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Abstract—Modern avionic system development is undergoing a
major transition, from federated systems to Integrated Modular
Avionics (IMA) where several applications with mixed criticality will
reside on the same platform. Moreover, there is a departure from
today’s single core computing, and we need to address the problem
of how to guarantee determinism (in time and space) for application
tasks running on multiple cores and interacting through shared
memory. This paper summarizes the main challenges and briefly
describes some active directions in research regarding temporal
partitioning. It also outlines the forthcoming research that we
will pursue for quantifying time bounds on memory access related
interference, to ensure determinism and comply with certification
requirements.
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I. INTRODUCTION

Multi-core platforms offer greater computational capacity
with less size, weight and power (SWaP), and are used in di-
verse domains from mobile devices to supercomputing. How-
ever, safety-critical cyber-physical systems such as avionic and
automotive systems have not (yet) embraced the technology.
Aerospace systems are subject to costly and time-consuming
certification processes, which require a predictable behavior
under fault-free and certain hazardous conditions.

Predictability is also fundamental for establishing real-time
correctness. In today’s multi-core platforms, different cores
share hardware resources such as caches and memory, which
were essentially developed with a focus on maximizing the
performance, but when placed in the safety-critical context
introduce challenges to predictability. However, these chal-
lenges have to be met as aerospace is moving towards higher
exploitation of commercial-off-the-shelf (COTS), as well as
aiming to exploit the low SWaP characteristics of multi-core.

Classic worst-case execution time (WCET) estimates for
a safety-critical avionics system are pessimistic even on a
single-core platform, and our ambition is to find domain-
specific techniques, so that dealing with the sources of non-
determinism in multi-core does not cancel out the SWaP gains.

This short exposure of the above problems is organized
as follows. Section II-III contains application-specific issues
from the aerospace perspective. Section IV reviews several
approaches towards solving some of the stated problems.

Section V discusses open issues and outlines our current
research.

II. ROBUST PARTITIONING AND CERTIFICATION

Traditional avionics uses functions implemented and pack-
aged as self-contained units. Integrated Modular Avionics
(IMA) uses a high-integrity, partitioned environment, that
hosts multiple functions of different criticalities on a shared
computing platform. When moving from single-core to multi-
core, several new problems affecting determinism and worst-
case response time (WCRT) arise.

A safety-critical avionics system has to be certified by the
authorities, e.g. the Federal Aviation Administration (FAA)
in United States or the European Aviation Safety Agency
(EASA) in Europe, covering both hardware and software.
The standard RTCA/DO-254 (ED-80) [1] provides guidance
for the development of airborne electronic hardware and the
standard RTCA/DO-178C (ED-12C) [2] provides guidance for
the development of airborne software.

For DO-254 hardware certification, it is possible to rely on
service experience in comparable applications if no problems
have been discovered in previous systems [3]. The problem
for multi-core processors is that the implementation has very
limited service history [4]. The software certification process
does not change with the introduction of multi-core processors,
but it becomes more complex due to a number of new sources
of non-determinism. Sutterfield et al. [5] doubt that one single
cohesive strategy to manage a DO-178C certification using
multi-core processors exists.

Robust partitioning, to achieve fault containment, has tradi-
tionally been implemented in the federated architecture with
dedicated hardware per application or function. With the
introduction of IMA and multi-core, the robust partitioning
property needs to be addressed and ensured [6].

According to Jean et al. [6] robust partitioning is (re)defined
and refined in several documents which makes it complicated
to extract the official definition. For example RTCA/DO-
297 [7] defines it by stating that it “ensures that any hosted
application or function has no unintended effect on other
hosted applications or functions”. Jean et al. refer to work by
Rushby [8] defining the Gold Standard for Partitioning: “A
robustly partitioned system ensures a fault containment level



equivalent to its functionally equivalent federated system.”.
They also refer to work by Wilding et al. [9] defining the
Alternative Gold Standard for Partitioning: “The behavior and
performance of software in one partition must be unaffected by
the software in other partitions” which is a stronger property
and a sufficient condition to establish robust partitioning.

