
Exploiting Bro for Intrusion Detection in a SCADA System

Robert Udd
Sectra AB
Linköping
Sweden

Mikael Asplund
Dept. Comp. and Inf. Sci.

Linköping University
Sweden

mikael.asplund@liu.se

Simin Nadjm-Tehrani
Dept. Comp. and Inf. Sci.

Linköping University
Sweden

simin.nadjm-tehrani@liu.se
Mehrdad Kazemtabrizi
Ind. Inform. and Cont. Syst.

The Royal Institute of
Technology

Stockholm Sweden
mkaz@kth.se

Mathias Ekstedt
Ind. Inform. and Cont. Syst.

The Royal Institute of
Technology

Stockholm Sweden
mathias.ekstedt@ics.kth.se

ABSTRACT
Supervisory control and data acquisition (SCADA) systems
that run our critical infrastructure are increasingly run with
Internet-based protocols and devices for remote monitoring.
The embedded nature of the components involved, and the
legacy aspects makes adding new security mechanisms in an
efficient manner far from trivial. In this paper we study
an anomaly detection based approach that enables detect-
ing zero-day malicious threats and benign malconfigurations
and mishaps. The approach builds on an existing platform
(Bro) that lends itself to modular addition of new proto-
col parsers and event handling mechanisms. As an example
we have shown an application of the technique to the IEC-
60870-5-104 protocol and tested the anomaly detector with
mixed results. The detection accuracy and false positive
rate, as well as real-time response was adequate for 3 of
our 4 created attacks. We also discovered some additional
work that needs to be done to an existing protocol parser to
extend its reach.

Keywords
Anomaly detection, IDS, Bro, SCADA, IEC 60870-5-104

1. INTRODUCTION
The electrical grid is becoming increasingly dependent

on information infrastructures and services. These allow
greater flexibility to accommodate alternative energy sources,
lower cost of operation and potentially improved resilience.
For reasons of compatibility and cost modern Supervisory
Control and Data Acquisition (SCADA) systems now use
Internet protocols for communication within as well as be-
tween substations. Moreover, SCADA systems are increas-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPSS’16, May 30-June 03 2016, Xi’an, China
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4288-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2899015.2899028

ingly being connected to the Internet to allow remote oper-
ation, software updates and system monitoring.

In order to protect these critical cyber-physical systems
(CPS) from unauthorised access, they are often separated
from normal Internet traffic through firewalls, VPN systems,
and in some highly-critical cases using physically separated
networks. However, most security experts agree that se-
curity should be constructed using a defence in depth ap-
proach. Among others, the standards developed for manage-
ment of power systems propose specific measures for moni-
toring network protocols and end system health status1.

One reason for this is that SCADA operated networks
cannot be considered as fully isolated from social engineer-
ing induced malware proliferation and insider threats [17].
A recent study by Volmetrics shows that only 11% of the
800 businesses interviewed considered their systems resis-
tant against insider threats (by privileged users, contractors
and service providers, and business partners)2. Another rea-
son is that the added complexity posed by a mix of modern
and legacy systems leads to benign software-dependent mis-
behaviour and the traditional security mechanisms are often
targeted towards intentional breaches.

The combination of new protocols and sensors to tradi-
tionally closed SCADA systems requires a new way of ap-
proaching the defence in depth idea in this context. As
new standards appear and interoperable network technolo-
gies emerge, a need to augment the existing monitoring ca-
pabilities in an efficient manner arises. Platforms that facil-
itate rapid deployment of modular incident detection tech-
niques are valuable, and here we explore one such platform
for building our anomaly detection mechanism.

