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Abstract
Deployment of multi-core platforms in safety-critical applications requires reliable estimation
of worst-case response time (WCRT) for critical processes. Determination of WCRT needs to
accurately estimate and measure the interferences arising from multiple processes and multiple
cores. Earlier works have proposed frameworks in which CPU, shared cache, and shared memory
(DRAM) interferences can be estimated using some application and platform-dependent para-
meters. In this work we examine a recent work in which single core equivalent (SCE) worst case
execution time is used as a basis for deriving WCRT. We describe the specific requirements in an
avionics context including the sharing of memory banks by multiple processes on multiple cores,
and adapt the SCE framework to account for them. We present the needed adaptations to a
real-time operating system to enforce the requirements, and present a methodology for validating
the theoretical WCRT through measurements on the resulting platform. The work reveals that
the framework indeed creates a (pessimistic) bound on the WCRT. It also discloses that the
maximum interference for memory accesses does not arise when all cores share the same memory
bank.

1998 ACM Subject Classification D.4.7 Organization and Design – Real-time Systems and
Embedded Systems
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1 Introduction

Future safety-critical avionic systems will use multi-core platforms, partly because of the more
complex systems requiring more computational capacity and partly because of decreasing
availability of single-core processors; but there are still challenges remaining to demonstrate
the predictability needed for certification.

The memory hierarchy, and more specifically, shared caches and dynamic random access
memory (DRAM) is one of the major sources of timing variability in a multi-core system [9].
Parallel accesses by cores can lead to interference and either of the resources can become
saturated.

Shared caches introduce a number of problems when estimating worst-case execution time
(WCET): an intra- or inter-task interference may occur when tasks on the same core evict
either their own cache lines or another task’s cache line respectively. In addition, asynchronous
operating system activities can result in cache pollution. Furthermore, inter-core interference
is the result of a task evicting a cache line used by a task on another core.

The DRAM memory system is composed of a memory controller and memory devices
that store the data. The controller is a shared resource in most multi-core systems, which if
accessed simultaneously from multiple cores has to somehow arbitrate the accesses and this
arbitration can lead to non-determinism in the time domain. DRAM memory devices are
organized into ranks containing banks. Banks contain a number of rows and each row has a
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number of columns. For each bank there is a row buffer that is used to store the contents
of one row in the bank. To read data from memory, the row containing that data must be
opened and the contents read to the row buffer and from there the column containing the
data can be read. Subsequent requests to the same row can be serviced with low latency, as
the row is already open. If a request requires another row to be opened, this will increase the
latency as the currently open row must be closed and the data written back to the row before
the new row can be opened. This will also affect the worst-case response time (WCRT) if
different cores request data from different rows in the same bank.

To mitigate these effects when estimating the WCET, several methods have been pro-
posed [9]. One approach targeting the problems outlined above is the Single Core Equivalence
(SCE) framework proposed by Mancuso et al. [12]. This approach combines several of the
previously proposed approaches and consists of three parts: Colored Lockdown [11] for
managing the shared cache; MemGuard [24] for monitoring and limiting the number of
DRAM requests; PALLOC [23] for DRAM bank partitioning. Starting from single-core
WCET estimations, they are able to add interference bounds resulting from shared resource
usage on a multi-core platform to minimize the effects from other cores.

For some systems it may be possible to locate the data in such a way that each core
can access its own private bank(s), but in the general case there will be some sharing of
data between applications and these applications may reside on different cores resulting in a
use-case where shared banks is a necessity. It may also be the case that we have more cores
than banks, which also will result in the necessity of sharing banks. Currently, the number
of cores in a multi-core chip is growing faster than the number of banks in the DRAM [8].

In this paper we consider integrating the SCE concepts in an ARINC 653 [1] real-time
operating system (RTOS) designed for avionic systems. Specifically, we study the general
case of bounding the interference delay when using shared DRAM banks.

The contributions of this paper are:

We adapt the SCE approach for WCRT estimation in avionics software by integrating
assumptions valid for our context, namely cache partitioning and memory bank sharing.
We adapt a custom RTOS to restrict memory accesses according to earlier works ([5,10,
14,24]).
We present a methodology for validation of the WCRT estimates using the modified
RTOS, COTS multi-core hardware, and repeatable measurements.
We show that accessing the same bank from all cores does not necessarily represent the
worst-case interference delay.

