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The energy consumption of a system is determined by the system component usage patterns and interactions
between the coexisting entities and resources. Energy accounting plays an essential role in revealing the
contribution of each entity to the total consumption and for energy management. Unfortunately, energy
accounting inherits the apportionment problem of accounting in general, which does not have a general
single best solution. In this article, we leverage cooperative game theory, which is commonly used in cost
allocation problems to study the energy apportionment problem, that is, the problem of prescribing the
actual energy consumption of a system to the consuming entities (e.g., applications, processes, or users of
the system).

We identify five relevant fairness properties for energy apportionment and present a detailed categorisa-
tion and analysis of eight previously proposed energy apportionment policies from different fields in computer
and communication systems. In addition, we propose two novel energy apportionment policies based on co-
operative game theory that provide strong fairness notion and a rich incentive structure. Our comparative
analysis in terms of the identified five fairness properties as well as information requirement and compu-
tational complexity shows that there is a tradeoff between fairness and the other evaluation criteria. We
provide guidelines to select an energy apportionment policy depending on the purpose of the apportionment
and the characteristics of the system.
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1. INTRODUCTION

Energy consumption and its management is clearly a challenge in computing and com-
munication system design. Energy consumption is obviously of paramount importance
for battery-powered devices, but energy efficiency has also become essential for plugged
systems due to core drivers such as sustainability and operational expenses.

Even though it can be argued that energy is just another resource subject to
common methods for resource management [Neugebauer and McAuley 2001], energy
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Fig. 1. Energy apportionment example for a common simplification of a system.

management poses its own challenges [Zeng et al. 2002a; Roy et al. 2011]. The energy
consumption created by a resource usage is complex since (1) the amount of activity of
an entity is often not proportional to the consumed energy, and (2) energy consumption
does not necessarily correspond to the time interval in which the activity happened.
Additionally, the coexisting accesses to shared resources by the different entities in
the system aggravate the problem, which results in the actual consumption not being
the sum of what the entities would consume using the resource alone.

Energy accounting is the procedure of quantifying, analysing, and reporting the en-
ergy consumption of different entities or activities of interest in the system. Efficiently
managing energy requires a detailed understanding of the level of resource consump-
tion and energy accounting is a key medium to provide the needed transparency to the
system. Energy accounting is also vital to evaluate the energy efficiency of entities in
the system. There is evidence supporting the fact that energy awareness can aid in
conserving energy [Petersen et al. 2007; Athukorala et al. 2014]. Unfortunately, appor-
tionment is a hard problem of accounting in general that does not have a single best
solution for all cases [Lemaire 1984], and energy accounting is no exception.

Selecting an apportionment method, that is, a method to divide the shared energy
consumption, entails a set of principles used to achieve some rational division. Thus, we
call these methods energy apportionment policies, referring to the rule that prescribes
the consumed energy to each entity. Examples of entities are different applications
using a certain resource, processes of interest or system users. We illustrate the appor-
tionment problem with two instances in the context of mobile and wireless networks,
but, as we show later in our work, the problem arises in multiple different contexts.

Figure 1 exemplifies a simple apportionment case. The system is characterised by
two states, active and inactive, where an entity can perform an activity only in the ac-
tive state. After every activity, a timeout is activated that keeps the system consuming
energy in the active state for a while. The timeout is a power management mecha-
nism that also serves responsiveness by avoiding the inactive-to-active state transi-
tion delay for subsequent activities. Many computing and communication components
or systems show a similar behaviour, such as wireless interfaces [Balasubramanian
et al. 2009; Vergara et al. 2014b; Pathak et al. 2012; Mittal et al. 2012], hard drives
[Papathanasiou and Scott 2003], secure digital cards [Pathak et al. 2012], or even some
electric appliances [Reinhardt et al. 2012].

Figure 1 shows the energy consumption of the entities if they were alone in the
system (i.e., in isolation). The actual total consumption of the interface is not the sum
of entities’ consumption in isolation. How should we prescribe a share of the total
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energy consumption to the different entities in the system? Equally dividing the energy
consumption would mean that entity 1 subsidises entity 2. Would a proportional
apportionment policy be better? What are the consequences of selecting a method?

Another example is from a wireless sensor network scenario (also applicable to an
Internet of Things context) [Fonseca et al. 2008; Kellner 2010], where determining the
energy consumption of network nodes due to user-defined activities (e.g., queries) is
required. In this scenario, the total energy consumption of the system is determined
by the sum of each node’s consumption, but the contribution of each node to the total
consumption is not necessarily its own consumption. A node contributes to other nodes’
energy consumption by being part of the system (e.g., transmissions or beacons). De-
termining the contribution of each node and the consumption due to the user-defined
activities requires a solution to the apportionment problem as well.

Selecting an apportionment policy is a fundamental choice for a system; it not only
enables the assessment of the energy consumption of an entity in the system but also,
as we show, establishes the “rules of the game” for the system that potentially influence
the behaviour of the entities, for example, by providing incentives. The latter aspect is
related to fairness of the apportionment that is often hidden at first sight in an energy
apportionment policy.

In our work, we show that energy apportionment is a common problem in different
areas of computer science, ranging from computing [Flinn and Satyanarayanan 1999b;
Ryffel et al. 2009] to data centres [Bertran et al. 2010] to mobile devices [Zhong and Jha
2003; Mittal et al. 2012; Neugebauer and McAuley 2001; Pathak et al. 2012; Roy et al.
2011; Dong et al. 2014] to wireless sensor networks [Sieber and Nolte 2013; Kellner
2010] to energy-efficient buildings [Hay and Rice 2009; Tsao et al. 2014; Thakur et al.
2014; Cheng et al. 2012]. Our work is the first to recognise the common ground of the
energy apportionment problem in these areas and builds a unified way to describe and
study the problem.

The game-theoretic approach used in this article allows us to formulate the energy
apportionment problem as a cost allocation problem, thereby providing new insights
into how an energy apportionment policy impacts fairness and potential cooperation in-
centives for the different entities in the system. The entities can influence each other’s
energy consumption through cooperation to reduce the total energy consumption. Co-
operative game theory has been successfully used to model multiple other real-world
practical problems [Fiestras-Janeiro et al. 2011; Moretti and Patrone 2008].

The additional contributions of our work are as follows:

(1) Identify five relevant fairness criteria for energy apportionment. We show that
providing incentives to improve the energy efficiency of the system, neglected in
previous works, is a relevant purpose of an energy apportionment policy.

(2) Recognise 8 different energy apportionment policies already proposed in different
fields to provide a common understanding of the energy apportionment problem. In
addition, our work formalises 3 of them not previously presented mathematically.

(3) Propose 2 alternative novel policies based on cooperative game theory not previ-
ously used in energy apportionment. These policies provide a strong fairness notion
and a rich incentive structure.

(4) Analyse the information requirement and computational complexity of the 10 en-
ergy apportionment policies.

(5) Evaluate the fairness of the 10 policies employing the identified five fairness prop-
erties.

Our analysis shows that there is a tradeoff between fairness and the other evaluation
criteria and provides guidelines to select a policy depending on the purpose of the energy
apportionment and the characteristics of the system. In particular, for the five formal
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Fig. 2. Ilustration of the system models.

fairness properties, we show that the proposed game-theoretical policies provide the
strongest fairness. However, these policies have a high information requirement and
computational complexity, and thus other simpler policies are identified to provide a
satisfactory compromise when the fairest policies become unpractical. We also classify
the policies based on the type of input information used and pinpoint that if surrogate
information (e.g., usage time) is used in the apportionment, this has to correlate with
the energy consumption of the system in order to provide correct incentives to reduce
the energy consumption.

Our formulation of the energy apportionment problem using cooperative game theory
can resemble cost sharing problems from other fields with extensive literature, for
example, economics or social choice [Ghosh and Shah 2015; Moulin and Shenker 2001,
Ellis and McGuire 1986], that pursue goals such as economic efficiency. Cost sharing
might also be a basis of setting prices or further developing a charging scheme. In
contrast, the nature and goal of the energy apportionment problem differs: We need to
provide a technical solution to overcome the non-additivity barrier to apportionment
(i.e., the sum of entities’ consumption in isolation is not equal to the consumption
together) and provide transparency to be able to quantify the energy consumed by
software entities coexisting in a system.

The rest of the article is structured as follows: Section 2 introduces our system model
as well as the background, and Section 3 describes the 10 energy apportionment poli-
cies in their application context. Section 4 compares the policies in terms of required
information and computational complexity. In Section 5, we leverage game theory to
provide a formal study of the fairness characteristics of the different energy apportion-
ment policies. Section 6 summarises and discusses the insights of our analysis, and
Section 7 describes the relevant work in the area of energy accounting as well as an
overview of energy management. Finally, Section 8 concludes our work and provides
future directions.