In this paper we propose an intrusion detection mecha-
nism for SCADA systems. It is intended to operate on the
internal network of an electrical substation and is based on
anomaly detection. Anomaly detection (as opposed to mis-
use detection) has the benefit of being able to detect previ-
ously unknown attacks. The main drawback of the anomaly
detection approach is the potentially large number of false

1IEC/TS 62351-7 Ed.1: Power systems management and
associated information exchange – Data and communication
security, Part 7: Network and system management (NSM)
data object models
22015 Voltometric Insider Threat Report:
http://www.vormetric.com/campaigns/insiderthreat/2015/

alarm coming from benign traffic that just does not match
the trained normality model of the detector. However, in
closed SCADA systems, the traffic pattern does not change
as frequently as in enterprise networks.

Our proposed intrusion detection component combines two
anomaly detection mechanisms, automatic whitelists and a
statistical model of packet timing characteristics. The sys-
tem has been implemented as components in the state-of-the
art intrusion detection framework Bro [14]. This modular
framework has support for a wide range of existing network
protocols. Moreover, we have extended Bro with a parser
for the IEC 60870-5-104 SCADA protocol in order to test
the system on a small-scale test network with real Remote
Terminal Units (RTUs).

We evaluate the performance of the detector by construct-
ing four different attacks (two sniffing attacks, one man-in-
the-middle attack and one spoofing attack). The results are
show some potential with three out of the four attacks per-
fectly detected with an acceptable amount of false positives.

In summary, the contributions of the paper are threefold:

• An automatic whitelisting anomaly detector for SCADA
networks

• A Bro parser for the IEC 60870-5-104 protocol

• Implementation of four SCADA network attacks, three
generic attacks and one specific for the IEC 60870-5-
104 protocol

The rest of the paper is organised as follows. Section 2
discusses related work. Section 3 describes the intrusion de-
tection components that we add to the Bro framework. Sec-
tion 4 contains a description of the evaluation we performed
on a small SCADA testbed using real hardware components.
Finally, Section 5 concludes the paper.

2. RELATED WORK
Several recent papers show that opening up the SCADA

networks to external devices enables adversaries to perform
attacks on the networks (that obviously relate to critical ser-
vices). Among the protocols that appear in the context of
SCADA networks we find Modbus, DNP3, and IEC-60870-
5-104. Several recent works address attacks and counter-
measures for networks operating these protocols.

To mention a few, a man-in-the middle attack on the IEC-
60870-5-104 protocol was described by Maynard et al. [12].
Further work by Yang et al. [16] lists eight known attacks on
the IEC-60870-4-105 communication and builds a signature-
based defence approach on these. Other work describes
attack step sequences that include crafting legitimate but
malicious DNP3 packets so that 4 circuit breakers can be
opened simultaneously in a 30 bus network [10]. Hoyos et
al. [8] describe a message authentication attack on a net-
work operating with the IEC-61850 standard and running
the GOOSE protocol. Several examples of attacks feasi-
ble on Programmable Logic Controllers (PLCs) that run a
Modbus protocol are described in the literature [7]. Mov-
ing on to smart grid infrastructures we see descriptions of
potential attacks on smart grids and how the dynamics of
such networks differ in terms of timing characteristics com-
pared to traditional ones [15]. The study of intrusion de-
tection approaches is typically performed using data that is
not available for comparative purposes [13]. Neither is the

code for any other anomaly detector for the IEC-61870-5-
104 protocol available to the best of our knowledge. Thus,
it is difficult to compare one approach against another. We
are only aware of one other work in collaboration with in-
dustrial partners [1] that has datasets based on the same
protocol as ours, but to the best of our knowledge it does
not make the dataset available for testing. Common data
sets and available security building blocks would promote a
more systematic approach to anomaly detection in SCADA
systems.

Altogether, these analyses indicate that a serious look at
risks is needed before an unprotected device is embedded in
potentially sensitive contexts. However, the residual risks
may not be easy to mitigate as we indicate below.

A basic problem that has to be resolved with respect to se-
curing networks extended with new CPS devices and proto-
cols is the question of resource efficiency for security building
blocks.