The remainder of this paper is structured as follows. Section 2 contains related work and
Section 3 contains relevant background. We describe our SCE adaptation and the validation
in Section 4 and Section 5 respectively. We conclude the paper in Section 6.

2 Related Work

The early work on utilizing multi-core processors for deterministic systems includes CPU
scheduling. Anderson et al. [2] propose a hierarchical scheduling with different levels of
execution time estimation requirements for the different criticality levels in RTCA/DO-
178 [18]. Mollison et al. [13] and Herman et al. [4] continue building on that framework,
turning attention to other shared resources, such as shared last-level cache and the DRAM.
Both of these shared resources have to be addressed in order to make the execution times of
tasks predictable.
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Several methods for handling the shared cache have been proposed. These include page
coloring [11,19] and explicit reservation [20]. In our work we will adopt the latter by using
dedicated cache partitions for each application.

When cores need to access the main memory due to e.g., a cache miss, the system has to
somehow arbitrate among the cores. This creates another bottleneck introducing interference.
The interference1 delay experienced by one core depends on how many memory requests the
other cores issue, making it hard to estimate WCRT. One way of handling this is to specify
a memory request budget for each core or a group of tasks on a core and then to monitor all
memory requests and temporarily disallow access by the core if too many memory requests
are performed. This will result in an upper bound of the interference delay. Inam et al. [5]
use the concept of multi-resource servers, where they monitor both CPU usage and memory
requests for each server. Nowotsch et al. [14] focus on extending existing estimation techniques
by introducing an interference-delay analysis and a run-time monitoring mechanism that
make it possible to analyze each task in isolation and then add the interference delay to
account for the shared resources. A similar approach is presented by Fernandez et al. [3],
who introduce resource usage signatures and templates to abstract the contention caused
and experienced by tasks on different cores. These signatures and templates are used to
determine an execution time bound instead of the actual tasks. Yun et al. [24] propose
MemGuard, a memory bandwidth reservation system that provides bandwidth reservation
for temporal isolation and a reclamation component. None of these monitoring systems
consider the effects of the memory requests of the RTOS(es) running on the cores, this was
addressed and shown significant in our earlier work [10]. In this paper we will consider both
application and RTOS memory requests when profiling or estimating response times.

The memory has often been regarded as a single resource (black box) and a constant
time used for the access times, but the DRAM can be in one of several states affecting the
time required to perform the access. The DRAM consists of banks that can be accessed in
parallel; Yun et al. [23] use this to reduce the interference delay when accessing the DRAM.
They implement a memory allocator (PALLOC) that reserves memory in private banks for
each core. This will also eliminate any row collisions, where two cores access different rows
in the same bank. Row collisions are more expensive than row hits as the currently open
row has to be closed. Wu et al. [21] and Kim et al. [8] both model the memory system more
realistically than as a single resource. The memory controller has one request queue for each
DRAM bank. Wu et al. only consider private DRAM banks for each core. Kim et al. who
also include shared banks relax this limitation. Yun et al. [22] study interference arising in
COTS platforms that can generate multiple outstanding memory requests and evaluate their
approach on a simulation platform. In our work we use a physical COTS platform.

There are also efforts to develop predictable memory controller hardware [15,16]. This is
of course a potential scenario in the future. In this paper we are interested in deploying our
system to an available COTS hardware platform in the absence of these options.

In modern memory controllers the memory requests are not always sent to the DRAM in
the order they are sent by the core. Instead, they are buffered in request buffers and issued
to the DRAM in the order specified by a memory scheduler. The policy often used today, is
the First-Ready First-Come First-Served (FR-FCFS) policy. This policy prioritizes requests
to already open rows before closed rows in order to minimize row conflicts.

1 Note that in a single core context the increase in response time due to a shared resource is referred to as
blocking, but we use the term interference here to stay consistent with the recent multi-core literature.
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3 Background

In this section, we review the basic concepts relevant to this work.

