
of vehicles, which we will refer to as nodes in line with mobile
network terminology. As the next generation of vehicles will
by default be equipped with a satellite navigation system, we
assume all nodes to be synchronised in time to the necessary
precision that allows a synchronous system model to be
adopted.

Since the set of nodes is dynamic, we model it as a time
dependent function N (t) = {n1,... 7|y}, with a restricted
rate of change, such that the average rate of nodes entering the



system is A and each node has a departure rate of \/N where
N is the steady-state number of nodes in the system. The rate
of nodes entering and leaving the system is called churn. We
assume for simplicity that a node never re-enters the system,
as this can be modelled by a longer period of message loss.

Nodes can exchange messages that will either be received
or dropped. When evaluating the protocol we will assume that
a message is received by a node with a fixed probability p.
Since we model a dynamic set of nodes we do not explicitly
model node crashes, they are simply considered as departing
nodes.

We define a view as a tuple v = (I, M,c) where [ is a
leader node, M is a set of members (where [ € M), and
c is an application-specific topic (or context). A topic can
be a particular platoon or the virtual traffic light for some
particular crossing. Correspondingly each node 7 also has a
topic denoted topic(i), which we without loss of generality
assume to be static, as well as a leader leader(i,t) that can
change dynamically.

Note that for the purpose of presentation we have not in-
cluded monotonically increasing identifiers to the views which
is a requirement for some of the basic group membership
requirements in the literature. Such information can easily be
included, but this is not the focus of this paper.

We are now in a position to define the view criteria. The
first (soundness) is a correctness criteria meaning that no view
should ever violate this property. The other two should be
considered as performance criteria since while meeting them is
desirable, mobility, faults and imperfect communication make
it impossible to guarantee that they will always hold. A view
that satisfy all three criteria is perfect.

o Soundness A view v = (I, M,c) is sound at time ¢ if
all nodes 7 in M agree on the same topic and leader (Vi
topic(i) = ¢ and leader(i) = 1)

o Completeness A view v = (I, M, ¢) is complete at time
t if for all nodes in ¢ € N(¢) such that topic(i) = c they
are also part of the view (¢ € M).

o Freshness A view v = (I, M,c¢) is fresh at time ¢ if
i € N(t) for every i € M.

Soundness guarantees that all views are disjoint (since a
node cannot have two topics, or two leaders) and that all
nodes that are in a view are so voluntarily. Completeness
states that all nodes that should be part of a view (i.e., they
have the same topic) are part of the view. A view can become
incomplete when a new node enters the system with the same
topic as the view before being included in the view. A view can
also become incomplete when nodes erroneously believe that
another node has left or crashed due to packet loss. Finally,
freshness can be seen as the dual of completeness. When a
node crashes or leaves the system, it should no longer be
included in the view. A view is fresh as long as all nodes in
the view are still present in the system and have not crashed.

These criteria are all concerned with properties of views.
They do not consider whether nodes have installed a view or
not. While this is an interesting aspect, our goal is to separate
the specification of views and the dissemination of these views.

IV. LEADER-BASED DYNAMIC GROUP MEMBERSHIP

We now proceed to describe the Synchronous Leader-based
Membership Protocol (SLMP).

A. Overview

The purpose of SLMP is to maintain dynamic group mem-
bership views for mobile nodes. A view consists of exactly
one leader and f > O followers. Every node ¢ has a leader
leader(i) that can be either the node itself leader(i) = ¢ or
some other node j # i. A node can be in one of four states:
Leading, Joining, Waiting or Following.

Figure 1 shows a basic example of 10 nodes and 3 views.
As can be seen in the figure, every view leader has itself as a
leader, and all followers in the view also has the view leader
as their leader. However, there might also be nodes that do
not belong in a view, but which still have another leader.