Although studying the cost of hardware designs for se-
curity is subject to meticulous studies (see e.g. Good and
Benaissa [6]), the resource costs of adding security imple-
mented in software is much less studied. A relatively early
study of the resource costs was in the context of adding se-
curity mechanisms to tactical networks [11]. Lake et al. [9]
state that the “the biggest challenge from the device side is
that a lot of M2M/IoT devices do not have enough capabil-
ity to do the encryption on the device.”

One of the most well-known and well-used intrusion detec-
tion mechanisms is Snort with rules dynamically updated to
recognise tens of thousands of adverse conditions. Chang et
al. [2] compare the RAM usage benchmarking of Snort that
at peak rate shows a 1.2 GB memory usage with the 512MB
of RAM in a Raspberry Pi computer. They then describe the
steps taken to enable lightweight intrusion detection by im-
plementing memory-efficient representations of Snort rules
and CPU-efficient algorithms to work in real-time in tacti-
cal devices. Any new mechanism that addresses adding new
devices to a network needs to enhance the arsenal of defence
mechanisms that work in the resource-constrained settings.

A timing attack on the IEC-61850-8-1 authentication mech-
anism [8] shows that since the computation capacity of em-
bedded processors for running an authentication algorithm
currently exceeds the needed 4ms response time, a successful
attack would be able to create an automation breakdown,
including damaging circuit breakers and power transformers.

A recent survey of IoT technologies [5] includes some expo-
sure to how IoT technologies (device management, wireless
connectivity, protocols) address security issues. In general,
no IoT-specific security mechanisms with well-understood
resource footprints are currently available.

Our work shows that a) the Bro framework is runnable
on a Raspberry Pi and can be inserted in adequate numbers
to monitor segments of a SCADA network. The Hilti parser
that we use is not yet ported to the small footprint platforms,
but our experiments on the standard computer show that
the detection performance is fast enough for the network
sizes specified. Despite its current limitation our parser can
be made available for further improvements by the research
community.

3. DETECTING ANOMALIES
Our approach is built using two mechanisms: The auto-

matic whitelisting (AW) anomaly detector and timing analy-

sis. The system consists of three main parts that are all inte-
grated in the Bro framework. First the parser ensures that
traffic using the IEC 60870-5-104 protocol can be treated
in Bro, second, a learning component that automatically
creates a number of whitelists of normal traffic as well as
collecting timing statistics during some training period of
the system, and finally a detection component that uses
whitelists and timing statistics to flag for anomalous traf-
fic. We now proceed to describe the rationale and basic
three components.

3.1 IEC 60870-5-104 Parser
The IEC 60870-5-104 protocol parser has been implemented

using the Spicy parser generator and a Bro plugin. This
framework allows an analyser to be constructed in Bro by
specifying a protocol grammar and a number of event hooks
that triggers a Bro event handler. We now proceed to de-
scribe the basic building blocks of the IEC 60870-5-104 pro-
tocol, that correspond to the parser structure. Figure 1
shows the basic frame format of the Application Protocol
Data Unit (APDU) frame as it is defined in the IEC 60870-5-
104 protocol. The Application Protocol Control Information
(APCI) is always present in in the frames, but the Applica-
tion Service Data Unit (ASDU) is optional [3]. An APDU
frame can be in U, S or I format. The unnumbered con-
trol format (U) is used as a start and stop mechanism for
communication flows. The supervisory format (S) controls
the transport of APDUs. Finally, the information instruc-
tion format (I) is used for APDUs that contain an ASDU
and carry the actual SCADA instructions and information
items.

Figure 1: Frame format for IEC 60870-5-104 packets

The parser is built in a hierarchical design with each frame
format represented with a dedicated module. The parser has
full support for the entire IEC 60870-5-104 protocol specifi-
cation.

3.2 Learning component
Whitelists are commonly used to ensure that only known

and approved traffic is allowed in the network, something
that can be implemented using manually created firewall
rules. However, rule creation can be a tedious and error
prone task. The learning component therefore creates whitelists
automatically based on a data from a training period. In ad-
dition to these whitelists we consider the use of traditional
statistical anomaly detection techniques applied to timing

characteristics in the network to further increase the detec-
tion ability of the system.