ARINC 653 [10] is a software specification for space and
time partitioning, aiming at an alternative gold standard. It
contains its own interpretation of robust partitioning: “The
objective of Robust Partitioning is to provide the same level
of functional isolation as a federated implementation.”

The space partitioning concept can be implemented on
multi-core systems as it is, as long as the hardware can prevent
invalid memory accesses as required. The time partitioning
concept, on the other hand, is problematic as ARINC 653
states that a partition should have exclusive access to its
physical resources. Since the main memory could be seen as a
shared resource (as we will see in section III), achieving time
partitioning in multi-core systems is not trivial.

Huyck [11] examines the impacts on deploying ARINC
653 on a multi-core processor, in asymmetric multi-processing
(AMP) or symmetric multi-processing (SMP) configurations.
For an AMP configuration he identifies shared resource con-
tention impacting the ARINC 653 partition and module-level
health monitoring capability. In an SMP configuration, the
ARINC 653 concept of concurrency is extended to allow
multiple processes in a partition to execute in parallel on
different cores. Huyck notes that preemption locking needs
to be handled differently since stopping all other processes on
other cores would reduce the usability of a multi-core system.

III. SHARED RESOURCES

In a single-core system only one task can access a resource
at a time, but problems may arise in a multi-tasking system
if the accesses from two tasks are interleaved, an issue that
has been studied extensively. On a multi-core system the
accesses can be issued at the same time and may have
to be arbitrated by the hardware somehow. This arbitration
which is not present on a single-core can have impact on the
predictability. Next, four instances of resource sharing with
impacts on predictability will be briefly reviewed.

Parts of the cache architecture may affect the interaction be-
tween cores, e.g. cache sharing [3], [4], cache coherence [3],
and the cache replacement policy [12]. Cache sharing is
present on platforms where the cores share one or more levels
of cache. Cache coherence is needed for keeping shared data
consistent among the core local caches and the main memory.
The cache replacement policy affects how cache lines are
replaced when the cache is full.

Four types of cache interference may arise due to cache
sharing: a) intra-task interference, where a task evicts its own
cache lines; b) inter-task interference, where a task evicts
cache lines belonging to another task; c) cache pollution
caused by asynchronous events such as interrupt service rou-
tines; and d) inter-core interference where tasks on different
cores evict cache lines belonging to each other [13]. The

first three are not new and exist in a multitasking single-
core system as well, but the last one is new in multi-core
systems. Another problem is that the cores may try to access
the cache at the same time and one core will block the other
core’s access, which will introduce delays for the blocked core
and non-determinism in the system. Kinnan [4] identifies the
importance of using the L2 cache for performance in time
and space partitioned Real-Time Operating Systems (RTOS)
in IMA systems.

The cache coherency protocol is responsible for keeping
the data in caches in sync with the main memory and each
other. If two cores (C1 and C2) operate on independent data,
which are stored in main memory in such a way that the data
ends up in the same cache line, the cache coherency protocol
will invalidate C1’s cache, when C2 writes to its data. C1 will
suffer a delay when it tries to access its data because the cache
has to be reloaded. This is known as false sharing and has the
same impact as if the cores were accessing the same data [3].
Thus, the interference caused by the coherency protocol can
add to the non-determinism of the system.

With respect to the cache replacement policy, Agrou et
al. [12] state that the Least Recently Used (LRU) policy is
the most analyzable policy as this policy does not suffer from
domino effects. Regardless of this, manufacturers replace the
LRU policy with Pseudo-LRU (PLRU), which is a policy that
almost always discards one of the least recently used items, or
the FIFO policy. Both PLRU and FIFO are cheaper solutions
in terms of implementation cost, but introduce domino effects
affecting the WCET estimates.