2. NOTATION AND BACKGROUND

In order to formulate the different energy apportionment policies, we first introduce our
system model, a time model employed to formalise some policies and the corresponding
notation used in the rest of the article. We also introduce the apportionment policy
definition and the required background from cooperative game theory to understand
our analysis.

2.1. System Model

An energy consuming system is composed by the set of entities N = {1, 2, ..., n} that
cause the system that they are part of to consume energy. We distinguish two types
of system interpretations: (1) common resource, where the entities share a common
energy resource, and (2) individual resource, where each entity has an energy resource.
Figure 2 shows an illustration of the two types of systems.

Examples of a common resource system are the computers in a datacenter or a
battery-powered device shared by different applications, whereas a set of mobile devices
or sensor nodes in an ad hoc or sensor network are systems with individual resources.
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Fig. 3. Example of the time model for two discrete signals and a tuple.

2.1.1. Common Resource System. E(N) is the total energy consumption for a system
configuration of the IV entities sharing a common resource. We assume that equipment
to measure E(NN) is available, for example, measuring the power consumption of a phone
by intercepting the battery terminals [Vergara et al. 2014b] or the mains connected to
a home appliance [Cheng et al. 2012].

E(S) is the isolated energy consumption of the entities in S C N. Thus, E({i}) is the
isolated energy consumption of the single entity i € N. E({i}) represents the energy
consumption of the entity ¢ in the hypothetical case that it was alone in the system,
not considering the interaction of the other entities in the system. This quantity is a
construct that is estimated (generally not measurable), for example, a single application
running alone on a mobile device or computer.

2.1.2. Individual Resource System. E;(N) is the individual energy consumption of the en-
tity i € N given a system configuration of entities N. We assume that equipment to mea-
sure E;(IN) at each entity i is available. The total system consumption is ),y E;(IN),
for example, the total consumption of a network of sensor nodes is the sum of nodes’
consumption in a network configuration.!

E(S):i e S,S C N, is the individual energy consumption of the entity i given a
system configuration of entities S. This is a construct that is estimated (generally not
measurable). The total energy consumption for a given S C Nis ) ; g E;(S).

2.1.3. Discrete-Event Time Model. The formalisation of some policies require us to model
time, and thus we employ a discrete-event formal framework introduced in the context
of real-time systems [Lee 1999]. This section provides an overview of the model.

Atomic events occur along a physical timeline where every event e = (¢, v) is defined
by a time point ¢ € R and a value v € V. The value v is a flexible representation specific
to the system.

A discrete-event signal s is a set of events and it cannot have two identical events. D
is the set of all all signals (s € D). The definition of a functional signal [Lee 1999] states
that the events in any s can be enumerated chronologically, there is a single event per
t, and that between any two time points there is a finite number of events.

Tuples of signals are used for naming purposes. A tuple s of N signals is defined as
s = [s1, ..., sy] where the set of all such tuples is DV.

Figure 3 shows an example of two discrete signals s; and sy with two value types (vq
and ve) that are part of a tuple s.

2.2. Energy Apportionment Policy

An energy apportionment policy Tl prescribes the share n; € R to an entity i € N of
the total system consumption of the system composed by N entities. A policy may use
different input information to apportion the total energy cost among the entities. Equa-
tions (1) and (2) define IT for a common and individual resource system, respectively:

LE(N) is only applicable to the common resource case.
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I(E(N), N, ...)=(m1, g, ..., ) in R", (1

[I(Ey(N), ..., E,(N),N,...)=(n1, 79, ..., 7,)in R". (2)

An apportionment policy should completely apportion the total energy cost: ),y 7 =
E(N) and ) ;_ym = Y ;.n Ei(N) for common and individual resource systems, respec-
tively. This is referred to as efficiency in the next section.

2.3. Game Theory for Energy Apportionment

Cooperative game theory has been extensively employed as a method to model and
solve cost division problems. We show that the energy apportionment problem can
be formulated as a cost allocation problem using cooperative game theory in order to
determine the energy contribution of the entities in the system.

A transferable utility game (TU-game) in coalitional form is defined by a set of players
N (the entities) and a characteristic function ¢ that models cost. A coalition is a subset
S € N, where N is the grand coalition and ¢ is the empty coalition. The characteristic
function assigns a cost to each coalition S, ¢ : 2V — R, where ¢() = 0 by convention.
We employ the system energy function E as the characteristic function ¢ to model the
energy consumption of the system. This mapping considers the energy consumption
of the system to be the total cost of the system. An n-player game is defined by the
pair (N, E), where the players will divide E(N) given the power structure in the grand
coalition expressed by the characteristic function.

Properties of characteristic functions and their structure classify the games providing
insights about the usage of apportionment policies. A cooperative game is monotone if
E(S;) < E(Sg) when S; € Se € N. A game is subadditive if E(S1) + E(S3) > E(S1 U Ss)
given S1, Sy € N and S; N Se = @, which means that the coalitions have an incentive
to cooperate since they lower the energy consumption (i.e., cost) together. An essential
game is characterised by E(N) < ), _y E({i}). Finally, a game is concave if E(S; U {i}) —
E(Sy) > E(S; U {i}) — E(Sy) fori € N, S; C Sy € N\{i}. This implies that the incentive
for joining a coalition increases when the coalition grows.

Given all possible divisions of the total cost, a single point solution concept for a
cooperative game (N, E) provides a unique vector representing the cost division (i.e.,
apportionment) to each player based on a given criteria. Solution concepts developed
for cooperative TU-games can be employed to prescribe a share of the total consumption
to each entity in the system. The resulting = can fulfil certain properties. Efficiency
states that the total energy consumption is completely apportioned: ),y m = E(N).
We consider efficiency a minimum requirement for an apportionment policy, and, thus,
for our analysis all the policies satisfy the efficiency property.

Individual rationality, m; < E({i}),Vi € N, implies that a single player contributes
with lower or equal energy consumption when cooperating than being alone. An appor-
tionment is an imputation if it satisfies efficiency and individual rationality. We refer to
the set of apportionments that satisfy individual rationality and efficiency for a given
E as the imputation set I(E).

The game and apportionment properties will be used to compare different energy
apportionment policies.

3. ENERGY APPORTIONMENT POLICIES

We first categorise energy apportionment policies based on the type of input infor-
mation. An energy-based policy (EB) apportions the system energy using different
constructs with energy as the only type of input information. A surrogate-based policy
(SB) may employ any type of information except energy. A hybrid policy would combine
energy and surrogates.
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Table I. Summary of the 10 Energy Apportionment Policies and Their Purpose

Nr. Name Type Description

1 Equal division EB¢ | Apportion the total energy consumption equally to all entities.

2 Proportional to EB | Apportion proportionally to each entity’s isolated energy.

isolation

3 Marginal EB | Apportion proportionally to each entity’s marginal

contribution?® contribution.

4 Isolation energy EB | Isolated consumption and apportion® the rest equally.

and remainder

5 Shapley value EB | Apportion the average marginal contribution with respect to
all permutations on the set of entities.

6 Nucleolus EB Minimise the unhappiness of the most unhappy entity.

7 Least-squares EB | Minimise the variance of all entities’ unhappiness.

nucleolus

8 Proportional to SB? | Apportion proportionally to each entity’s activity, using some

isolation notion of activity (surrogate).

9 Time slicing SB For each time interval apportion equally among the active
entities. If no entity is active, then apportion equally among
all entities.

10 Last active SB | For each time interval apportion equally among the active
entities. If no entity is active, then apportion to the last active
entity.

aMarginal contribution of an entity: Energy when an entity is running in the system minus when it is
not running.

bIsolated energy consumption: Energy consumption of an entity if this was alone in the system (see
Section 2.1.1).

‘EB: Energy-based apportionment policy.

dSB: Surrogate-based apportionment policy.

This section presents 10 different policies. We survey 5 of the most used energy-based
apportionment policies, propose 2 new policies originated from cooperative game the-
ory, and formalise 3 existing surrogate-based policies not described mathematically in
earlier work.We briefly explain each policy and provide a brief description of applica-
tion examples. The application of the policies and their different contexts are explained
in Section 7 (related works). Table I summarises the 10 policies and describes in brief
their purpose.

3.1. Energy-Based Policies

This section describes seven energy-based policies. All policies can be formulated for
common and individual resource systems, but due to space limitation and to simplify
the presentation, we present them using the common resource notation.

Policy 1: Equal division: The total energy consumption is divided equally by the
number of entities:
E(N)
= —.
|V

This apportionment policy is regarded as the simplest policy and has been proposed
in the context of energy-efficient buildings [Hay and Rice 2009].