3.2.1 Whitelist creation
Figure 2 shows the basic functionality of the learning com-

ponent when processing an incoming packet. The detec-
tor maintains three separate whitelists (1) ARP whitelist,
(2) pair communication whitelist and (3) a TCP control
whitelist. The ARP (Address Resolution Protocol) whitelist
is built up from ARP packets where MAC addresses and IP
addresses are paired together. This ensures that only known
hosts are participating in the network. The pair communi-
cation whitelist contains information of sender-receiver node
pairs. This list can be populated both by ARP packets and
by IEC60870-5-104 packets. In the latter case, the type of
APDU-packet that is being sent (S,U, or I), and in the case of
an I-type, what type of instruction is also recorded. Finally,
the TCP control whitelist records the IP-number and port
number for all TCP packets that are not IEC 60870-5-104
packets (e.g., acknowledgement packets). This ensures that
only the intended connections patterns are allowed. That is,
if computer node A normally connects to service S on node
B, then if A would suddenly try to access service S’ on B or
to access node C, an alarm would be raised.

Figure 2: Flowchart of the learning component.

As can be seen in the flowchart, the whitelists are con-
structed by adding a new item every time a packet appears
that does not match any existing item in the whitelists.
Moreover, for the ARP and IEC 60870-5-104 packets the
timing characteristics are stored in a separate record for

making statistical analysis, as we will now describe in the
following.

3.2.2 Timing statistics
The purpose of keeping timing statistics is to be able to

detect deviations of packet inter-arrival times. Figure 3 il-
lustrates the basic idea of how such timing detection is sup-
posed to function. The first three packets arrive in a normal
fashion, whereas the packet arriving at time T4 arrives more
than a threshold D later than what is considered normal by
the model

Figure 3: Timing anomaly detection.

In order to create such a timing model of packet arrivals,
we record the following information features:

• The minimum difference in arrival time, ∆tmin

• The maximum difference in arrival time, ∆tmax

• The mean value of the difference in arrival time, µ

• The sample variance Sn

• The variance of the difference in arrival time σ2

• The time of the previous packet tn−1

• The number of analysed packets n

We then use the technique proposed by Finch [4] to iter-
atively calculate the variance as each packet arrives. This
means that we only need to store 7 numerical values for each
connection.

3.3 Detection component
The detection component processes packets during nor-

mal operation of the system, and should raise an alert if the
traffic deviates from the normality model. Figure 4 shows
the operation of the detector for each processed packet.
Basically, the detection is performed in two steps. First,
the packet is compared with one of the three appropriate
whitelists (ARP, pair communication, TCP control). If the
packet does not match any of the whitelists, an alert is
raised. For example, if a packet has a previously unknown
sender, receiver or port number then there will be no match-
ing item in any of the whitelists.

Figure 4: Flowchart of the detection component.

The detector will also perform a timing check for IEC
60870-5-104 packets and ARP packets. The timing check
uses the statistical information recorded in the learning phase
to determine if the time elapsed since the last packet differs
more than D from the average inter-arrival time. The set-
ting of the D parameter affects both the detection rate and
false positive rate. In our tests we achieved the best results
with D = 6σ.

4. EVALUATION
To test the effectiveness of the automatic whitelisting in a

SCADA network a prototype implementation was developed
and tested with some key attack types using data from a
small-scale testbed. This section contains a description of
how the normality data was collected, the attacks and their
generation, and the resulting performance of the prototype
IDS using this data.

4.1 Normal data collection
The Department of Industrial Information and Control

Systems at the KTH Royal Institute of Technology in Stock-
holm maintains a SCADA laboratory which was used to
record normal traffic data (see Figure 5). The setup con-
tained four Remote Terminal Units (RTU) of the model
NETCON RTU 28-IP, a HP ProCurve 1800-8G switch, and

a user terminal machine running Zenon (COPA-DATA 2013).
The traffic data was collected using a Raspberry Pi model
B+ through a mirroring port on the switch. A total of 6
days and 16 hours of data was collected. Traffic between
RTUs 1 and 4 was further parsed and used as input to the
training and testing of the intrusion detection system.