3.1 DRAM Controller

A DRAM controller sends a number of commands: precharge (PRE) to close an open
row; activate (ACT) to open a row; read (RD) and write (WR) to read or write data to
the row buffer. The commands take time to finish and the DRAM controller must satisfy
timing constraints between the commands. The JEDEC standard [6] specifies a number of
requirements for JEDEC-compliant SDRAM devices as shown in Table 1.

Table 1 DRAM timing parameters

Parameter Value Description

BL 8 columns Burst Length
CL 13 cycles Column Access Strobe Latency
WL 9 cycles Write Latency
tRCD 13 cycles Activate to read/write latency
tRRD 5 cycles Activate to activate interval
tRP 13 cycles Precharge to activate interval
tF AW 26 cycles Window for four activates
tW T R 7 cycles Write to read interval
tW R 14 cycles Data to precharge min interval
tCK 1 ns DRAM clock cycle time

3.2 Inter- and Intra-bank Delay

In the general case tasks share data and need to share banks. To more accurately model the
worst-case memory interference delay, we build on the work by Kim et al. [8] that includes
the interference delay resulting from shared banks. We briefly describe the request-driven
notation used in this work to reuse in later sections.

The interference delay experienced by a core p for a memory request is given by RDp =
RDinter

p +RDintra
p , where RDintra

p is the inter-bank interference delay for core p and RDinter
p

is the inter-bank interference delay. RDinter
p is the delay due to a memory request generated

by a core p is being delayed by requests from other cores due to timing effects of accessing
the common command and data bus, it is given by:

RDinter
p =

∑
∀q:q 6=p ∧

shared(q,p)=∅

(LPREinter + LACTinter + LRWinter) (1)

shared(q, p) is the set of DRAM banks shared between core q and core p, LPREinter reflects
timings of the address/command bus scheduling. LACTinter is related to the minimum separation
time between two activate commands sent to two different banks, and LRWinter is related to
the data bus contention and the bus turn-around delay as a result of the data flow direction
change if a read is issued after a write or vice versa. RDintra

p is a result of multiple cores
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accessing (different rows in) the same bank and is given by:

RDintra
p = reorder(p) +

∑
∀q:q 6=p ∧

shared(q,p)6=∅

(Lconf + RDinter
q ) (2)

where reorder(p) calculates the delay from the reordering based on the number of queued
row hits (Nreorder) that may be scheduled before the request under analysis and Lconf is a
constant that represents a row-conflict in the same bank, which requires both a PRE and an
ACT command to close the current row and open a new row.

We use the request-driven approach presented by Kim et al. [8] since it does not make any
assumptions on the memory requests of applications running on other cores. The job-driven
approach can in some situations reduce the pessimism of the delays, but it requires us to
know the number of interfering memory requests from other cores and goes against the
reconfiguration ideas of Integrated Modular Avionics (IMA) [17].

Based on this, Kim et al. extend the classical response time test [7] to include the memory
interference delay:

Rk+1
i = Ci +

∑
τj∈hp(τi)

⌈
Rk
i

Tj

⌉
· Cj + Hi · RDp +

∑
τj∈hp(τi)

⌈
Rk
i

Tj

⌉
· Hj · RDp (3)

where Hi denotes the maximum number of memory requests generated by task i, Ci denotes
the WCET of task i when run in isolation, Ri denotes the response time of task i, and Ti
denotes the minimum inter-arrival time of task i. R0

i = Ci and the test terminates when
Rk+1
i = Rk

i .

4 SCE Adaptation

In this section we outline the steps needed to implement the SCE concepts on our evaluation
platform and RTOS. We assume that the applications tasks are organized in ARINC 653
partitions scheduled in a static cyclic schedule unique for each core.

Instead of implementing the cache-coloring concept, used by Mancuso et al. [12], we
utilize the ability to allocate cache ways for exclusive use by a specific core. In our system
(described later) the L2 cache is set up to allocate four ways to each of the four cores. This
effectively limits the available cache for each core to 512 KiB and will ensure that there is no
inter-core cache interference.