3

Policy 2: Proportional to isolation: The resulting apportionment is proportional to
the isolated energy consumption of each entity. The policy is the same as the pro rata
division of E(N) considering the isolated or stand-alone energy:

E({i})

;= ————FE(N). 4
T ZjeNE({J}) (N) 4)
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The energy consumption of a multicore Central Processing Unit (CPU) is shared by
the different entities in proportion to their energy usage in isolation (in a single core)
[Ryffel et al. 2009]. The same idea has been also proposed to share the cost of heating,
ventilation, and air conditioning (HVAC) systems [Tsao et al. 2014].

The most basic version of this policy is proposed for mobile application energy pro-
filing, where the contribution of an application is assumed to be its consumption in
isolation 7; = E({i}) [Mittal et al. 2012; Neugebauer and McAuley 2001; Vergara et al.
2014b]. However, the basic version does not satisfy efficiency since the total energy
consumption is not always the sum of the isolated energy consumption of the entities,
and thus we only consider the normalised version of the policy.

Policy 3: Marginal contribution: This policy considers that the contribution of an
entity to the total consumption is its marginal contribution E(N) — E(N\{i}), that is,
the total consumption when the entity is running minus the consumption when the
entity is not running. The policy is normalised using all the marginal contributions:

EN) — EV\G)
i = — E(N).
TS S BN - B ®

This policy was proposed for operating systems to account for runtime energy con-
sumption of individual system hardware and software entities in multicore systems
[Ryffel et al. 2009; Ryffel 2009].

Similarly to Policy 2, a basic version of this policy was proposed in the area of graph-
ical user interfaces [Zhong and Jha 2003], where an entity is prescribed its marginal
contribution 7; = E(N) — E(N\{i}). This basic version does not satisfy efficiency since
the sum of marginal contributions is not necessarily equal to the total energy consump-
tion.

Policy 4: Isolation energy and remainder: The policy prescribes the allocation of
costs as a function of the energy consumption in isolation plus proportionally dividing
the additional cost/benefit of non-isolated use:

EN) — Y ;on E(jD
N

m; = E{i}) + (6)

The usage of this policy is originated in the energy-efficient building community
[Hay and Rice 2009], where the personal consumption is estimated first and the rest is
divided evenly (e.g., base energy load of building elements such as HVAC). Similarly,
in the context of wireless sensor networks, the energy cost of messages received by a
certain task is prescribed to the task and the rest (e.g., synchronisation or message
loss) is shared evenly among the tasks [Kellner 2010].

Policy 5: Shapley value: Given the marginal contribution of i to a coalition S C
N\{i} given by E(S U {i}) — E(S), the Shapley value computes the average marginal
contribution of i averaging over all the possible sequences through which the grand
coalition can be built from the empty coalition [Shapley 1953]:

no Y 1SHNI-ISI-D

!
I -[E(S U (i) — E(S)L. (7

SCSN\{i}

The Shapley value is a well-known single value solution from game theory applied
to many cost sharing problems in computer science [Misra et al. 2010; Sereno 2012] as
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well as in other fields [Fiestras-Janeiro et al. 2011]. Recently, it has been argued to be
the ground truth for energy accounting in mobile devices [Dong et al. 2014].

Policy 6: Nucleolus: Given an imputation 7 = (w1, 79, ..., 7,), that is, an efficient
apportionment satisfying individual rationality, the excess e(S,7) = E(S) — Y ;g7
measures the satisfaction of a coalition from apportionment 7.

Let 0(r) denote a vector that contains the excess for each coalition S € N in non-
decreasing order given an imputation 7. The nucleolus is the apportionment 7 that
maximises 0(xr) over all the other imputations 7* in the imputation set I(E) using the
lexicographic ordering (>) [Schmeidler 1969]:

7w |0(r) >1 0(n™) for all =, n* € I(E). (8

The nucleolus is commonly computed by solving a sequence of linear programming
(LP) problems [Maschler et al. 1979]. The prenucleolus computes an apportionment
following the same method for the set of all efficient apportionments, providing an
apportionment when the imputation set is empty.

Policy 6 is proposed in this article for energy apportionment due to its interesting
properties (Section 5), and, to the best of our knowledge, it has not been proposed as
an energy apportionment policy.

Policy 7: Least-squares nucleolus: For a given imputation = the average excess ¢ is

_ 1
e(m) = m Ze(S,n).
ScN

The least-squares nucleolus (LSN) is the imputation that minimises ) g _n(e(S, 7) —
é())?, that is, an imputation whose associated excesses are closest to the average excess
under the least-squares criterion [Ruiz et al. 1996]. The least-squares prenucleolus
(LSP) is the efficient apportionment that follows the same method.

The computation of the LSN is performed in two steps: (1) LSP 7? is calculated using
Equation (9),

P BN 1
P T IN| T |N|2IV-2

INI Y ES)- ) |S|E(S)], 9)

S:ieS ScN

followed by Equation (2), a recursive algorithm that computes the LSN (i) using the
LSP apportionment 7¥ as input. For each step in the algorithm, a 0 is given to the
entities with a negative excess in some of the earlier steps, dividing the aggregated
negative excess from the previous step evenly among rest of the entities. The algorithm
stops when no entity gets a negative excess, which results in an apportionment = that
is an imputation.

To the best of our knowledge, LSN has not been proposed for energy apportionment
policies.

3.2. Surrogate-Based Policies

This section employs the time model described in Section 2.1.3 to formalise three
previously proposed surrogate-based policies. These policies are selected because we
believe that they are good representatives of surrogate-based policies.

Policy 8: Proportional to activity: Given two events that signify that an entity
becomes active and inactive, respectively, (V = {0, 1}, where v = 1 for active and v = 0
for inactive), the policy apportions energy proportionally to the activity time. Let s; be
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the signal of events of entity 7, the apportionment policy is defined as follows:

als;)
7 = ——E(N), (10)
' Z jeN a(sj )
where a(s) : S — R is a function that provides the total active time of entity i by
performing a sum of the periods between events with values 1 and 0. This policy has
been proposed to model the occupancy of a building to divide its energy consumption
among the occupants [Hay and Rice 2009].

Policy 9: Time slicing: This policy considers that multiple entities may be active
simultaneously and there exists idle time. Given the sequence of events (e, e, ..., e,)
temporally sorted in s, a sequence of intervals J is computed. An interval j € J is
given by the delimiting events’ time points [¢;, ¢j11), where e; = (¢}, v), ej11 = (¢j41, V)
and ¢; < tj;1. T is the period between the first and last events.

The Boolean function a(i, j) : N x J — {0, 1} denotes whether an entity i is active
during interval j or not. Function f(, j) : N x J — [0, 1] divides an interval among
the active entities proportionally or evenly if the entities are inactive,

l—]{” if ), ya@, j)=0
1@ j)= N
a(i,j)
Yien i)
This function is used to define a policy as described in Equation (11):

mi = 7 0 [Fh g — )] BV (11)

jed

otherwise

The policy is used to apportion a micro controller’s consumption in a scenario of a
distributed database over a network of sensors [Kellner 2010] and a building’s energy
to tenants [Thakur et al. 2014]. Also, this policy is used for apportionment of a single
core processor [Flinn and Satyanarayanan 1999b].

Policy 10: Last active: Given the intervals ¢/, the energy consumption for each inter-
val is apportioned among the active entities. During any interval that all entities are
inactive, the energy consumed during the interval is assigned to the last active entity.

For each interval j the energy consumption is denoted by E(N, j), where
ZJEJ E(N, j) = E(N). The Boolean function (i, j) : N x J — {0, 1} denotes if en-
tity i is the last active entity of interval j by simply keeping track of the latest “become
active” event (v = 0).

1G, j) iy, yal, j)=0

8, j) = ,
% otherwise.
Policy 10 is defined using function g(i, j):
m =Y gl HEWN. j). (12)

Jjed
The policy provides incentives to aggregate the active events of the different entities.
This policy is used to apportion the energy tails created by inactivity timeouts for
different smartphone components [Pathak et al. 2012].
The following sections compare the presented 10 energy apportionment policies based
on three criteria: input information, computational complexity, and fairness. Section 4
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analyses the input information and computational complexity, whereas in Section 5 we
analyse the fairness of the different policies employing five formal criteria.

4. INPUT INFORMATION AND COMPUTATIONAL COMPLEXITY

The presented policies require different amounts of input information to perform the
apportionment, and obtaining this information might be harder depending on the
domain of the input and the system. In addition, the amount of input information has
an impact on the computational complexity of the policies. We analyse and compare
the computational complexity of the policies and provide pointers to efficient solutions
in the literature for the most complex policies.

Table IT summarises the comparison of the policies using the different criteria and
we describe the details of the comparisons next.