The traffic data was split in two parts, training and test
data. The training period lasted for 24 hours in the tests
described here, and the remaining days were used for testing.
The attacks were added to the data traces by simulating the
effect of a real attack to the system.

Figure 5: SCADA testbed at KTH Royal Institute
of Technology used for collecting network traces.

4.2 Attacks
The intrusion detection system was tested with four differ-

ent attacks: two port scan attacks, one man-in-the-middle
(MITM) attack, and one spoofing attack, as described be-
low.

Attack 1, port scan from an unknown host.
In this attack a host that was not previously part of the

network sends a number of different connection requests
with varying port numbers to see if the target responds to
any of these ports. This information can then later be used
to attack the host using exploits that target these specific
services. To make the attack stealthier, we employ a tech-
nique where the connection is never fully established. This
will reduce the risk that the attacked system creates logs
that might trace back to the attacker. This is done by just
sending the first request packet and if the host responds im-
mediately shutting down the connection.

Attack 2, port scan from a known host.
This attack is identical to attack 1 except that the attack

originates from a host that is already part of the system.
Such an attack can occur if a node is infected by malware.

Attack 3, man-in-the-middle.
This attack uses the ARP to trick other hosts in the

network to send their packets through the attacking host,
thereby allowing the attacker to freely modify the packets
in transit. The attack is initiated by the attacker by creating

forged ARP packets. The packets are created to look like
the only way for the hosts to communicate with each other
is by sending their packets to the attackers interface.

Attack 4, spoofing.
The purpose of this attack is also to modify packet con-

tents, but the effect is to send a packet that arrives just
before the real packet. IEC60870-5-104 runs on top of TCP
that uses a combination of sequence (SEQ) and acknowledge
(ACK) numbers to keep track of packets and to sort them
back into order upon arrival and to prevent replay attacks
where a sniffed packet is sent again from the attacker to
create an unwanted effect. The initial SEQ number should
be chosen randomly to prevent prediction attacks. However,
when a connection has been established the SEQ/ACK num-
bers are increased in a deterministic manner based on the
length of the data transferred in the packet. In IEC 60870-5-
104 connections can last for weeks or more. Another impor-
tant aspect is that the length of the IEC 60870-5-104 packets
is determined based on the type of instruction. This makes
it possible for an attacker to send a forged packet shortly
before the real packet is supposed to be sent. Since both
packets will arrive, the destination host will discard the late
packet as if it was a re-transmitted packet caused by packet
losses.

4.3 Attack generation tools
A variety of tools were used to implement the studied

attacks. All tools listed are freely available online.
Wireshark3 is the world’s leading protocol analyser. Wire-

shark has been an important tool used to analyse and un-
derstand the IEC 60870-5-104 protocol. Wireshark was also
used to confirm that the attacks were manipulated and in-
serted into the recordings in the correct way. Tshark is a
command-line version of Wireshark included in the Wire-
shark distribution. Tshark uses the same packet dissectors
as Wireshark and were used at times when Wireshark was
too slow due to the big recording file sizes.

Tcprewrite4 was used to remove VLAN tags that the switch
introduced. Tcprewrite was also used to change port num-
bers in the attack files to match the port numbers used in
the real system.

Mergecap is a command line tool included in the Wire-
shark distribution used to merge different recordings to-
gether. One example of a use case is when the manipulated
attack packets were inserted into the recording of the nor-
mal traffic. Mergecap was also used to convert between the
.pcapng and the .pcap format of the recorded files.

Bittwiste5 is a command line tool that were used to change
the IP and MAC addresses in the attack files to match the
actual recording from the SCADA environment. Nmap6 is a
tool that is used for security auditing and network discovery.
Nmap was used in the port scan attacks. The first port scan
emulates an attacker that is new to the network and tries to
find open ports on the RTU. The other port scan emulates
an attacker using a previously known host to find open ports.
The attacker could have compromised the host were the port
scan originates from earlier.

