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SE-581 83 Linköping, Sweden,
mikael.asplund@liu.se

Simin Nadjm-Tehrani
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Abstract Worst-case latency is an important characteristic of information dissemina-
tion protocols. However, in sparse mobile ad hoc networks where end-to-end connectivity
cannot be achieved and store-carry-forward algorithms are needed, such worst-case anal-
yses have not been possible to perform on real mobility traces due to lack of suitable
models. We propose a new metric called delay expansion that reflects connectivity and
reachability properties of intermittently connected networks. Using the delay expansion,
we show how bounds on worst-case latency can be derived for a general class of broad-
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1 Introduction

Wireless networks are emerging as the dominant tech-
nology for connecting devices and people together. Most
wireless systems are infrastructure-based, but there are
cases, such as disaster area management and vehicular
communication, where ad hoc communication becomes
a possible alternative. However, such networks are likely
to be intermittently connected when deployed in a large
geographic area, requiring the use of store-carry-forward
techniques. Still, in a post-disaster scenario timely com-

munication is vital for the relief efforts. It is needed for
fast and efficient assessment of the situation and coordi-
nation of the rescue actions. Disaster area communica-
tion is therefore both mission-critical and time-critical.
The same applies to car-to-car communication which is
actively being developed mainly for safety-related appli-
cations.

For such applications it is of great importance to be
able to analyse under what conditions a sufficient quality
of service can be provided. In particular, for time-critical
applications, an important aspect is to be able to guar-
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antee message delivery within a certain amount of time.
For example, a warning message might need to be prop-
agated within some given time frame in order to be rel-
evant. While simulation-based approaches can provide
useful insights into performance under some typical sce-
narios, it is difficult to draw any general conclusions. As
a complement to simulation, having an analytical model
of the system allows deriving guarantees on system per-
formance given that some basic assumptions are met.

Unfortunately, mobile ad hoc networks are inherently
difficult to capture in analytical models. This is partly
due to the fact that the actual node mobility varies con-
siderably between application scenarios, and even worse,
their characteristics are largely unknown to the research
community. In addition, even with simple mobility mod-
els such as random waypoint (RWP), analytical models
can become very complex. In reality, mobility is hetero-
geneous and complex, so we need a model that can in-
corporate such phenomena while still providing enough
abstraction for analytical reasoning.

In this paper we address the issue of worst-case la-
tency in intermittently connected networks for a wide
class of mobility models. For this purpose, we provide
an abstract description of node connectivity in a mobile
network. This model taken together with generic prop-
erties of broadcast protocols will be combined to derive
the worst-case latency in this setting. The novelty of
our method lies in being able to analyse actual mobility
traces rather than just theoretical models of mobility.

The work flow of our approach is shown in Figure 1.
The basic idea is to be able to take some model of mobil-
ity and some broadcast protocol and be able to give an
upper bound on the latency (given knowledge of the sys-
tem load). We introduce the notion of delay expansion
function (D(ε, s) in the figure) to capture the basic con-
nectivity characteristics of a given mobility model. The
delay expansion function can be derived from a trace file
using an algorithm described in this paper. Using this
function, and properties of a given protocol P (“Queue
parameters” in the figure) we then create the spread-
time function TP (x, y) which can be used to calculate the
worst-case latency for spreading a message across parti-
tions. Intuitively this term describes how long it takes
for a protocol P to spread a message from x nodes to y
nodes.

There are four contributions in this paper:

• A delay expansion function that characterises the
connectivity of disconnected networks

• An algorithm to derive the delay expansion from
mobility traces

• A proof of the upper bound on the worst-case
latency for a class of broadcast algorithms with
bounded queues

• Validation of the approach on an example protocol
and mobility models including a real-life mobility
trace

D  , s Queue parameters

Mobility modelMobility traces

T P x , y 

Protocol P

Latency

Algorithm

Figure 1 Overview of the approach

The rest of this paper is organised as follows. Sec-
tion 2 briefly covers the graph-theoretical constructs that
we use in the paper and also covers related work. Sec-
tion 3 describes our system model and defines the delay
expansion function that we use in the rest of the paper.
Section 4 shows how to derive the actual worst-case la-
tency of a protocol. In Section 5 we show how the delay
expansion can be derived from a typical mobility model
description and from real mobility traces. The theoretical
model is validated using a network simulated in Section 6
with real-life mobility data. Finally, Section 7 concludes
the paper.