O Leading

Joining/Following/
O Waiting

Fig. 1. Illustration of views and leader relations, an arrow from i to j indicates
that leader(i)=j

SLMP uses synchronous rounds to send messages to other
nodes and to make decisions based on those messages. Fig-
ure 2 shows how the time for every node can be divided in
three recurring phases, send, act and wait. The send phase
is started by the onSendTimer interrupt, which should be
synchronous over all nodes in the system. The node then
proceeds to broadcast the message over the communication
channel. Every node that receives the message will invoke the
onReceiveMessage event. After a predefined send time interval
T, the nodes proceed to the act phase in which nodes change
their internal state variables, and then immediately go to the
wait phase until a new send phase is initiated.

In SLMP a message m is a tuple m =
(sender, receiver, view, state, leader Age) where sender
and receiver are self-explanatory (messages sent to everyone
has receiver =_1), the view field sent by a leader is the view
(which includes, information about the leader, the followers,
and the topic) that will hold in the next round, and the state
indicates the current sate of the node. The leaderAge field is
used by the follower to tell the leader how long it was since
it heard from the leader.
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Fig. 2. Synchronous rounds of SLMP

We now proceed to describe the send phase followed by the
act phase.

B. Send phase

The send phase is governed by two events, the sending and
receiving of messages. Pseudo code of the actions taken by a
node upon a send message event is shown in Listing 1. The
message sent by a node is determined by the node state (this
state variable as well as other variables used in the listsings
are global for each node). If the node is in Waiting state, no
message is sent. If the node is in the Leading state, a view
message is sent with the view that will be valid in the next
round (nextView). If the node is in any of the other two states,
the node will send out its current view and state, as well as
information on how long ago it last recieved a message from
the current leader.

The last two rows reset the variables heardLeader and
betterLeader to their initial values in preparation for receiving
messages from other nodes (which will result in updating
these).

Listing 1 onSendTimer(m,i)
1: procedure ONSENDTIMER(m,?) > message m, vehicle ¢
2: if state; = Waiting then

3: return
4: else if state; = Leading then
5: m < (i, L, nextView, Leading)
> where m=(sender, receiver, view, state, 0)
6: else > Joining or Following
7: m < (¢, nextLeader, view;, state;, leaderAge)
8: end if
9: SEND(m)
10: betterLeader < false
11: heardLeader < false

12: end procedure

When a node receives a message m variables will be
updated as shown in Listing 2. First, the node checks if
the message indicates that there is another leader in the
vicinity that is considered better according to some global
function better(i,j), which must consider the view topic but
can otherwise be an arbitrary total ordering of the nodes (e.g.,
using node identifiers, or physical location). In our simulations
we have used a simple identiy-based method. However it

would be interesting to study other variants, including taking
the physical location of an entity into account.

If a better leader is found, the nextLeader and betterLeader
variables are set accordingly. Second, if the message came
from the node that the node considers as its leader, it first
notes that a message was heard from the leader, and also sets
the inView variables that indicates whether the receiving node
was part of the view sent out by the leader or not.

Listing 2 onReceiveMessage(m,i)

1: procedure ONRECEIVEMESSAGE(m, 1)

2: if BETTER(m.sender, nextLeader) then

3 nextLeader < m.sender
betterLeader + true

end if

if m.sender = nextLeader then
heardLeader < true
inView < EVAL(i € m.view)

9: end if

10: end procedure

A A

C. Act phase

The act phase is governed by a simple state machine as
shown in Figure 3. The state machine consists of the four node
states, Leading, Joining, Waiting and Following. All nodes
begin in the Leading phase. In the steady state execution of
the protocol, there should be one node in the Leading state
and the other nodes should be in the Following state.

- inView V timer > T

heardLeader A
inView
do install()

do install()

betterLeader

start —»| Leading Following

do updateView(7)
timer > T
do updateView(7)

heardLeader

inView
do install()

Fig. 3. State machine of the act phase of SLMP

Each time the act phase is initiated the state machine will
perform exactly one state transition (potentially resulting in
the node staying in the same state).