4.1. Required Input Information

Section 4.1.2 discusses the amount of information needed for each policy, whereas
Section 4.1.1 compares the domain of the input information, that is, surrogate-based
and energy-based policies.

4.1.1. Information Type. We categorised the policies based on input type: energy con-
sumption or surrogates. Dividing energy consumption based on energy information
appears as a natural choice: if the cost function is known, it is natural to use it to
apportion the cost. However, while obtaining E(N) is straightforward, measuring or
estimating E(S)|S c N is complex (if not impossible) given the shared nature and
lack of visibility of energy consumption in current systems. We observe that obtaining
E(N\{i}) seems qualitatively harder than E({i}) since the first already considers the
energy resulting from the use of a shared resource, whereas the second one considers
the energy in isolation without any interaction with the other entities. Approximations
of E(S) range from accurate energy models [Vergara et al. 2014b; Pathak et al. 2012;
Mittal et al. 2012] to measuring some of the observable S C N and approximating the
unobserved values using regression techniques [Dong et al. 2014].

Surrogate-based policies perform energy apportionment by translating the problem
to another domain outside energy consumption. This can simplify the apportionment
problem and the data acquisition, for example, surrogate information is easily accessi-
ble using performance counters in computers [Bertran et al. 2010] or external activity
sensors in buildings [Saha et al. 2014; Cheng et al. 2012]. However, the surrogate input
does not necessarily reflect how energy is consumed in the system. For example, the
amount of data sent does not reflect the energy consumed in the wireless interface, but
it is easily accessible [Vergara et al. 2014b].

4.1.2. Information Quantity. Columns 4 and 5 in Table II show the amount of needed
information for each policy. Policy 1 employs the minimum input quantity: E(N) and
N. Policies 2, 3, and 4 require the energy consumption of |N| subsets. Policies 2 and 4
consider the energy in isolation E({i}) and 3 considers the system energy excluding a
single entity E(IN\{i}). Policies 5, 6, and 7 present the highest information requirement,
requiring the energy consumption of all the subsets of N (2!V) to build the game.

Apart from E(N), the input of the surrogate-based policies is from another domain
than energy consumption. Policies 8-10 require at least a signal s; per entity (n signals)
with the events collected from the system. Additionally, Policy 10 requires E(N) per
interval.

Thus, depending on the available information for a system, some policies seem more
appealing than others. It is worth mentioning that there exist ways to approximate
games with incomplete information (e.g., missing information about the consumption
of some subsets) [Polkowski and Araszkiewicz 2003; Masuya and Inuiguchi 2009].
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4.2. Computational Complexity

This section presents the computational complexity of the policies. We analyse the
general complexity and provide pointers for problem specific complexity reduction for
the most complex policies. Column 6 in Table II shows the complexity of each pol-
icy. The size of the input (information quantity) is a highly influential aspect in the
computational complexity of the policies.

4.2.1. General Complexity. Policies 1 to 4 show low complexity. Policy 1 performs a single
operation and its complexity is O(1). Policies 2, 3, and 4 are computed in O(n) given the
sum of |N| elements. The computational complexity of Policy 5 increases exponentially
with the number of entities O(2"). Policy 6 is the most complex policy, computed by
solving a sequence of at most |IV| number of LP problems of decreasing dimension
[Maschler et al. 1979] or a single large-scale LP problem with O(4") constraints [Puerto
and Perea 2013]. The complexity of Policy 7 is O(2") due to two steps: (1) the calculation
of LSP using Equation (9) involves iterating over the 2" coalitions, and (2) a maximum
of |N| operations are performed by the algorithm to compute LSN.

The complexity of Policies 8—10 depends on the number of events m of all the entities
and the functions employed. The complexity of Policy 8 is O(m + n) due to analysing
m events when using function a(s) and the sum of |N| entities. Policies 9 and 10
employ m — 1 intervals and for each interval and entity, and the policies compute
the apportionment using functions f(i, j) and g(, j), respectively, leading to a O(mn)
complexity.

4.2.2. Optimisations. There exist approximation techniques for the Shapley value
(Policy 5) where the computational complexity increases linearly with the number of
players [Fatima et al. 2008; Castro et al. 2009]. There are also exact solutions that take
advantage of some particular game representation to reduce the complexity (e.g., O(n)
and O(n?) for a tree [Megiddo 1978] and weighted graph representation, respectively
[Deng and Papadimitriou 1994]).

Efficient solutions have been found for the nucleolus (Policy 6) for specific game
structures, such as a tree structure where it is computed in O(n?®) [Megiddo 1978] or
a weighted graph in O(n?) [Deng and Papadimitriou 1994]. However, NP-hardness
has been shown for other specific game representations (e.g., minimum spanning tree
game [Faigle et al. 1998]). Reducing the computation requirement for the nucleolus is
an ongoing work.

To sum up, the computational complexity is important to consider when performing
energy apportionment of systems, especially with a large number of entities. Policies 5—
7 exhibit higher complexity than the rest of policies.

5. FAIRNESS IN ENERGY APPORTIONMENT

Except Policy 5, the application of all the presented policies to apportion energy con-
sumption has been promoted as fair by the authors using them (see Table II) with no
formal justification. We analyse fairness by first introducing a formal notion of fairness
that leverages game theory in Section 5.1. Section 5.2 describes in detail the fairness
properties satisfied by each policy, which is summarised in Table II.

5.1. Fairness Criteria

In this section, we propose that fairness can be characterised by selecting five different
criteria. These criteria capture properties that are important when apportioning energy
consumption in an intuitive and rational manner. We introduce and motivate each
criteria for energy apportionment:
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—Symmetry: If E(S U {i}) = E(S U {j}) for all S € N\{, j}, then n; = x;. If the
marginal contribution of i and j to all coalitions is the same, then their apportionment
is the same. Symmetry is a desirable property for an apportionment policy since two
entities that contribute equally to the energy consumption of the system should
intuitively receive the same apportionment.

—Dummy player: If E(SU{i}) — E(S) = E({i}) for all S € N\({i}, then m; = E({i}). If the
marginal contribution of entity i to all the coalitions is the same as its stand-alone
value, then the latter is his or her value.

The property reflects the fact that the consumption of an entity in the system
can be independent of the other entities, and thus it is intuitive to assume that if
the entity does not impact the energy consumption of the system or the rest of the
entities when sharing the resource, this entity should be prescribed its stand-alone
cost. The property also includes the case of when E({i}) = 0, which should intuitively
lead to a prescription of no cost. This basic case of dummy player is also known as
null player.

—Individual rationality: This property was briefly introduced in Section 2.3. We
recall that an apportionment is individually rational if 7; < E({i}), Vi € N. An appor-
tionment policy satisfies individual rationality if it results in such an apportionment
when it exists. Recall that when such an apportionment exists it is called an im-
putation, and the set of such imputations is denoted I(E). It is well known that
Y ien E({i}) = E(N) iff I(E) # . Hence, the property is formally defined as follows: if
I(E) # ), then ; < E({i}),Vi € N.

We argue that individual rationality is an appropriate fairness criteria since:
(1) When all the entities contribute to lower the total energy consumption com-
pared to the sum of entities’ stand-alone consumption, it is unintuitive to prescribe
an entity more that it would consume alone, and (2) individual rationality provides
incentives to cooperate since every entity’s apportionment in the system is lower
than what its energy consumption would have been in isolation.

—Coalitional rationality: An apportionment is coalitionally rational if ) ;, 7 <
E(S) VS € N. An apportionment policy satisfies coalitional rationality if it results
in such an apportionment when it exists. In game theory, the set of apportionments
that satisfy coalitional rationality is referred to as the core? of a game denoted by
C(E). Then, coalition rationality is formally defined as:
if C(E) # ¢, then ), _¢m; < E(S)VS € N.

This property is relevant since it implies that no entity or coalition is subsidised:
If one entity would be prescribed less cost in a coalitionally rational apportionment,
then another entity would be penalised, that is, the apportionment is Pareto optimal
[Drechsel 2010]. Additionally, this property is attractive for energy apportionment
in cooperative systems, since selecting a coalitionally rational apportionment leads
to the case where no coalition could reach a better result than in the grand coalition.
This introduces a stability notion by avoiding any incentive to divide the grand
coalition.

—Entity desirability: For the final criterion, we adapt the player desirability criterion
introduced by Rosenbusch [Rosenbusch 2011]. Entity  is said to be more desirable
than entity j (i = j) if the energy consumption contribution of i to all coalitions
that exclude both entities is less than or equal to the one that j would contribute:
E(SU{i}) < E(SU{j}) VS C N\{i, j}. The criterion states that a more desirable entity
gets an apportionment less than or equal to the apportionment of the less desirable
entity: i > j = m; < m;.