The memory request monitoring within the RTOS has been modified to also suspend
the partition if the counted number of memory requests exceeds a specified limit during its
partition window, in effect regulating the number of memory requests that can be issued
from a partition. This is accomplished by using the Performance Monitor Counters (PMCs)
to generate an interrupt at overflow. The budget is replenished at the start of each period.
The PMC is set up to count both the requests issued by the partition and the requests issued
by the RTOS itself. The sum of the memory budgets for all partitions must not exceed
the total number of requests possible during a regulation period as this would saturate the
DRAM controller and introduce additional delays.

Earlier Linux based bank partitioning assumes that the page size of the memory man-
agement unit (MMU) is smaller than the row size of the DRAM (i.e. 4KiB). This makes
it possible to always allocate contiguous virtual memory that will map to a set of physical
memory pages belonging to the same bank. Our chosen RTOS uses a different approach,
where all memory is allocated using variable page sizes during initialization. This will
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minimize page misses in the MMU to be handled by the RTOS, but it will also make it very
difficult to implement bank partitioning as the MMU page sizes used could possibly span
multiple DRAM banks. Therefore, we aim to use the SCE concepts adapted with the shared
bank interference delay estimations described in Section 2.

5 Validation of the SCE Adaptation

In this section we describe the methodology for validating the adapted SCE model using
the implemented SCE mechanisms (as described in Section 4) on the platform, and show
the validation results. We use the four avionics related applications from previous work [10]:
Nav, Mult, Cubic and Image. Without loss of generality, in this setup all partitions consist of
only one process (Nav has two, but we are only interested in the highest priority one), which
simplifies the response time calculations. Equation 3 is therefore reduced to Ri = Ci+Hi·RDp.

5.1 Methodology
We use the following method for validating the WCRT estimations:

We estimate the WCET and count the number of memory requests for each partition in
isolation.
The worst-case response time for each partition when executing in parallel is calculated
based on the (adapted) SCE formulas.
We measure the (worst case) response time for each partition and compare with the
calculated estimates.
For critical partitions where calculations indicate a small margin to the relative deadline,
we perform additional interference studies with a memory-intensive synthetic application
to ensure that maximum memory bank interference is properly accounted for.

Each application is run inside one partition and deployed to different cores and they all
execute in 60 Hz. We run the system in an asymmetric multiprocessing (AMP) configuration
(i.e. each core has its own instance of the RTOS).

The experiments are performed on an NXP (Freescale) T4240 using only one cluster
with four cores sharing the 2048 KiB L2 cache, which is partitioned to allocate four ways
for each core resulting in each core having 512 KiB of L2 cache each. Without loss of
generality, we have in this work disabled the reordering of requests in the DRAM controller
(i.e. Nreorder = 0).

5.2 WCET Estimation
Single-core WCET can be estimated either using static analysis, by measuring the execution
time of the application when running on the target hardware or by some hybrid method. In
this work we use a measurement approach where we (manually) insert instrumentation points
(IPOINTs) that can be used to derive an estimate of the WCET. The four applications are
run in isolation on core 0 with the rest of the cores disabled. Table 2 shows the measured
WCET and the number of memory requests per period for each application and also for the
RTOS.

To ensure that the IPOINTs do not introduce any unintentional probe effects, we measure
the execution overhead of an IPOINT and also the number of memory requests with and
without IPOINTS in the applications. The maximum execution time of one IPOINT is 23
ns, which gives a maximum overhead of 0.5 percent per partition window. No significant
increase of memory requests is observed when using IPOINTs.
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Table 2 Characterization of partitions in isolation

Partition Period (µs) WCET (C) (µs) Memory Requests (H)
(Partition) (RTOS)

Nav 16667 14 93 54
Mult 16667 16615 21740 160
Cubic 16667 9345 45 38
Image 16667 4391 560 40

5.3 Response Time Calculations and Measurements

To calculate the response time we need the interference delay, RDp. Using the equations in
Section 2 and the DRAM timing parameters in Table 1 we calculate RDinter

p and RDintra
p to

get RDp. Figure 1 shows the calculated intra- and inter-bank delays as well as the combined
delay (RDp). Intuitively, one would imagine that a higher number of cores gives higher
interference. However, as we can see the maximum delay does not occur when all four cores
share the same bank. This is a result of intra-bank delay depending on the inter-bank delay
for other cores (Equation 2). When all cores access the same bank the inter-bank delay is zero,
which will result in the seen delay time drop, given an Lconf smaller than the

∑
RDinter

q

contributing in the case with two cores sharing bank. In the following estimates we use the
maximum total interference corresponding to the highest point on the curve (209 ns).