A node which is in the Leading state can change to Joining
state if it learns that there is a better leader (as determined
in Listing 2 above). If no better leader has been found, the
node performs the updateView procedure shown in Listing 3.
The purpose of this procedure is to ensure that the view sent
out by the leader reflects the set of nodes that have indicated
their intent to participate in the view and which have not timed



out. First, the next leader is set to be the node itself, and the
next view is initialised with the current view. In lines 4-8, all
nodes that have either reached a timeout 7" are removed from
the view. The timer for follower j is called followTimer[j]
(see section IV-D for details on timers) and the limit 7" is a
tunable parameter that we investigate in the evaluation section.
In lines 9-13 all nodes that have declared that they wish to join
the group are admitted. In reality such an admission policy
could include authentication and authorization, but this is out
of scope of this paper. Note that the joining node has already
checked that the leader has the correct topic.

Listing 3 updateView(i)
1: procedure UPDATEVIEW(%)
2: nextLeader < i

3: view <— nextView

4: for all j € view do

5: if followTimer[j] > T then

6: nextView < (nextView \ {j})

7: end if

8: end for

9: for all m € receivedMessages do

10: if m.state = Joining A m.receiver = ¢ then
11: nextView < (nextView U {m.sender})
12: end if

13: end for

14: end procedure

Proceeding with the state transitions in Figure 3, a node
1 in the Joining state will stay there until it receives a view
v = (I, M, c) from the leader such that ¢ € M, in which case
it transitions to the Following state. If no such view is received
and the leader is not even heard from, the node transits to a
Waiting state in which it prepares to go back to a Leading
state. The waiting state can be seen as having the same role
as the Joining state, but where no messages are sent out. The
reason for having this extra state is to avoid a situation where
the node gives up on its intended leader in the same round as
the leader finally sends a view where the node is a member.

When a node enters (or stays in) the Following state, it
runs the install procedure shown in Listing 4. This procedure
simply sets the view of the node to the view sent out by the
leader.

Listing 4 install
1: procedure INSTALL
2 m < last received message from nextLeader
3: view <— m.view
4: end procedure

D. Timers

The algorithm contains two timeouts, one where a node
gives up waiting for a view from the leader (either from a
Waiting state or from a Following state), and one where the
leader removes a node from the next view. It is critical for

view soundness that these timeouts are properly dealt with.
The follower must never abandon the leader before the leader
abandons the follower. This is why the leaderAge field sent by
the followers is needed. When a follower receives a message
from the leader it resets its timer to 0. When the leader receives
a message from a follower j it sets the followTimer[j] to
leader Age + 1.

V. EXPERIMENTAL EVALUATION

In this section we present the results of a simulation-based
study on the performance of SLMP. We structure this section
in three parts. First we present the experimental setup and
methodology. We then show how the protocol is affected by
varying group size and dynamics (churn). Finally, we show
how the protocol is affected by varying packet loss.

A. Experimental setup

The purpose of this study has been to assess the protocol as
a distributed algorithm. Therefore, we have prioritised being
able to run many experiments with many rounds rather than
high-fidelity packet simulations that would provide details on
energy consumption, throughput and protocol overhead. We
have developed a custom simulator in C++ that corresponds
to the system model outlined in Section III'. The simulator
maintains a set of active nodes each of which run the SLMP
protocol. Messages are exchanged in a round-based manner,
and all nodes have access to a global clock. Messages are
broadcasted and received with probability p (i.e., a message
may be received by only a subset of the nodes). Nodes join and
leave the system according to a Poisson process with arrival
rate A and a departure rate A/N where N is the initial (and
also steady-state) number of nodes in the system.

The parameters have been chosen to resemble a highway
situation where vehicles that travel in the same direction form
groups for collaborative cruise control.

TABLE 1
DEFAULT PARAMETERS

Parameter Value

Initial number of nodes (N) 50

Average group size 5
Communication rate 10 rounds/second
Packet loss probability (p) 40%

Arrival rate (\) 6 nodes/minute
Simulation length 1000 seconds
SLMP timeout (T) 1 second

Table I show the default parameters used in the experiments.
The average group size is controlled by the number of different
topics in the system, G = N/C where G is average group size
and C' is the number of topics. A node randomly chooses a
topic upon entering the system and does not change topic.