2Even though the core presents desired properties, we do not consider the core as an apportionment policy
and use it as a comparison criterion since the core is rarely unique and may be empty.
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We refer to i and j as comparable if i = j or j = i. We believe that the criterion is
intuitive, since a lower contribution of an entity than another should be reflected in
the apportionment.

5.2. Fairness Comparison

The fairness criteria column in Table II shows whether a policy always satisfies the
symmetry, dummy player, individual rationality, coalitional rationality, and entity de-
sirability properties. The 21 shaded cells in the table of the 50 relate to known results
based on previous extensive analysis from game theory literature. Table III in the
appendix provides the references to the existing results tracing each property to each
policy.

The other 29 outcomes are our contributions. These results strictly follow from the
respective fairness property and policy definitions. The detailed analysis of the policies
in this section is structured per property, where we provide the intuition of why a
certain policy satisfies or does not satisfy each property. We refer the interested reader
to the electronic appendix (attached at the end of this manuscript) where all the proofs
can be found. We also refer to each of our proofs in the text.

5.2.1. Symmetry. All policies satisfy symmetry except for the surrogate-based policies
(Policies 8, 9, and 10). The proofs for the symmetry property can be found in Section A
of the appendix.

Since Equations (3)—(9) of Policies 1 to 7 do not consider any information other than
the value of the system energy function E, two entities contributing with the same
energy to all coalitions always get the same apportionment. For example, Policy 1
(Equal division) trivially satisfies symmetry since it always apportions the same value
to all entities, or Policy 2 (Proportional to isolation) divides the stand-alone energy by
the same value for all entities (Theorem A.1). Similarly, Policy 3 (Marginal contribution)
satisfies symmetry since the denominator is equal for all entities (Theorem A.2).

Policies 8, 9, and 10 (surrogate-based policies) do not satisfy symmetry since activity
and energy are not necessarily correlated. Thus, even if two entities are symmetric in
terms of energy, this is not reflected in the apportionment Policies 8, 9, and 10, which
consider activity as input (Theorems A.3, A.4, and A.5 respectively).

5.2.2. Dummy Player. Policies 5 and 6 (Shapley value and Nucleolus) are the only poli-
cies satisfying the dummy player criterion. The general reason for not satisfying the
property is that the policies perform a certain operation that prevents an entity from
getting its isolated energy consumption. The proofs for the dummy player property can
be found on Section B of the appendix.

The normalisation factor of Equations (4) and (5) is the main reason for not satis-
fying the dummy player property for Policy 2 (Proportional to isolation) and Policy 3
(Marginal contribution) (Theorems B.1 and B.2, respectively). Even if an entity con-
tributes with its isolated energy consumption E({i}) to all coalitions, Policies 2 and
3 normalise the result, and thus the apportionment does not always result in that
isolated energy consumption.

Surrogate-based policies (8, 9, and 10) do not always satisfy the criterion even in
the case where the activity function is equal to the system energy function. Policy 8
(Proportional to activity) employs a normalisation factor (similarly to Policy 2) (The-
orem B.3). Policy 9 (Time slicing) divides the idle energy equally among all entities
(Theorem B.4). Policy 10, Last active, prescribes a greater energy consumption to the
last active entity (Theorem B.5).

Finally, policies 2, 3, 8, and 10 satisfy the special case when the contribution of an
entity is O to all coalitions. For surrogate-based policies, it is intuitive that if an entity
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does not have a surrogate attribute in a scenario (e.g., it does not have any activity), it
does not consume energy in isolation and vice versa. Hence, a(i) = 0 iff E({i}) = 0.

It is easy to verify this so-called null player property for Policy 2 (Proportional to
isolation), Policy 3 (Marginal contribution), and Policy 8 (Proportional to activity) by
looking at Equations (4), (5), and (10): If the contribution of an entity is 0, the entity is
prescribed no energy since E({i}), a(i), and E(N) — E(N\{i}) become 0, respectively, and
thus 7; = 0 (Theorems B.6, B.7, and B.8, respectively). For Policy 10 (Last active), if an
entity is never active, then it cannot be the last active entity, and thus it is prescribed
no energy (Theorem B.10).

5.2.3. Individual Rationality. Policy 2 (Proportional to isolation), Policy 4 (Isolation
energy and remainder), Policy 6 (Nucleolus), and Policy 7 (Least-squares nucleo-
lus) always result in an individually rational apportionment when it exists. The
proofs for the individual rationality property can be found on Section C of the
appendix.

Policies 2 and 4 (Proportional to isolation and Isolation energy and remainer) always
satisfy individual rationality since the apportionment is performed by considering the
isolated energy consumption E({i}) (Theorems C.1 and C.3).

However, Policy 3 (Marginal contribution) does not always satisfy individual ratio-
nality mainly due to Equation (5), which does not consider the energy consumption of
E({i}) (Theorem C.2). Policy 5 (Shapley value) does not always satisfy this property,
but if the resulting game based on the energy consumption values E(S) is subadditive,
then Policy 5 will satisfy individual rationality.

Similarly, the surrogate-based policies (Policies 8, 9, and 10) do not satisfy the prop-
erty since the activity of an entity is not necessarily correlated with energy consumption
(Theorems C.4, C.5, and C.6).

5.2.4. Coalitional Rationality. Policy 6 (Nucleolus) is the only apportionment policy that
satisfies coalitional rationality when such a solution exists. Coalitional rationality
implies individual rationality when |S| = 1, and thus Policies 1, 3, 8, 9, and 10, which
do not always satisfy individual rationality, do not satisfy coalitional rationality either.

Policy 2 (Proportional to isolation) does not always satisfy coalitional rationality, but
it will satisfy the criterion if the following restrictive inequality holds [Drechsel and
Kimms 2010]:

Yies E(i) _ E(S)
S..vE(@D) ~ EN)

Policy 4 (Isolation energy and remainder) does not always satisfy coalitional rational-
ity since cost of the coalitions is not considered in Equation (6) (Theorem D.1). Policy 5
(Shapley value) does not always satisfy coalitional rationality. However, if the resulting
game based on the energy consumption values E(S) is concave, Policy 5 satisfies the
property [Rosenbusch 2011].

Finally, Policy 7 (Least-squares nucleolus) is not always coalitionally rational, but
other works have shown that it is always contained in an approximation of the core
(least-core), which describes approximately stable outcomes [Maschler et al. 1992;
Molina and Tejada 2000]. Additionally, Policy 7 is the only solution ensuring that
on average all entities are equally treated if each entity evaluates the excess of the
coalitions that the entity belongs to > g, ge(S,7) =3 g ;.ge(S, ), Vi, j € N. The egal-
itarian principle towards coalitions becomes egalitarian towards the entities, too, and
thus this solution contributes to stability.

for all S C N.

5.2.5. Entity Desirability. Policies 1, 2, 3, 4, and 6 always satisfy entity desirability. Our
proofs for entity desirability can be found in Section E of the appendix.
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Policy 1 (Equal division) trivially satisfies it since the policy always prescribes 7; = 7
(Theorem E.1). Policies 2 and 4 (Proportional to isolation and Isolation energy and re-
mainder) always satisfy entity desirability. A more desirable entity has a lower (or at
least equal) isolated consumption E({i}) than a less desirable entity, and thus Equa-
tions (4) and (6) prescribe always a lower (or at least equal) apportionment (The-
orems E.2 and E.4, respectively). Policy 3 (Marginal contribution) always satisfies
entity desirability since a more desirable entity has a lower marginal contribution
(Theorem E.3).

Policy 5 (Shapley value) does not always satisfy the property for the general case,
but the policy will always satisfy entity desirability when the game is subadditive
[Rosenbusch 2011].

Policy 7 (Least-squares nucleolus) does not always satisfy entity desirability, but
instead it satisfies an attractive property: aggregated entity desirability.® Instead of
comparing the marginal contribution of two entities to each coalition, this property
compares the total sum of the marginal contributions to all coalitions and prescribes a
smaller cost if the sum of an entity’s contribution is smaller than or equal to another
entity’s contribution [Ruiz et al. 1996]:

it Y ESUEH-ES) < Y ESU{j)-EWS)
Slij¢S Sli,j¢S
then m; <n; forall ¢, j € N.

The approach of Policy 7 considers all the coalitions equally important.

Finally, the surrogate-based policies (8, 9, and 10) do not always satisfy entity
desirability since less activity does not necessarily mean lower energy consumption
(Theorems E.5, E.6, and E.7).

5.3. Summary of the Fairness Insights

Table II shows that Policy 6 (Nucleolus) provides the strongest fairness since it satisfies
all properties. The intuition is that Policy 6 is defined to minimise the unhappiness of
the most unhappy entity in the system.