The estimated WCRT listed in Table 3 show that the calculated response time of Nav,
Cubic and Image is safely below their relative deadline, but for Mult the estimated WCRT
exceeds the relative deadline. Mult performs several orders of magnitude more memory
requests compared to Nav, Cubic and Image. For every partition window we use the earlier
mentioned IPOINTs to record response times over a 30 second interval (1800 measurements)
with partition placement on cores according to column 2. The maximum measured response
time is then disclosed in column 4.

This shows that when the partitions execute in parallel no partition misses deadlines
though the critical application Mult has a tight margin (see periods in Table 2). We can
also see that the WCRT measurements do not differ in any significant way from the WCET
measurements in that table. The memory controller can service all the memory requests
without being saturated. The memory access patterns of the partitions are such that they do
not interfere in many instances. The estimation model assumes that all cores issue memory
requests simultaneously. To ensure the measurements are not overly optimistic we perform
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Figure 1 Theoretical interference delay when using four cores
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Table 3 Maximum response time of partitions

Partition Core Response time (R) (µs)
Estimated Measured

Nav 0 45 14
Mult 1 21192 16620
Cubic 2 9362 9345
Image 3 4516 4391

additional measurements on Mult, whose estimated WCRT exceeds its relative deadline, in a
scenario with maximal memory interference.

5.4 Studying Critical Processes Individually
When we run Mult on core 0 in parallel with a memory intensive task deployed on core
1–3 with disabled memory access regulation, Mult misses its deadline. If we turn on the
memory regulation, mentioned in Section 4, for the memory intensive tasks on core 1–3 with
a suitable budget we notice that Mult does not miss its deadline. This shows that given
a suitable restriction of memory accesses by partitions running on other cores we are able
to run Mult within its time constraints. So, for the critical task, the correct estimation
of regulation budget of other tasks is essential. To measure Mult’s response time in this
scenario we disable the overrun detection function and perform repeated experiments where
the memory budgets of the memory intensive tasks were reduced until a WCRT value below
the relative deadline was found for Mult. The resulting response times (with and without
regulation) can be found in Table 4.

Table 4 Measured maximum response time of Mult with memory intensive tasks in parallel

Partition Core Response time (R) (µs)
No regulation Regulation

Mult 0 17075 16654

5.5 Applying the Method to an Earlier Benchmark
To further assess the validity of the approach we also use the Latency and Bandwidth
benchmarks from Yun et al. [24], adapted to our environment and RTOS, to measure the
worst-case memory interference. The benchmarks are modified to enable us to direct the
requests from Bandwidth to a specified DRAM memory bank. We run Latency on core
0 and Bandwidth on core 1–3 several times with different number of Bandwidth instances
targeting the same DRAM memory bank as Latency. These measurements compared to the
estimations are shown in Figure 2. As we can see, the estimations are a conservative (and
possibly somewhat pessimistic) approximation of the measurements.

6 Conclusion

In this paper we have presented an adaptation of the SCE framework for an avionics ARINC
653 RTOS targeting the T4240 multi-core SoC from NXP. We have relaxed the constraints of
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Figure 2 Comparison of measured and estimated request time

requiring private memory banks for each core and our adaptation provides an analytic upper
bound on the interference delay. The implementation on the avionics platform has been used
to understand and validate the revised SCE framework using both synthetic and realistic
applications for avionics systems. Our work has highlighted an interesting aspect of the
calculated response times as a function of the number of cores, namely that the maximum
core deployment need not give maximum memory bank interference. It also justifies the use
of the SCE framework as an approach to assess schedulability of critical tasks on multi-core
platforms. As future work, we will examine the DRAM request reordering we turned off in
this work and an improved model of the DRAM controller for more precise estimates.
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