2 Related Work

In this section we will relate our work to existing lit-
erature with regard to connectivity modelling and ana-
lytical derivations of message latency in intermittently
connected networks.

2.1 Connectivity Modelling

Although, intermittently connected networks have been
studied for quite some time (Davidson et al., 1985; Saito
and Shapiro, 2005; Asplund et al., 2009), it was not un-
til the introduction of delay-tolerant networks (DTN)
that the problem of characterising mobile connectivity
became an important problem. The large body of work
on mobile ad hoc networks usually deals with connectiv-
ity in terms of link and path stability, path diversity etc.
(Samar and Wicker, 2004; Yawut et al., 2008).

The connectivity of ad hoc networks has been ex-
tensively studied using percolation theory (Penrose and
Pisztora, 1996; Santi and Blough, 2003), connected com-
ponents (Dousse et al., 2006), temporal clustering coeffi-
cients (Tang et al., 2009) as well as other metrics (Ovalle-
Mart́ınez et al., 2005; Scellato et al., 2011).

A common assumption for analysing connectivity of
delay-tolerant networks have been that the inter-meeting
time is exponentially distributed, which has also been
shown to be true for some common mobility models like
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random waypoint and random walk (Groenevelt et al.,
2005). However recent work has shown that this is not
true for real mobility traces (Chaintreau et al., 2007;
Karagiannis et al., 2010), and that it in fact is not homo-
geneous, but heterogeneous and correlated (Ciullo et al.,
2011; Hossmann et al., 2011; Passarella and Conti, 2011)

In this paper we will derive a global connectivity met-
ric by considering the actual connectivity pattern of a
system. Modelling dynamic connectivity as a graph can
be done in two basic ways, often each node is repre-
sented by one vertex and there is one edge for every
contact (Kempe and Kleinberg, 2002; Balasubramanian
et al., 2007). The other alternative, which we use in
this paper, is to let each node be represented by multi-
ple vertices, one for each network configuration or time
step (Merugu et al., 2004). Kong and Yeh Kong and
Yeh (2008), use a concept of long-term connectivity graph
whose edges are all the pairs of nodes with a finite ex-
pected meeting time.

Acer et al. (2010) propose a metric where a space-
time connectivity graph is represented as a reachability
tensor from which a specific graph measure is extracted.
The authors show experimentally that this metric is cor-
related with the expected hitting time (time to reach a
particular node for the first time) for a random walk in
the network. However, no theoretical analysis is done to
explain this correlation. Chen et al. (2011) present an-
other classification of intermittently connected networks
based on node-pair characteristics.

2.2 Latency in Intermittently Connected Networks

To the best of our knowledge, this is the first paper
to provide a model for finding the worst-case broadcast
latency in intermittently connected networks with ar-
bitrary mobility and limited bandwidth. On a similar
theme, Uddin et al. (2010) analyses the worst-case end-
to-end deadlines of data flows for networks where the
mobility is recurring. There is also a rich body of theo-
retical results on information dissemination in dynamic
networks (O’Dell and Wattenhofer, 2005; Kuhn et al.,
2010; Prakash et al., 2011), although most works as-
sume connected networks. There are a number of results
on the complexity of flooding for a class of connectiv-
ity models called edge-Markovian dynamic graphs where
links appear and disappear according to a fixed prob-
ability (Clementi et al., 2010; Baumann et al., 2011).
However, none of these works are able to model and rea-
son about an actual mobility trace.

Other works on latency in intermittently connected
networks can be broadly divided in three categories. (1)
Graph exploration of a DTN graph to do optimal rout-
ing. (Xuan et al., 2003; Jain et al., 2004). Common for
this and similar works (Merugu et al., 2004) is that the
delay is calculated for one node at a given single time
point, rather than as a general characteristic of the entire
system. (2) Asymptotic best-case analyses using simple
homogeneous mobility models (Grossglauser and Tse,
2002; Neely and Modiano, 2005). Although results from

these studies provide upper bounds on achievable laten-
cies in wireless networks, they do not help in analysing
properties of specific networking algorithms for more
general classes of mobility models. (3) Probability-based
analyses for specific protocols where the inter-meeting
time follows a given homogeneous and independent prob-
ability distribution (Altman et al., 2010; Balasubrama-
nian et al., 2007; Groenevelt et al., 2005; Resta and
Santi, 2012; Spyropoulos et al., 2009). Most of these con-
centrate on the expected delivery ratio, rather than the
worst case.