Policy 5 (Shapley value) is an excellent and fair alternative provided that the system
energy function E is always subadditive for the system. If subadditivity does not hold,
then the only advantage of this policy compared to the other ones is that it satisfies the
dummy player property. Thus, subadditivity is a precondition for a system to employ
the full potential of the Shapley value policy.

Policy 1 (Equal division) and Policy 3 (Marginal contribution) satisfy only symmetry
and entity desirability, which makes other policies such as Policy 2 (Proportional to
isolation) more attractive. Policy 2 is preferred to Policy 4 (Isolation energy and re-
mainder) since Policy 2 additionally satisfies the subset case of dummy player when
the contribution of an entity is 0. Policy 2 is an attractive choice given the symmetry,
individual rationality, and entity desirability criteria, which provide incentives and a
notion of fairness based on comparing two entities in the system.

Policy 7 (Least-squares nucleolus) is very interesting alternative given its more egal-
itarian approach to fairness and the additional fairness properties that it satisfies
compared to Policy 5 or Policy 6. In addition, all coalitions are equally treated by the
policy (i.e., all the complaints have the same weight) and it contributes to stability.

The detailed analysis of the above 10 policies pinpoints that surrogate policies do
not provide guarantees in terms of fairness from the energy perspective defined as the

3This property is called Average Marginal Contribution Monotonicity, but we rename it to keep term consis-
tency in the evaluation.
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five criteria. If the antecedents of the fairness properties are defined in terms of the
activity function a instead of E, for example, for symmetry a(S U {i}) = a(S U {j}) for
all S € N\{i, j}, then Policies 8 (Proportional to activity) and 9 (Time slicing) satisfy
activity-based symmetry and entity desirability. Nevertheless, the two criteria pro-
viding incentives (individual rationality and coalitional rationality) inherently require
energy-related concepts, and thus activity needs to be correlated to energy, otherwise
surrogate-based policies can provide misleading incentives.

6. SUMMARY OF THE ANALYSIS AND DISCUSSION

In this section, we provide an overview of the presented analysis considering the differ-
ent evaluation criteria and the identified tradeoffs. Section 6.1 summarises the major
tradeoffs between fairness and the other evaluation criteria. Section 6.2 discusses the
importance of analysing the system energy function E, and, finally, Section 6.3 provides
some high-level guidelines to select an energy apportionment policy given the purpose
of the apportionment.

6.1. General Tradeoffs
The major tradeoffs identified in the analysis are the following:

—Fairness vs. information type: We have distinguished between energy-based and
surrogate-based energy apportionment policies based on the type of input informa-
tion. Surrogate information (e.g., resource access time or data sent) is in general
easily accessible compared to energy-based information, which usually needs to be
estimated.

However, we have shown that some fairness properties (dummy player, individual
rationality, and coalitional rationality) cannot be satisfied by a surrogate-based pol-
icy. In addition, if the surrogate information is not highly correlated with the energy
information, the surrogate policies will not always satisfy the other fairness prop-
erties (symmetry and entity desirability). Table II reflects this issue showing that
none of the surrogate-based policies satisfies any of the five fairness properties in
the general case.

—Fairness vs. computational complexity: The amount of input information is
tightly related to the computational complexity of a policy, which leads to a tradeoff
between fairness and computational complexity.

Policy 1 (Equal division) provides the lowest complexity but also weak fairness.
Policies 2, 3, and 4 present low information requirement (a single value per entity),
leading to a low computational complexity, but none of these policies satisfies the 5
fairness properties. We identified Policy 2 (Proportional to isolation) as an interesting
policy in the tradeoff between fairness and computational complexity: It provides
reasonable fairness (providing symmetry and entity desirability) as well as incentives
(individual rationality) in linear time.

Surrogate-based policies (Policies 8, 9, and 10) are not very attractive since they
do not satisfy any fairness property and the computation requirement is still similar
to Policies 2, 3, and 4.

Satisfying the additional fairness properties requires more input information
(e.g., to compare coalitions), leading to higher computational complexity. Policy 6
(Nucleolus) satisfies all fairness properties, and Policies 5 and 7 (Shapley value
and Least-squares nucleolus) have a well-defined notion of fairness. However, the
size of the input grows exponentially with the number of entities for the game-
theoretic policies. Moreover, coalitional rationality (satisfied by Policy 6) relates to an
inherently hard problem. Determining whether there exists a set of coalitionally ra-
tional apportionments is NP-complete [Conitzer and Sandholm 2003, 2006].
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Thus, the computational cost of satisfying all fairness properties is high, and low-
ering the computational cost requires selecting a smaller set of fairness properties.
Alternatively, one could apply a high complexity approach to a problem with a small
set of inputs. Moreover, as pointed out in Section 4.2.2, there are efficient algorithms
to compute the game-theoretic policies for restricted classes of games.

To sum up, fairness comes at at cost of having to measure or estimate energy con-
sumption as well as computational complexity.

6.2. Properties of the System Energy Function

The system energy function E models the energy consumption of the system and its
values are either measured or estimated. In Section 2.3 we introduced some common
properties used to classify E (e.g., subadditive or concave). Knowing the class of E is
highly valuable for Policy 5 (Shapley value) since it satisfies relevant fairness properties
only for some of the E categories.

While subadditivity is often an assumption for some problems in the game theory
literature [Shapley 1953; Engevall et al. 1998], it is difficult to say how likely it is that
the system function E is subadditive for energy systems. If E is subadditive, then the
energy consumption of two coalitions (respectively, entities) together is not higher than
the sum of their isolated consumption. This implies that being together in the system is
always advantageous, which implies that the interaction of the entities in the system is
efficient. While analysing whether an instance of E is subadditive is intuitively system
dependent, we provide some illustrative examples that result in a subadditive E and a
non-subadditive E, respectively:

—Subadditive: Consider a system similar to the one presented in the introduction
section, where major contribution to the energy consumption is due to an inactivity
timer triggered after performing some activity. For example, a secure digital card
(SD card) consumes energy for some seconds after each write/read operation [Pathak
et al. 2012]. If two applications use the SD card concurrently, then the total energy is
smaller than sum of the stand-alone energy of the applications (overlapping energy
tails). If the applications use it separately, then the consumption is simply the sum of
the stand-alone energy. Thus, the system is subadditive. Other examples following a
similar intuition are a water kettle or a TV [Reinhardt et al. 2012], where the usage
overlap by several users intuitively results in a subadditive E.

—Non-subadditive: Consider the 3G wireless interface that is often characterised
by two main consuming states depending on the utilisation [Vergara et al. 2014b].
The drivers of some WiFi interfaces use a similar mechanism [Pyles et al. 2012].
Small amounts of data are sent in a low consuming state, but when the data sent
for a period of time is higher than a given threshold, the interface is moved to a
high-energy state. The consumption of two processes sending small amounts of data
together can lead to the high-energy state, whereas sending data separately would
result in a lower consumption due to using the low-energy state separately. Thus,
this system is not always subadditive.

Consider another simple example from the energy-efficient building area, a refrig-
erator, whose compressor is activated periodically in order to maintain the desired
temperature in the hysteresis region [Cheng et al. 2012]. Opening the refrigerator
increases the need of starting the compressor earlier. For this system, the result of
two people opening the refrigerator separately can easily result in a non-subadditive
E since the entities alone would consume less than together.

Concavity implies subadditivity, and, hence, from the discussion above, it follows
that some real-world examples of E may not satisfy concavity.
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To sum up, we believe that further work is needed to analyse the properties of E
for different types of systems. It is also interesting to analyse the properties of E for
complex systems composed of different subsystems (e.g., a mobile device has an SD
card as well as some wireless interfaces).

6.3. Selection Guidelines

In this section, we outline the most significant criteria that impact the selection of a
policy for energy apportionment. Based on our analysis and the previous discussion,
the following criteria serve as guidelines in order to select a policy:

—Surrogate- vs. energy-based policy: Where applicable, we believe that energy-
based policies are more appropriate than surrogate-based ones. Highly accurate
energy models and measurement techniques are already available for many systems
and obtaining better estimates of the E values is an ongoing work. This will facilitate
the information acquisition for the apportionment.

—Number of entities and real-time requirements: The number of entities in
the system plays an important role on the computational complexity, and this can
drastically impact the timing requirements for energy apportionment. In general,
complex algorithms are not fit for large numbers of entities, especially in real-time
applications of apportionment. However, they may make sense in offline analysis
settings. Analysing the running time of the apportionment policy implementations
in different systems as well as their energy cost is an interesting future direction.

—The purpose of apportionment: We classify the purpose of apportionment into
three main categories: informing, profiling, and incentivising.