3https://www.wireshark.org/
4http://tcpreplay.appneta.com/wiki/tcprewrite.html
5http://bittwist.sourceforge.net/index.html
6https://nmap.org/

Arpspoof is a tool included in the dsniff package7. Arp-
spoof was used to create the MITM attack. Arpspoof sends
ARP replies to both communicating hosts in order for them
to stop communicating directly with each other. The hosts
will think that in order to reach each other they will have to
send their packets through the attacker. The attacker can
not only read the packets passing but also alter them freely.

The most important tool used is Scapy8 which is a packet
manipulation program running on Python. Scapy allows
manipulation of all fields in a wide variety of protocols. Even
though the IEC 60870-5-104 protocol is not supported it is
still possible to change the data transmitted. Scapy was used
heavily to produce the data necessary to emulate a spoofing
attack. Packets from the real recording were copied and
moved a little earlier to emulate the attacker sending spoofed
packets. The packets were also changed to carry modified
data as if the attacker was injecting false information.

4.4 Merging attack data with normal data
The process of adding an attack to the recorded data

starts with recording attack packets. This was done by set-
ting up an emulated version of the data collection network
(see Section 4.1) in which attacks could be performed. De-
pending on the attack type, the attacker mounts attacks
on one or both of the RTU and HMI. The recorder is con-
nected to a mirroring port in the switch. When the attack
has been recorded in this setting, all attack packets are ex-
tracted from the recording. Since the MAC and IP addresses
do not match the actual system, they have to be modified
before insertion into the normal data stream for test pur-
poses. The port numbers of the attack packets were also
changed. The prediction attack needed manipulation of the
packet payload. To accomplish this Scapy was used as de-
scribed above.

When the packets have been modified to fit the actual
system the packets are inserted into the normal recording.
The detection was run on the resulting recorded file with
attacks interleaved with normal traffic.

4.5 Detection performance
We proceed to give a sample of some of the results from

this study. The data is based on traces from two RTUs since
the data for the other RTUs led to the Hilti parser crashing.
Table 1 summarises the total number of packets used in the
experiment.

The overall best results (considering all attacks) were ob-
tained when setting the threshold for normality at a very
high level (6 sigma). Therefore we proceed to provide the
results with this setting.

Figure 6 shows that the whitelisting mechanism success-
fully detects both port scan attacks and the man-in-the-
middle attack as expected. The timing analysis confirms
the detection of the whitelist for the man-in-the-middle at-
tack. However, the spoofing attack which manipulated only
timing was not expected to be detected by the whitelists.
To our surprise the timing detector did not detect it either.
Upon further investigation we found that this was due to
filtering performed by Bro which suppresses duplicate pack-
ets. Since our timing manipulated packets arrive before the
real packets, the real ones will be dropped by Bro. We have

7http://linux.die.net/man/8/dsniff
8http://www.secdev.org/projects/scapy/

good reason to believe that by disabling this filter reason-
able results can also be achieved for the spoofing attack, but
this needs further research. The original developers of the
Bro systems have been notified of this issue.

Figure 6: True positive ratio

Figure 7 depicts the false positive rates for the timing ele-
ment of the detector. The whitelisting mechanism does not
cause any false positives. The 6σ bar (green colour) shows
that the false positives are around 0.01% when using the tim-
ing analysis. This corresponds to around 385 false alarms
during the week of experiment, or on average 2.7 alarms per
hour to be managed by an operator. This should be com-
pared to the timing characteristics of the true alarms which
was at far higher frequency (e.g., for the man-in-the-middle
attacks 4195 alarms was generated for one RTU during one
hour). Obviously for a real system post processing can be
applied to reduce the load on the operator due to the same
attack.