3 Connectivity Models

In this section we will describe our system model and
introduce the delay expansion that we later use to de-
termine the worst-case latency.

3.1 System Model

We use a space-time graph model to describe the dy-
namic connectivity of the mobile network. The system is
composed of a set of processes (using terminology from
distributed systems). We will also use the term node syn-
onymously with process. Given any two processes p and
p′ in the system with an uninterfered link between them,
we denote by Tm the maximum transmission time for
any message m in the network. A link (x, y) is inter-
fered if some neighbour of y other than x is transmitting.
We assume that there is a unique time for every event
in the system. That is, no two messages are delivered
at exactly the same time. This assumption allows more
straightforward definitions relating to time and informa-
tion spreading, but does not affect the length of the worst
case spreading time due to the arbitrary interleavings of
possible events. Moreover, the participating nodes have
no information of this global time. Table 1 at the end of
the paper summarises the symbols and notation we use
throughout.

Formally we define the connectivity model C as a
sequence of topologies Gi:

Definition 3.1: A connectivity model C = 〈〈G0, T 0〉,
〈G1, T 1〉, . . .〉 is a (possibly infinite) sequence of graphs
Gi = (V,Ei), i ≥ 0, each graph representing the ith
topology of the network and lasting over a duration T i ≥
Tm. The set V represents the the processes in the system,
and Ei represents the links in the system in topology Gi.

A given mobility pattern together with a range of ra-
dio characteristics will result in a certain connectivity
model. Thus, we consider node mobility in an abstract
fashion by considering the connectivity pattern that re-
sults from that mobility. Figure 2 shows an example of a
connectivity model for a system with six processes (a to
f). There are four different topologies, G0 to G3. Note
that while there might be topologies of shorter duration
than Tm, we do not include these in the connectivity
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model in order to ensure that at least one message can be
sent during the duration of a topology. This can also be
seen as an underlying assumption on the interesting con-
nectivity models, meaning that topologies with shorter
connectivity than that needed for sending a message are
considered as less relevant due to weak connectivity. We
will also need a notion of a continuous time line with
time points modelled as positive real numbers. This lets
us define the start time of a given topology as follows:

start(Gi) =
∑

0≤j≤i−1

T j

where T j is the duration of the topology Gj (the start
of the first topology thus evaluates to start(G0) = 0).

We can now use this model to express connectivity
strengths. For example, the majority partition assump-
tion requires that for any topology Gi there is a set M ⊆
V where |M | ≥ d |V |2 e so that for any x, y ∈M there is a
path from xi to yi in Gi.

Figure 2 Example Model

Our focus in this paper is on a much weaker type of
connectivity than majority which we call space-time con-
nected. This model is quite weak, but there is a bound
on the ability for each process to reach another either
by a hop in the current topology or by waiting for an-
other topology. This model is equivalent to network live-
ness (Vollset and Ezhilchelvan, 2005), which excludes the
existence of permanent partitions.

Definition 3.2: A connectivity model C = 〈〈G0, T 0〉,
〈G1, T 1〉, . . .〉 is space-time connected if for any topology
Gi = (V,Ei) there is a finite sequence Gi, . . . , Gi+n of
successive topologies starting with Gi, so that the graph
G = (V,Ei ∪ . . . ∪ Ei+n) is connected.

The model shown in Figure 2 is space-time connected
since every topology, if merged with the successor topol-
ogy, results in a connected graph.

In a space-time connected connectivity model it is
possible to bound the delay of a dissemination protocol.
Unfortunately, this definition is not very helpful in itself.
First of all, given a certain physical system, how can one
know the bound? Secondly, due to limited bandwidth
and collisions a protocol will not be able to deliver a
message within a bound computed from the duration of

topologies just because there was a path. We will deal
with these issues in the coming sections.

3.2 Delay expansion

We will now introduce the first of the main contribu-
tions in this paper, which is a way of expressing relevant
properties of the connectivity model that is needed to
derive worst-case latency bounds. Intuitively, in an in-
termittently connected network, latency is decided by
the amount of “spreading” a message can perform in
one time step. In a network that is well-connected, the
spreading-rate is high, so the message will disseminate
quickly. If on the other hand, the message is able to reach
at most a few nodes in every step, the dissemination will
be slow.