Each datapoint corresponds to simulation of 1000 seconds
(10,000 message rounds) where the first 50 seconds are
removed from the results to eliminate boundary effects. In each

I'The source code for the simulator, the protocol, and the Prism model
are available as open source from http://www.ida.liu.se/~mikas34/Software,
experiment data is available to the community on request.



round all the views that have been broadcast by some leader
are assessed for soundness, freshness and completeness.

B. Impact of group size and dynamics

We know from earlier work [11] that increasing the group
size can have drastically negative effect on the ability to agree
on a view. Therefore, we study how the view performance is
affected by group size as well as by node churn.

Figure 4 shows the impact of varying the average group
size (which in turn is decided by the number of topics). The
diagram shows four plots corresponding to the desired view
properties. As expected, all views are sound. However, the
ratio of fresh views decrease as the groups become larger. This
is naturally explained by the fact that larger groups are more
likely to contain a recently departed node. This explanation
holds also for incomplete views which are more likely the
more nodes that subscribe to the same topic. The lines for
fraction of complete and perfect view almost overlap since
there are very few views that are complete but not fresh.
Note that the Y-axis of the graph starts at 70% for increased
visibility. While these results are very much expected, they
confirm that effective vehicle coordination should be done with
groups of 10 or less nodes.
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Fig. 5. View performance as a function of churn rate

Figure 6 shows the fraction of perfect views (i.e., views
that are sound, complete and fresh) as a function of packet
loss probability. The different plots show how SLMP behaves
for varying timeout parameter settings. As expected, higher
timeout means better resistance to packet loss. The default
setting of 1 second timeout which means that a departed node
will be excluded after 1 second seems to cope well with packet
loss up to 40-50%.
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Fig. 4. View performance as a function of average group size

Figure 5 shows the impact of node churn on the SLMP
performance. Again the Y-axis starts at 70% and all lines
keep above 95% probability. The last point in the curve 18
nodes per minute means that a new node enters the system
almost every 3 seconds (with 40% packet loss). Obviously,
maintaining perfect group membership in such circumstances
is challenging.

C. Impact of packet loss

The other main factor affecting the performance of dynamic
group membership is obviously packet loss. SLMP is designed
to cope with high packet loss by having a timeout controlling
how long to wait before excluding a node from the member-
ship view. Obviously there is a tradeoff between detecting a
departed node early and being not spuriously excluding nodes
due to lost messages.

40
30
20
10

Timeout 0.1s

Fraction of perfect views [%]

0 10 20 30 40 50 60 70 80 90
Packet loss probability [%]

Fig. 6. Ratio of perfect views as a function of packet loss

Increasing the timeout means slower reaction to node
changes (in particular departing nodes), which in turn has an
effect on view freshness. The optimal timeout setting thus de-
pends on the channel characteristics. Figure 7 shows the ratio
of perfect views as a function of the timeout parameter where
the different plots represent different packet loss probabilities.
For each line, there is an optimum. If the packet loss is 40%,
then the optimum lies around 1 second timeout, whereas a 80%
packet loss as the highest point at a timeout of 6 seconds.

Since the simulator does include a detailed model of the
network stack, we cannot use it to conclude anything about
the overhead cost of the protocol. However, there are some
insights with regard to the message complexity that is worth
mentioning. Each node sends a single message in each round
irregardless of the number of nodes. Moroever, only two
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rounds are needed to form a membership view in case of
reliable communication. If messages can be lost, the number
of rounds increase, but as is shown in the next section, there
is a 95% probability of establishing a view in 10 rounds (1
second) with 20% packet loss.

VI. MODEL-BASED VERIFICATION

In addition to the simulation-based study we also modelled
SLMP as a discrete time Markov chain model using the proba-
bilistic model checker Prism (version 4.3 beta). The purpose of
this model was twofold. First, this allowed removing critical
flaws during the protocol design phase and ensures that the
protocol satisfies view soundness. Second, this model allows
accurately determining certain guaranteed bounds such as the
probability of fast view establishment.

In the rest of this section we first briefly describe the Markov
chain model of SLMP, proceed to explain verification of the
soundness property, and finally we show some results from
the probabilistic analysis of the protocol.