—Informing: When the purpose of the energy apportionment is simply to inform
about the overall energy consumption of the entities (e.g., rank the most consuming
entities), there is no strict need for a complex policy. We believe that Policy 2
(Proportional to isolation) is a good fit for this purpose since it includes a fairness
notion where each entity is compared in a one-to-one fashion (symmetry, null
player, and entity desirability).

—Profiling: This applies when the purpose of the apportionment is to accurately
profile the energy usage (via testing) by entities in a system, for example, for
improving the efficiency of applications or software optimisation. Symmetry and
entity desirability are necessary properties for this purpose, and the dummy player
property is desirable. Table II shows that Policy 5 (Shapley value) and Policy 6
(Nucleolus) are good choices for this purpose.

—Incentivising: Energy apportionment can provide incentives to reduce the energy
consumption, especially when the entities of the system can influence their energy
consumption. Basic incentives can be realised by selecting a policy that satisfies
individual rationality, such as the simple Policy 2 (Proportional to isolation). It
provides incentives to reduce the stand-alone consumption of an entity, since this
will be apportioned less than its stand-alone consumption when the system is
efficient. For example, it can incentivise application developers to reduce the stand-
alone energy of their applications.

Satisfying coalitional rationality is recommended when the purpose is to incen-
tivise entities to efficiently cooperate in the system in addition to reduce their
stand-alone consumption. For example, two applications can be incentivised to
reduce their consumption together (e.g., by synchronising transmission patterns)
because they are apportioned no more than their stand-alone consumption but
also no more than their consumption together. Coalitional rationality is desirable
in systems where multiple dynamic entities can join or leave the system (e.g.,
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device-to-device clusters in 5G [Bianzino et al. 2014; Boccardi et al. 2014]), where
incentives are the key to cooperation.

Thus, a system can benefit from a strong incentive structure of Policy 6 (Nu-
cleolus), which satisfies individual and coalitional rationality, at the cost of com-
putational complexity. A more egalitarian fairness notion towards all coalitions of
Policy 7 (Least-squares nucleolus) is also an interesting alternative when users
are involved (e.g., energy-efficient buildings).

Finally, if the subadditivity and concavity of E can be shown, Policy 5 (Shapley
value) can also provide incentives.

Thus, depending on the purpose of energy apportionment and the system specifics,
some policies can be a better fit than others. We have identified that Policy 2 (Propor-
tional to isolation) provides an interesting tradeoff between computational complexity
and fairness while still providing basic incentives. Policy 6 (Nucleolus) and Policy
7 (Least-squares nucleolus) are the most interesting properties in order to provide
stronger incentives, and Policy 5 (Shapley value) and Policy 6 (Nucleolus) are a good fit
to profile systems. Finally, it is clear that analysing E is crucial for employing Policy 5
(Shapley value).

7. RELATED WORKS

Our work has studied the energy apportionment problem from a perspective not
adopted before. In Section 7.1 we describe how different works have practically ap-
proached energy apportionment and describe their context as well as the implemented
policy. In addition, Section 7.2 provides a brief overview of the area of energy manage-
ment and how energy apportionment plays a highly relevant role on it.

7.1. Energy Accounting

This section is devoted to describe the application and implementation of the pre-
sented energy apportionment policies. We briefly explain each approach and analyse
and report on which policies they employ. The works are categorised in four different
contexts: processing and operating systems, wireless sensor networks, energy-efficient
buildings, and mobile devices.

7.1.1. Processing and Operating Systems. PowerScope [Flinn and Satyanarayanan
1999b] maps energy consumption to program structure by employing physical power
measurements combined with kernel-level system activity information. The work stud-
ies a single-core CPU and thus attributes a process the energy consumed when the
process is being executed. Since a single process can be executed simultaneously, the
process allocates its consumption based on the time slice when it was scheduled (sim-
ilar to Policy 9, Time slicing). This work does not consider cases where the activity of
entities in the system is not instantaneously reflected in the power trace (e.g., energy
tails).

A follow-up work by Bellosa [2000] proposes Joule Watcher, a similar event-driven
resource profiler to attribute energy consumption of CPU and memory to individual
threads. Even though the work does not adress the problem of multi-entity apportion-
ment, it refers to surrogate information such as performance-monitoring information.

Neugebauer and McAuley [2001] argue that energy accounting of shared resources
is a requirement for energy management. They discuss the difficulties in estimating
each entity’s consumption due to asynchronous energy overheads (e.g., energy tails).
They suggest that the apportionment should be done in proportion to utilisation-based
surrogates, that is, Policy 8 (Proportional to activity). Examples of surrogates include
the access time to a resource, the number of pixels used in a display, or the amount of
data exchanged with the network.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 1, Article 2, Publication date: October 2016.



2:22 E. J. Vergara et al.

ECOSystem [Zeng et al. 2002b] is an energy-centric operating system that employs
energy accounting for the CPU, disk, and network card. The running time of the process
is used to apportion the CPU consumption assuming that the CPU consumes a fixed
amount of power (Policy 9). The active access of the disk is computed using surrogates
when write or read operations occur. The consumption due to asynchronous operation
(e.g., spin-up, spinning, and spin-down) is proportionally divided by the tasks that em-
ployed it between the spin-up and spin-down events. This is similar to Policy 9 (Time
slicing) considering the spin-up and spin-down as events. Finally, the energy consump-
tion of the network interface is attributed based the amount of data transmitted and
received.

Ryffel et al. [2009] and LEAZP [Ryffel 2009] extend the idea of PowerScope to multi-
core system and propose Policy 3 (Marginal contribution) as fair without any formal
justification. The system employs power measurements of different hardware elements
(e.g., CPU, Graphics Processing Unit (GPU), or hard drive) combined with indirect
information based on performance counters. However, they mention that obtaining the
energy consumption values for Policy 3 is not feasible for some system components
such as CPU since processes run simultaneously. Estimating the energy consumption
of a process in isolation (in a single CPU) is proposed to overcome the limitation, and
thus Policy 2 (Proportional to isolation) is employed to estimate the apportionment of
each process for the multi-core processor.

Joulemeter [Kansal et al. 2010] is a system to attribute the energy consumption
of a cloud server to the running virtual machines (VMs). The energy consumption of
each VM is estimated based on measurement-based energy models. It is argued that
the apportionment is correct if the sum of the estimated energy is equal to the total
measured energy (i.e., efficiency), which is not always the case. They consider the
energy in isolation as the apportionment for each VM (similar to Policy 2).

7.1.2. Wireless Sensor Networks. Quanto [Fonseca et al. 2008] is an energy profiler for
network nodes that combines energy metering hardware and program activity informa-
tion to quantify the energy consumption for user-defined activities. They use the notion
of activity as a logical set of operations whose resource usage is grouped together. An
entity can adopt the same notion in our work.

Quanto estimates the energy breakdown of the different components and then sys-
tem quantifies the resource consumption of the activities. A single-activity device is
considered, leading to a straightforward apportionment, but the authors mention that
the apportionment for a multiple-activity device is a policy decision. They preliminarily
select to divide the energy consumption equally, that is, in a similar way to Policy 1.

Kellner [2010] considers the context of dynamic sensor networks where various ap-
plications can query a sensor network at any point in time. The work proposes an online
energy accounting system employing measurement-based finite-state machine (FSM)
models to attribute energy consumption to tasks. Since energy consumption not only
depends on the active usage (e.g., energy tails or between uses), the author identifies
several ways to divide the remainder energy. Policy 4 (Isolation energy and remainder)
is applied to message reception where the energy consumption of the messages that
cannot be attributed directly to any task is equally shared. Policy 9 (Time slicing) is
used to divide the energy consumption of the micro controller considering active or
inactive tasks.

7.1.3. Energy-Efficient Buildings. A first and influential work by Hay and Rice [Hay and
Rice 2009] formulate the problem of attributing the energy consumption of a building
or organisation to individual users. They argue that it can provide incentives to reduce
the total consumption and identify two requirements that every policy should satisfy:
completeness and accountability. The first one refers to efficiency, whereas the second
states that actions of a user should have a maximal effect on their own share and a
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minimal on the rest of users. The entity desirability property is related to accountability,
where a more consuming entity will get prescribed a higher energy consumption.

Their work proposes Policy 1 (Equal division) as the most basic policy. This is further
extended using occupancy time as a surrogate of energy resulting in a version of Policy
8 (Proportional to activity). Policy 4 (Isolation energy and remainder) is then proposed
by first calculating the personal load of a user and then dividing the rest evenly. Their
efforts focus on accurately estimating the personal load employing sensors.