Graph expansion is a measure used in graph theory
which intuitively tells how well-connected a graph is. For
more details on graph expansion and related concepts we
refer the reader to the excellent survey by Hoory et al.
(2006). We will use the concept of expansion and add
to it the notion of time delay. The time delay decides
how long we must wait before the mobility model is able
to generate a graph with the required expansion. Using
this time and expansion factors we will later be able to
derive bounds on the delivery time.

However, before introducing the delay expansion, we
need to define a particular kind of graph expansion that
suits our specific needs. For a given set of processes in
our system we not only want to know how many of them
have a neighbour to which they can send a message, but
also how many such neighbours there are. This will be
captured by the following definition:

Definition 3.3: Given a graph G = (V,E), let S ⊆ V
be a non-empty subset of V and let S = V \ S, then the
least neighbour expansion of S is defined as:

e(G,S) = min

(
|Γ(S) \ S|
|S|

,
|Γ(S) \ S|
|S|

)
where Γ(S) denotes the neighbour set of S (i.e. Γ(S) =
{x|∃y : (x, y) ∈ E, y ∈ S}).

Intuitively, this notation captures how many outside
neighbours a given set of nodes have in a graph. We will
later use this to capture how many new nodes can be
reached with a message given that S is the set of nodes
that have received the message so far.

Figure 3 shows a simple example of least neighbour
expansion where the edges between nodes in S and out-
side S are drawn. Assuming that there are 10 mem-
bers in the set S, the least neighbour expansion would
be e(G,S) = min(3/10, 4/10) = 3/10 since there are four
border nodes in S, 3 border nodes in S.

Figure 4 shows the result of averaging the least neigh-
bour expansion for different set sizes in 1000 randomly
generated connected graphs. Each graph contained 100
nodes and the node degree in the graphs were between
1 and 4. Although the least neighbour expansion exists
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Figure 3 Least neighbour expansion

for all subsets of V , as we can see in the graph it will
be very low for set sizes larger than set size 50 (i.e.,
larger than |V |/2). The explanation for this is that the
set size is found in the denominator in the expression
for e(G,S). However, we do not need to use the least
neighbour expansion for sets S with more than half the
nodes since symmetry allows us to consider the expan-
sion of the complement set S which can be expressed as
e(G,S) = (e(G,S) · |S|)/|S|.
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Figure 4 Least neighbour expansion vs. set size

Based on Definition 3.3, a topology that represents a
partitioned network will have a least neighbour expan-
sion of zero for at least some subset of its vertices S.
However, if we consider the future encounters for nodes
over an interval of time, and add an edge to a discon-
nected current topology for all future encounters of the
nodes, we may well get a connected graph (and thereby
non-zero least neighbour expansion). One can think of
it as accumulating all the links that occur within this
time in one graph. The following definition formally de-
scribes how such a graph is constructed from a sequence
of topologies for a given time point and duration.

Definition 3.4: Given a connectivity model C, a
time point t, a duration d, and a transmission time
Tm, the delay neighbourhood N(C, t, d) is a graph
obtained from the union of topologies Gi, . . . , Gi+n

within C such that start(Gi+1) ≥ t+ Tm and
start(Gi+n) + Tm ≤ t+ d.

Intuitively, this notion captures the potential one-hop
reach of a network at a time point and within an interval
d in the future. That is, if a message resides at a node
x at time point t, then during an interval of length d
it has the possibility to spread to a node y such that
the edge (x, y) ∈ E where E is the edge set of the delay
neighbourhood N(C, t, d). Note that the order in which
the edges in E appear does not matter since we do not
consider multiple hops in one delay neighbourhood.

The reason for the slightly convoluted time require-
ments is that we can only include the topologies that
overlap enough with the specified time interval d. Fig-
ure 5 shows the idea, where the four topologies Gi to
Gi+3 will be included in N(C, t, d) since there is enough
time for a message to be sent in the first and last of the
four topologies.

Figure 5 delay neighbourhood

We will now proceed with one of the more central def-
initions of the paper, where we combine the least neigh-
bour expansion with the delay neighbourhood to define
the delay expansion D(ε, s). This notion is a measure of
the delay required to reach an expansion of ε for all sub-
sets of size s. The intuition is that a connectivity model
with a small delay expansion will take a small amount
of time until the number of stable links that exist dur-
ing this period will be enough to let a message spread to
a given number of nodes.