4.6 Timing performance
The 9,089,861 packets collected in the experiment were

analysed using our system in the order of hours on a stan-
dard computer. Considering that the protocol packets them-
selves were not more than 10 packets per second per RTU,
and that we used one day’s data for learning, we conclude
that testing of the packets was around 25 times faster than
the protocol data rate. That means that in principle this
approach is adequate for testing around 25 RTUs in real-
time.

5. CONCLUSIONS AND FUTURE WORK
Detection of adverse events in critical cyber-physical sys-

tems is a complex task that needs knowledge about the phys-
ical system as well as the accompanying IT infrastructure.
In certain instances the IT infrastructure alone can create
adverse events and this can be detrimental to the physical
process. This paper has studied a number of attack sce-
narios that build on deficiencies associated with one current
protocol running in SCADA systems, namely the lack of au-
thentication in a protocol devised over a decade ago, and for

Table 1: Experiment parameters
Total number of IEC 60870-5-104 packets 4,987,112
Total number of ARP packets 44,208
Total number of TCP control packets 4,058,541
Length of experiment 585,027s (≈1 week)
Packets used for learning 727,445
Number of attack packets inserted for port scan from an unknown host 4,002
Number of attack packets inserted for port scan from a known host 4,002
Number of attack packets inserted for the man-in-the-middle attack 18,594
Number of attack packets inserted for the spoofing attack 4,737

Figure 7: False positive ratio for the timing analysis

which the lack of memory/processing capacity in end units
may exclude addition of such security mechanisms also in
the future. In any case, the legacy issue in the power do-
main leads to possible exploitation of this vulnerability, as
well as timing aspects explicit in the running of the protocol.

In order to defend SCADA systems with a monitoring ele-
ment that only builds on the normal packet traces expected
in such networks, the community needs efficient means of
adapting the monitoring elements to various protocols and
end system characteristics. We believe that building a pro-
tocol parser for various protocols is a viable approach and
in this work have made progress in this direction.

While the results in this case study are mostly positive,
there were also some challenges along the way. In order to
get the network data into a form so that the proposed ad-
ditions to the Bro tool could be applied, a parser had to
be written. Unfortunately, it seems that the Spicy frame-
work needs further development since we experienced some
hard to debug crash cases while analysing the traces for two
of our 4 RTUs, which seemed to be due to bad memory
handling. Hence, the task of implementing the vision was
shown to be demanding both with respect to expertise and
effort. The thresholds for the anomaly detector were ex-
perimentally determined in the available network. In a live
system one would have to monitor the performance of the
anomaly detector and potentially adjust the thresholds dur-

ing an observation and adaptation period, which requires
expert knowledge and careful analysis of the running sce-
narios.

The preliminary results showed, however, that the idea of
whitelisting for anomaly detection in the IEC-61870-105-4
protocol was fruitful and the false positive rates for applying
the timing analysis based approach were satisfactory. More-
over, the volume of data generated in our small test bed
was satisfactorily handled in the time intervals considered.
This provides an indication that scaling up this approach for
networks with many RTUs and distributed monitoring us-
ing small and dedicated embedded devices is worth pursuing
in more detailed future studies. In addition, more sophisti-
cated attacks whereby the payloads of intercepted packets
are manipulated and modified have not been dealt with here
and are interesting topics for further work.

Acknowledgement
The authors would like to thank the anonymous reviewers
for their valuable and constructive feedback. The work was
initiated in a project supported by Vinnova, Formas and
the Swedish Energy Agency under the IoT strategy program
and completed within RICS: the research centre on Resilient
Information and Control Systems (www.rics.se) financed by
Swedish Civil Contingencies Agency (MSB). The second au-
thor was also supported by CENIIT project 14.04. Finally,
we wish to thank Robin von Post and Anders Hansson at
Sectra Communications.

6. REFERENCES
[1] R. R. R. Barbosa. Anomaly detection in SCADA

systems: a network based approach. PhD thesis,
Enschede, 2014.

[2] R. J. Chang, R. E. Harang, and G. S. Payer.
Extremely lightweight intrusion detection (elide).
Technical report, Adelphi, Army Research Laboratory,
2013.