A. Prism model

The Discrete Time Markov Chain (DTMC) model is derived
from the state machine shown in Section IV. Multiple nodes
are modelled through the module renaming in Prism which
allows certain pieces of code to be duplicated. The parallel
action of nodes is serialised through a turn variable which
dictates for which node the current transition will occur.

Messages exchanges between nodes are modelled
through a set of variables. For example, the variable
node_I_2_wants_join indicates if node 2 has sent a
join request to node 1. Similarly, there is a variable
node_1_2 heard that tells whether node 1 has heard node 2
in this round.

Due to the problem of state space explosion, we have only
been able to verify systems with three nodes and at most a
timeout of 0.5 seconds (5 rounds). Such a model contains
2,257,449 states and requires over 20 minutes just to be
constructed on a computation cluster with 24 2.2GHz cores
and 92GB RAM (only one core could be used for model
construction).

B. Verifying soundness

The soundness property was verified by asking Prism if the
following CTL formula could be satisfied in the initial state.

EF \/ (leader(i) # j N inView(i, j)) (1)
Vi

where inView(s, j) indicates that node i is in the view sent
out by leader j. The EF mans that the formula checks whether
there exists a path (E) that Finally (F) reaches a state where
the rest of the formula holds true. We have verified that for at
least 3 nodes this formula is false, meaning that the soundness
property cannot be violated (all nodes have the same topic
in this model, so that part of the soundness requirement is
trivially satisfied).

C. Probabilistic analysis

The DTMC model contains certain non-deterministic tran-
sitions, in particular those associated with packet reception or
loss. Figure 8 shows the steady state probability of perfect
views for varying packet loss probability and four different
timeout settings.
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Fig. 8. Steady state probability of perfect views

While this result basically confirms what we could already
tell from the simulation-based study, they provide an assured
probability which is derived numerically from the model. That
is, as long as the packet loss is below 20% the protocol gives
a probabilistic guarantee of 99% of producing perfect views.

Figure 9 shows the probability of fast establishment, which
we define as being able to form a correct view from an
initial state where the nodes have not previously communi-
cated within 250 steps in the DTMC (this corresponds to
approximately 1 second in the simulation).

As a final remark, being able to verify the system with only
3 nodes is if of course a limitation. The challenge of automatic
formal verification timed distributed algorithms is well known.
The state space explosion comes from the fact that each node
maintains a state that changes over time (i.e., the timers).
However, most protocols currently proposed in the vehicular
network field lack any kind of formal basis, so we believe
that this is a step forward. Extending the proof to incorporate
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an unbounded number of nodes using for example quantifer-
based reasoning [3] is one possible direction of future work.

VII. CONCLUSIONS

In this paper we have proposed a new set of criteria for
dynamic group membership views and a protocol SLMP that
fulfil those criteria. The criteria we defined are concerned with
the correctness and performance of the views produced by the
protocol, soundness, completeness and freshness. When con-
sidering whether a set of criteria are useful for specification,
there are two important aspects to consider. First, whether it is
possible to implement an algorithm or protocol that fulfil the
criteria. In this case we have shown (through simulation and
model-based verification) that indeed soundness is guaranteed
at all times by SLMP, and completeness and freshness in at
least 95% of the time even under adverse conditions.

The second important aspect to consider is whether the
criteria are strong enough. That is, can a protocol meet the
specification, but be worthless in any case? Earlier group
membership specification approaches have suffered from this
problem by for example allowing singular groups or groups
that alternate between singular and useful groups. While we
have not proved that perfect views prevent trivial solutions, it
seems highly unlikely given that a perfect view must include
exactly the set of nodes having the same topic.

In ongoing work we are implementing a reliable group com-
munication layer that runs on top of SLMP. Initial results are
encouraging, but more work is required to ensure correctness
and bounds on performance. Moreover, it would be of great
value to further evaluate SLMP in real vehicular networks and
to further develop methods for selecting topics (and to account
for dynamic topic changes during the lifetime of a node in
the system). We are currently implementing the protocol in a
vehicular simulation environment.
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