A single memory controller for RAM is a shared resource
just like the caches, and it has the same kind of issues. One
core accessing the RAM can be blocked because of another
core accessing the RAM at the same time. Kinnan [4] also
states that this interaction may prevent hardware synchroniza-
tion of processors as is typically done, which in turn can lead
to schedule skid and jitter, resulting in non-determinism since
synchronization then has to be performed in software instead
of hardware.

Multi-core processors are often part of a System on Chip
(SoC) together with peripherals such as external memory,
serial I/O and Ethernet. To handle all accesses to the shared
peripherals a coherency fabric is implemented to arbitrate the
accesses. How the coherency fabric prioritizes the accesses
is often part of the manufacturer’s intellectual property. In a
safety-critical system the configuration of the coherency fabric
cannot be ignored since it can cause a core to be blocked by
another core accessing some resource [4].

Agrou et al. [12] and Jean et al. [6] refer to the coherency
fabric as interconnect and identify it as a crucial component of
the multi-core processor – making the alternative gold standard
difficult to realize if the hardware has not been developed for it.
The behavior or performance in one partition may be affected
by another partition, violating the alternative gold standard,
which is incompatible with existing guidelines.

Hardware interrupts are also a potential source of interfer-
ence between cores [3]. For example, if multiple devices are



connected to the same interrupt which is routed to one core,
but all devices are not exclusively used by that core, then the
receiving core has to notify the other cores, and the other cores
have to check the interrupt status for the devices handled by
them.

IV. ALTERNATIVE APPROACHES

A common means to achieving determinism on a multi-core
system has been to disable all but one core, but this reduces
the SWaP effect. The manufacturers improve throughput and
reduce resource access interference by increasing the num-
ber of memory controllers [12], but this will not eliminate
the problem unless enough memory controllers can handle
accesses from all cores simultaneously.

How to use all cores in a safety-critical system is a re-
search topic receiving a substantial amount of interest. The
main approaches for solving the above problems, while not
being overly pessimistic in WCET estimates and temporal
partitioning analysis are: resource management e.g. dividing
the cache between tasks to minimize the interference; resource
arbitration where access to the resource is scheduled and
the task gets private access for a period of time, which can
be seen as a special case of resource management requiring
special hardware; and resource monitoring where the resource
usage is monitored and access can be restricted if a given
limit is exceeded. We now focus on recent proposals to
address resource management and resource monitoring with
deterministic outcomes.

A. Resource Management

Some hardware platforms allow the accesses to shared
resources to be scheduled using e.g. time division multiple
access (TDMA). This way access to the shared resources can
be arbitrated and the interference is eliminated. Schranzhofer
et al. [14] analyze the worst-case response time (WCRT)
for systems using TDMA to arbitrate the accesses to the
shared resource. Three different access models are exam-
ined: dedicated, general and hybrid access. The authors pro-
pose an analytical worst-case analysis framework consider-
ing blocking/non-buffered access to a shared resource. They
evaluate the framework for all three models, and show that
separating computations and accesses to the shared resource
is very important for the worst-case response time.

If no such hardware support is available another means of
management is required. Giannopoulou et al. [15] use the
dedicated access model from [14] and suggest a scheduling
policy for a mixed-criticality multi-core system with resource
sharing. This policy prevents timing interference among the
tasks of different criticality levels by allowing only a statically
known set of tasks with the same criticality level to execute
on the cores at any time. A flexible time-triggered scheduling
strategy is used on the core level and static and dynamic
barriers are used for synchronization on the global level to
achieve a more efficient resource utilization. This enforces tim-
ing isolation between criticality levels and enables composable

and incremental certifiability. The cost is run-time overhead for
the clock and barrier synchronization between the cores.

A similar approach is proposed by Anderson et al. [16] and
further extended by Mollison et al. [17] who present a two-
level hierarchical scheduling framework for mixed-criticality
tasks. The top-level scheduler schedules container tasks, which
in turn contain the “normal” tasks. Each container consists of
tasks of the same criticality level and uses a given scheduling
strategy.