Definition 3.5: Let C be a space-time connected
model with node set V , ε be a positive real number,
and s a positive integer. The delay expansion D(ε, s) =
min({d : ∀S ⊆ V, |S| = s,∀t ≥ 0, e(N(C, t, d), S) ≥ ε}) is
the minimum delay d so that all delay neighbourhoods
have a least neighbour expansion of ε for sets of size s.

Note that the definition allows for different ε for dif-
ferent set sizes. Moreover, the function D(ε, s) is defined
for all space-time connected connectivity models and all
s ∈ [1, n) (n being the number of nodes) for the extreme
case where ε = 1/n, since the only requirement on the
delay neighbourhood graph is that it is connected. We
will now present a symmetry theorem that relates the
delay expansion of a set size s with the delay expansion
of s = n− s, where n is the number of nodes. This will
turn out to be useful since it means that we only need
to know the delay expansion for all set sizes s ≤ n/2.

Theorem 1: Given any connectivity model C with n
nodes for which D(ε, s) is defined, let s = n− s and ε =
ε · s/s, then D(ε, s) = D(ε, s).

The intuition behind this theorem is that the time
taken for a small set S to encounter new neighbours out-
side S is the same time taken for the complement set S
to encounter nodes in S. This is a consequence of how
the delay expansion is defined. All proofs are provided
in the appendix.
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4 Deriving Worst-case Latency

So far, we have been concerned with the properties of
the mobility and connectivity models of the system, and
introduced the delay expansion as an abstract notion of
connectivity. Now we turn to analysing protocols in this
setting. We will first introduce the function TP (s, s′) for
capturing the actual time required for a broadcast pro-
tocol to reach a given number of nodes. We will show
a couple of properties of this function and demonstrate
how it behaves for an ideal spreading protocol. Then
we will consider what happens in a system with limited
bandwidth and send queues. Finally, we derive an ana-
lytical expression of the worst-case latency under certain
assumptions.

4.1 Introducing the Spread-Time

We consider broadcast-type protocols whose purpose it
is to spread a message to all nodes in the network. We
begin by introducing some notation that will be used
for describing protocol behaviour. We will use a style
which is similar to that of timed I/O-automata. A pro-
cess will be denoted as being either informed or unin-
formed of a given message. If a process performs the
action receive(m) at time t, then it will be informed of
m at all time points t′ ≥ t (i.e., a node never ceases to
be informed of a message). If a process x performs an
action send(m) at time t, then any process y with an
uninterfered link from x during the interval [t, t+ Tm]
will perform the action receive(m) no later than time
t+ Tm. Finally, a run of a protocol P is a sequence of
actions and times that follow the specification of the pro-
tocol (e.g. excluding spurious send and receive actions)
in a given connectivity model.

We now introduce the spread-time function TP (s, s′)
that tells us the worst-case time taken for a network to go
from s nodes being informed to s′ nodes being informed
(where s′ > s) when running protocol P . Clearly, if we
are able to find an expression for TP (s, s′) then, in a
system with n nodes, TP (1, n) will give us the worst-
case broadcast latency of P . Before proceeding with the
definition we introduce a help function t(r, s,m) which
denotes the first time-point of run r when at least s nodes
are informed of message m.

Definition 4.1: Consider a protocol P , a connectivity
model C, and two non-zero set sizes s and s′ > s. Let
R 6= ∅ be the set of all pairs 〈r,m〉, where r is a run of P
andm is a message, such that t(r, s,m) exists. The worst-
case spread time from s to s′ with protocol P is then
defined as TP (s, s′) = max〈r,m〉∈R t(r, s

′,m)− t(r, s,m).

Figure 6 shows an example of a protocol P with two
runs for a given connectivity model (illustrated with
some specific time points). The spread time from 2 to 5
nodes is then TP (2, 5) = max{1.3, 0.5} = 1.3.

Whether or not TP (s, s′) is well-defined and finite de-
pends on the protocol as well as the connectivity model.

Run 1

Run 2

t=0 t=0.2 t=0.5 t=1.3

Informed node Uninformed node

Figure 6 Spread time example

More specifically, wheneverR is non-empty, the protocol-
mobility pair has the potential to spread a message to s′

nodes. We will in the coming subsections show some con-
ditions under which the function is defined and where
we can give upper bounds for it.