[3] G. R. Clarke, D. Reynders, and E. Wright. Practical
modern SCADA protocols: DNP3, 60870.5 and related
systems. Newnes, 2004.

[4] T. Finch. Incremental calculation of weighted mean
and variance. University of Cambridge, 4, 2009.

[5] V. Gazis, M. Gortz, M. Huber, A. Leonardi,
K. Mathioudakis, A. Wiesmaier, F. Zeiger, and
E. Vasilomanolakis. A survey of technologies for the
internet of things. In Wireless Communications and
Mobile Computing Conference (IWCMC), 2015. ,
doi: 10.1109/IWCMC.2015.7289234.

[6] T. Good and M. Benaissa. Asic hardware performance.
In M. Robshaw and O. Billet, editors, New Stream
Cipher Designs, volume 4986 of Lecture Notes in
Computer Science, pages 267–293. Springer Berlin
Heidelberg, 2008. , doi: 10.1007/978-3-540-68351-3 19.

[7] D. Hadžiosmanović, R. Sommer, E. Zambon, and
P. H. Hartel. Through the eye of the plc: Semantic
security monitoring for industrial processes. In
Proceedings of the 30th Annual Computer Security
Applications Conference, ACSAC ’14. ACM, 2014. ,
doi: 10.1145/2664243.2664277.

[8] J. Hoyos, M. Dehus, and T. Brown. Exploiting the
goose protocol: A practical attack on
cyber-infrastructure. In Globecom Workshops (GC
Wkshps), 2012 IEEE, 2012. ,
doi: 10.1109/GLOCOMW.2012.6477809.

[9] D. Lake, R. Milito, M. Morrow, and R. Vargheese.
Internet of things: Architectural framework for
ehealth security. Journal of ICT, 3&4, 2014.

[10] H. Lin, A. Slagell, Z. Kalbarczyk, and R. K. Iyer.
Semantic security analysis of scada networks to detect
malicious control commands in power grids (poster).
In Proceedings of the 7th International Conference on
Security of Information and Networks, SIN ’14. ACM,
2014. , doi: 10.1145/2659651.2659746.

[11] B. Matt. The cost of protection measures in tactical
networks. In Proceedings for the Army Science
Conference (24th), Orlando, Florida.

[12] P. Maynard, K. McLaughlin, and B. Haberler.

Towards understanding man-in-the-middle attacks on
iec 60870-5-104 scada networks. In Proceedings of the
2Nd International Symposium on ICS & SCADA
Cyber Security Research 2014, ICS-CSR 2014. BCS,
2014. , doi: 10.14236/ewic/ics-csr2014.5.

[13] R. Mitchell and I.-R. Chen. A survey of intrusion
detection techniques for cyber-physical systems. ACM
Comput. Surv., 46(4), 2014. , doi: 10.1145/2542049.

[14] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks, 31(23-24),
1999. , doi: 10.1016/S1389-1286(99)00112-7.

[15] T. Shawly, J. Liu, N. Burow, S. Bagchi, R. Berthier,
and R. Bobba. A risk assessment tool for advanced
metering infrastructures. In Smart Grid
Communications (SmartGridComm), 2014 IEEE
International Conference on, 2014. ,
doi: 10.1109/SmartGridComm.2014.7007777.

[16] Y. Yang, K. McLaughlin, T. Littler, S. Sezer,
B. Pranggono, and H. Wang. Intrusion detection
system for iec 60870-5-104 based scada networks. In
Power and Energy Society General Meeting (PES),
2013 IEEE, 2013. ,
doi: 10.1109/PESMG.2013.6672100.

[17] K. Yim, A. Castiglione, J. H. Yi, M. Migliardi, and
I. You. Cyber threats to industrial control systems. In
Proceedings of the 7th ACM CCS International
Workshop on Managing Insider Security Threats,
MIST ’15. ACM, 2015. ,
doi: 10.1145/2808783.2808795.