In addition to task (CPU) scheduling, the partitioning of
task data in the shared memory is also important. A memory
organized in several banks enables tasks on different cores
to access the memory in parallel without delaying each
other provided that they access different banks. This is used
by Giannopoulou et al. [18], where they propose memory
mapping optimization to minimize the timing interference of
tasks when accessing the memory. They also pinpoint that the
memory mapping optimization is interdependent with the task
scheduling and mapping used [15] and propose an integration
of the two. An industrial application evaluation shows that
memory mapping optimization can reduce the task response
times.

The abovementioned works all assume each core has its
own private local memory and Mollison et al. [17] do not
consider caches. However, shared caches introduce a number
of problems and are a major source of non-determinism. Ward
et al. [19], following Anderson et al., Mollison et al. and
Herman et al. [16], [17], [20] add cache management to make
the shared cache more predictable and reduce WCET for high-
criticality tasks. Page coloring is used to ensure that pages with
different colors cannot cause cache conflicts. Since allocating
the colors optimally is NP-hard in the strong sense, conflict-
free color assignments may be impossible. To mitigate this
they propose treating the colors as shared resources to which
accesses must be arbitrated.

Mancuso et al. [13] address all four sources of cache sharing
interference by proposing a two-stage solution. The first stage
profiles the critical real-time tasks to determine the memory
access patterns, and the second stage is a deterministic cache
allocation strategy called “Colored Lockdown”. It combines
page coloring and cache locking. Page coloring is used to
optimize the cache usage for frequently used memory pages
and lockdown is used to override the cache replacement policy
to ensure that the pages stay in the cache.

Another way to avoid the shared resource interference while
still using multiple cores is described by Fuchsen [3]. An
ARINC 653 compliant partitioning model is used where a
safety-critical partition may be run on its own core and during
that time window no other partitions are allowed to run on any
of the other cores. This eliminates shared resource interference
on the critical applications, but it is also quite expensive since
many cores may be unused in several time windows.

As the number of cores in a processor increases, scaling the
traditional memory hierarchy becomes a problem since caches
consume a lot of power and space on the chip. A platform
architecture without caches and only a local scratchpad mem-



ory (SPM) for each core is more power-efficient and more
scalable [21]. In a software managed multi-core system the
code and data have to be moved to the scratchpad memory
from main memory using direct memory access before it can
be executed, if all code and data fit in the SPM it is trivial
to handle. However, if it doesn’t fit it must be dynamically
handled and this makes dynamic code management techniques
a vital component.

Kim et al. [22] present two novel WCET-aware techniques
for mapping data and code to the SPM (previous techniques
have focused on the average-case execution time instead of
WCET). They construct a variant of a control flow graph
(CFG) called inline CFG which is used as input to the analysis.
They perform analysis based on integer linear programming
to find an optimal function-to-region mapping leading to the
lowest WCET, but the technique is not scalable when the
number of functions grows. A heuristic algorithm that is
scalable but sub-optimal is therefore proposed.

B. Resource Monitoring

Resource monitoring can be used in two different ways:
it can be used during development in order to estimate
the parameters needed for WCRT estimation or interference
bounding analysis. An example in our context is the work by
Dasari et al. [23]. Monitoring can also be used at run-time
to starve a task that demands more than the predefined share
of resources during well-defined periods. We will refer to the
latter as run-time monitoring.

For single-core systems based on ARINC 653 [10] the
accesses to shared resources (basically only the CPU) are
monitored by the RTOS which ensures that the statically
defined partition execution schedule is followed.

The CPU monitoring concept of ARINC 653 is also usable
for multi-core systems, but in addition to considering the CPU,
the memory accesses should also be monitored. This can be
implemented by using performance monitor counters found in
most CPUs to track the consumed memory bandwidth and a
scheduler (i.e. a run-time monitor) could use the performance
monitor counters to prevent contention and to spread the
memory accesses [24], thereby improving predictability.