Similarly, WattShare [Thakur et al. 2014] seeks to attribute the energy consumption
of a shared building to individual occupants (personal apportionment) using Policy 9
(Time slicing). Considering only the total energy consumption measured at the smart
meter, their work proposes to employ information from smartphone sensors (e.g., WiFi
signal strength or microphone data) carried by the occupants to perform the apportion-
ment.

Tsao et al. [2014] investigate how to attribute the energy consumption of centralised
heating, ventilation, and air conditioning system to different rooms in a building.
They propose to employ Policy 2 (Proportional to isolation) and argue that it satisfies
efficiency and accountability. There is no evidence showing that their apportionment
approach satisfies the two properties.

7.1.4. Mobile Devices. Pushed by short battery lifetimes energy profiling has attracted
a great attention in mobile devices to improve software energy efficiency. Our previous
work, EnergyBox [Vergara et al. 2014b], develops an FSM-based energy model for
wireless interfaces. By isolating the traffic of an application, the energy efficiency of the
applications is studied in isolation using EnergyBox [Vergara et al. 2014a; Almquist
et al. 2015]. Other studies perform a similar simplifying assumption to profile the
energy consumption due to communication [Qian et al. 2011; Rice and Hay 20101,
which is similar to Policy 2 (Proportional to isolation).

Similarly, WattsOn [Mittal et al. 2012] is a system to estimate the energy consump-
tion by an application at the development environment that reuses and extends pre-
viously developed FSM-based energy models. This work considers that the energy
consumption of the application is the total energy consumption of the system when
only the application is running (i.e., similar to Policy 2). Zhang et al. [2010] develop
activity-based power models (FSM and linear functions) using measurements in order
to attribute the energy consumption of each component to the different processes in
the system. Their work does not consider the asynchronous energy consumption such
as energy tails.

Bugu [Li et al. 2014] is an application-level service that aims to profile the appli-
cations running in client devices by sending consumption statistics to a server. The
considered apportionment policy is that an application’s consumption is the energy
consumption in isolation (E({i})) based on their power model (similarly to Policy 2),
which does not always satisfy efficiency.

The characterisation of graphical user interfaces and display energy consumption
from hardware, software, and application perspective is performed with a focus on
optimising the energy consumption of Graphical User Interface (GUI) applications and
GUI platforms [Zhong and Jha 2003]. The work uses Policy 3 (Marginal contribution)
to obtain the energy contribution of GUIs.

Eprof [Pathak et al. 2012] is an energy profiler for smartphones to support efficient
application development. It employs system call-based resource usage information and
FSM-based models to attribute the energy consumption to applications (and activities
within the application). They discuss different alternatives to attribute the energy
consumption of energy tails such as equally (Policy 1) or proportionally dividing the
energy consumption among the consuming entities (Policy 2). Finally, they propose
the last-trigger policy (Policy 10, Last active in our work) in order to incentivise the
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developer to batch energy events. In our work, we formalised their policy proposal to
analyse its properties.

The recent work by Dong et al. [2014] is the first work considering the application
of cooperative game theory in the context of mobile energy accounting. They argue
that the Shapley value (Policy 5) is the ground truth for the apportionment problem
in mobile systems and provides an approximation of it by approximating the game.
Using physical power measurements, they define every 10ms interval as a game where
the energy consumption needs to be attributed. By considering these short intervals,
they attempt to observe the consumption of different coalitions (i.e., observing inter-
vals where only some entities are active) and employ a combination of the observed
coalitions with hardware states (for WiFi and CPU) to reduce the variance of the ob-
servations. The unobserved coalitions are statistically estimated from historical data.
Their results show that other accounting methods differ significantly from their ap-
proach.

Recent work has also focused on identifying energy-hungry applications by collab-
oratively collecting usage information from many devices and employing statistical
techniques [Oliner et al. 2013; Chandra et al. 2013]. These works provide a limited
level of energy accounting due to the coarse granularity of the approach that reduces
the possibilities of using them in energy management.

Compared to the previous works, we focus on analysing the fundamental aspects
of energy apportionment policies rather than application aspects of them. Our work
provides an overview of the energy apportionment problem in different research areas
in order to unify efforts towards energy efficiency.

We show that fairness is a relevant criterion and pinpoint that, as in cooperative
game theory, there is no best solution in general. Additionally, we propose the usage of
two apportionment policies with strong fairness notions that have not previously been
used in the described areas. Finally, we provide guidelines to select a policy based on
the information requirement, computational complexity, and fairness properties and
suggest that the analysing structure of the E function for a system is decisive.

7.2. Energy Management

Efficiently managing system resources in terms of energy requires u to control and de-
termine the energy expenditure of the system and the entities. Energy accounting, and,
thus, energy apportionment, too, are key elements to determine the energy consump-
tion of the entities. This section describes approaches considering energy allocation to
competing entities in the system, mostly from the operating system and mobile device
literature. These rely on energy accounting and apportionment policies.

The first energy-aware operating system concepts and attempts date from the late
1990s [Ellis 1999; Neugebauer and McAuley 2001]. Ellis [1999] advocates that energy
consumption should be considered a first-class resource while still meeting performance
requirements. Since then, the main approach in energy management is to devise differ-
ent strategies to control the energy consumption of the system by limiting the energy
usage of entities in the system (e.g., applications).

Budget-based energy management (BBEM) allocates an energy budget to entities in
the system (e.g., applications), and these will not run if they run out of budget. Set-
ting a target lifetime is also a recurring trend. Nemesis [Neugebauer and McAuley
2001], ECOSystem [Ellis 1999; Zeng et al. 2002b, 2003], and Odyssey [Flinn and
Satyanarayanan 1999a, 2004] are examples of early operating systems that propose
adaptive applications that can trade off Quality of Service (QoS) for lower consump-
tion. These works also pinpoint the need for energy accounting. For example, Odyssey
uses PowerScope [Flinn and Satyanarayanan 1999b] to build a system’s power model
and employs Policy 8 as apportionment policy. More recently, BBEM has been adopted
and extended by several works to extend the battery lifetime of mobile devices (e.g.,
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Cinder [Rumble et al. 2009; Roy et al. 2011]). The complexity of BBEM lies on devising
a strategy to define the budgets and the replenishment rate to overcome the potential
QoS and Quality of Experience (QoE) burden on the user when applications run out
of budget. Prioritising some applications [Cho et al. 2014], limiting background ap-
plications [Chandra et al. 2013], or exploiting context information (e.g., user location)
[Chu et al. 2011; Vallina-Rodriguez and Crowcroft 2011] are some examples of recent
proposals for energy management.

Finally, the theoretical work by Dong [2013] formulates energy management as a
utility optimisation problem: Schedule the different processes to maximise the aggre-
gate utility of all system processes under the energy capacity constraint. BBEM is
compared to a novel energy management strategy that dominates by optimal utility
value.

To summarise, energy is a vital resource, and efficiently managing system resources
from an energy perspective is an ongoing activity. Selecting an appropriate energy
apportionment policy for a system is important for efficient energy accounting and
energy management.

8. CONCLUSIONS AND FUTURE WORK

In this article, we categorised, compared, and analysed a total of 10 different energy
apportionment policies in terms of required information, computational complexity, and
fairness. Among the 10 policies, we formalised 3 policies not described mathematically
earlier and proposed two novel policies based on cooperative game theory.

Our work shows that cooperative game theory provides an excellent framework
and solutions for addressing the energy apportionment problem and that selecting
an appropriate policy plays a role in providing incentives for energy efficiency to the
entities in the system.

Unfortunately, there is no known ground truth for the general apportionment prob-
lem, and, therefore, energy-based policies are no better than surrogate-based ones.
However, we have pinpointed that providing incentives and stability requires energy-
related concepts and that an energy apportionment policy needs to reflect the inner
workings of the system leading to energy consumption. Thus, employing the system
energy function in the apportionment seems a more reasonable alternative.

Our results demonstrate that there is a tradeoff between fairness and the other
evaluation criteria. The strongly fair policies based on game theory have the high-
est information requirement and computational complexity, which can be less practi-
cal in some contexts (e.g., high number of entities in the system or timing require-
ments). Depending on the context, a simpler policy like Policy 2 (Proportional to
isolation) can achieve a satisfactory compromise by sacrificing some fairness prop-
erties but drastically reducing complexity and still providing basic incentives. Further
work can be done to identify how to satisfy a set of fairness properties with minimum
complexity

Finally, the characteristics and properties of the system energy function should be
analysed since some policies assume certain properties (e.g., Shapley value), and some-
times different policies can lead to identical results. In the latter case, selecting the
simplest policy among the equivalent ones is recommended.

The future work directions include applying the above insights in systems from
different contexts and empirically studying the impact of the incentives on energy
efficiency. Developing means to measure or better approximate the system function for
different systems is a key capability that can provide insights about the structure of
the system function.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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