A mix of the two monitoring approaches is found in the
work by Yun et al. [25] who use performance counters to
get information on memory accesses to separate real-time
and non-real-time tasks. One core (critical core) contains the
critical tasks and the other cores (interfering cores) contain
non-critical tasks. The memory accesses are throttled on the
interfering cores (via run-time monitoring) if they perform
more memory requests than allocated to them.

Reserving one core for critical tasks may result in under-
utilization if the critical tasks do not execute very often.
Also, the approach is not suitable if there is more than one
critical application. A more general approach is proposed by
Inam et al. [26] where a multi-resource server (MRS) [27],
[28] is presented. The server maintains two different budgets;
one for the CPU usage and one for the number of memory
requests, but the memory throttling is proposed per server

instead of per core, and several servers can execute on a core.
They show that the MRS can limit the interference between
applications running on different cores, but also that cache
pollution affects timing properties of tasks. Thus, MRS should
be complemented with e.g. cache management.

Nowotsch et al. [29] propose a novel approach for integrat-
ing temporal partitioning and WCET analysis. Their proposed
approach extends the existing single-core techniques with
determining the maximum number of shared resource accesses
per shared resource. Based on these estimates they introduce
a new phase, the interference-delay analysis to account for the
additional interference caused by shared resources. The tempo-
ral partitioning is split into a monitoring and a suspension task
where the monitoring task uses performance counters to track
the resource usage of each process, and the suspension task is
invoked once a process exhausts its (preallocated) capacity.

V. OPEN ISSUES AND PLANNED WORK

There are many challenges and open issues, but here we
focus on a few that are relevant to our ongoing work.

Multi-core mixed-criticality systems need to add space
partitioning to MRS and account for the additional budget
needed for CPU and memory accesses. Hence, a question
to address is: How do we account for the memory accesses
made by the RTOS during e.g. a translation lookaside buffer
(TLB) miss? This could affect the total number of memory
accesses made by one core and could delay other cores more
than anticipated. If the run-time monitoring function counts the
memory accesses made by the RTOS, the tasks may get too
little execution time due to reaching the access limit faster than
calculated, which could lead to a deadline miss. On the other
hand if the accesses are not accounted for by the (development
time) monitoring function, the extra accesses to the memory
may interfere with the other cores.

A deeper study is needed to investigate the relationship
between server parameters such as server period, CPU budget
and memory budget [26], [27], and to determine if the RTOS
accesses should be included in the memory budget or not.

As avionics systems often operate on high altitude they are
exposed to cosmic radiation, which could introduce faults in
the system. Some of the effects can be mitigated by the use
of error detection and correction for e.g. memory, but this will
impact the access times. A cache that is able to detect single-
bit errors may invalidate the cache, thus affecting the number
of memory accesses performed by the task and the execution
time.

Very few experiments have been performed on an actual
avionics RTOS with a relevant workload, and therefore a still
open question is to study alternative implementations, both for
better performance and for higher relevance to the avionics
industry.

We plan to extend the memory budget in an MRS-based
approach by also accounting for the number of accesses caused
by RTOS TLB miss handling, modeling the budget as MT =
MS +MOS , where MS is the memory access budget for all
tasks contained in the server during its period, and MOS is



the budget for the memory management of the RTOS during
that time. We will assume MS is given and focus on MOS . To
estimate MOS we will model the memory management unit
(MMU) to get an estimate of the number of TLB misses during
a server period (TLBS). From this we get MOS = TLBS ·
MTLB where MTLB is the number of memory accesses for
each TLB miss. The upper bound of TLBS is when each of
the memory accesses up to the limit (MS) results in a TLB
miss, i.e. MOS ≤ MS ·MTLB ⇒ MT ≤ MS · (1 +MTLB),
but using the MMU model and memory usage information for
the tasks we seek to lower that bound. The approach will then
be evaluated with a prototype extension to an available RTOS.
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