4.2 Properties of TP (s, s′)

Now we have come to the point where we can derive an
expression of TP (s, s′) based on knowledge of the delay
expansion function. Let us first consider an ideal proto-
col I with a theorem that states that given a bound on
D(ε, s) then the ideal protocol will spread to dε · se more
nodes in less than D(ε, s) time units. The ideal proto-
col has the following properties: (1) a send(m) action is
always followed by a receive(m) action on neighbouring
nodes (within Tm), even if the link is interfered (2) a
node which is informed of message m at time t will per-
form a send(m) action at all times t′ > t. This idealised
description of a protocol can be useful in cases where
the system load is considerably less than the available
bandwidth so that queuing times can be neglected.

Theorem 2: Given a space-time connected model C
for which D(ε, s) is defined, and an ideal protocol I, for
any integer 1 ≤ k ≤ dε · se, TI(s, s+ k) ≤ D(ε, s).

Recall that we are interested in finding an expression
for TP (1, n) since this is the latency for a protocol to
spread a message from one node to all nodes in the sys-
tem. However, the above theorem only gives the spread-
time for spreading in smaller increments (i.e. smaller
than dε · se). We will now show how to derive TP (1, n)
given that we have expressed TP (s, s′). The intuition
here is that we should be able to simply add the dura-
tions. That is, the time taken to reach n nodes is the
time taken to first reach s < n nodes plus the time taken
to reach n nodes starting from s informed nodes.

Theorem 3: For any protocol P and any connectiv-
ity model C such that TP (s1, s3) is defined, we have
TP (s1, s3) ≤ TP (s1, s2) + TP (s2, s3), for all s2 such that
1 ≤ s1 < s2 < s3 ≤ |V |.

By combining Theorems 2 and 3, it is possible to de-
rive an expression for the worst-case latency TI(1, n).
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However, we will instead turn the focus to less idealised
protocols that account for limited bandwidth and then
derive the worst-case latency for those protocols in Sec-
tion 4.4.

4.3 Dealing with Limited Bandwidth and Queues

In order to account for the effects of limited bandwidth
and interference, we need to model protocols which are
less powerful and more realistic than the ideal protocol.
We call this class of protocols Q-b-fair. The intuition of
a Q-b-fair protocol is that (1) for each message there is
a bound Q on the number of other messages that will
be sent before m is sent to an uninformed node, and (2)
the minimal number of messages that can be transmitted
over a link is b (i.e., this is an abstract notion of band-
width). We will not provide an actual algorithm for such
a protocol but rather give their specification. We will
also argue that this specification can be met by a real
implementation (at least under fault-free conditions).

Every time two nodes meet for a sufficient amount of
time, there is an opportunity to exchange messages, we
say that there is a number of send opportunities. How-
ever, since there are potentially many messages in the
queue that need to be sent, not all messages can take
advantage of a given send opportunity. One can think
of Q as the worst-case length of a virtual global queue.
Moreover, every node will have at least b send opportu-
nities (i.e. the possibility to send b messages) at every
meeting. By meeting we here mean that two nodes are
in contact while a topology lasts. We also assume that
no message is ever lost in transit. We now state these
properties formally:

Definition 4.2: A protocol P is said to be Q-b-fair if
the following holds:

1. If there is a topology Gi where x is informed of
a message m at time start(Gi), y is uninformed
of m at time start(Gi) for (x, y) ∈ Ei, then x will
have at least b send opportunities for m during the
interval [start(Gi), start(Gi+1)− Tm]

2. If a message m has had a sequence of Q ≥ 1 con-
secutive send opportunities, then a send(m) action
is performed at the time of at least one of those
opportunities.

3. If process x performs a send(m) action at time
t ∈ [start(Gi), start(Gi+1)− Tm] and (x, y) ∈ Ei,
then process y will perform receive(m) no later
than time t+ Tm.

In order to successfully implement aQ-b-fair protocol,
the protocol running at a node will need to send b mes-
sages at every meeting. One would therefore need to have
a MAC protocol that guarantees each node at least some
time to communicate with one of its neighbours during
every topology. Most wireless medium access protocols
such as 802.11 do not provide such real-time guarantees.

However, this is possible to achieve, at least probabilis-
tically (Yang and Kravets, 2006). Naturally, a protocol
would also need to have a neighbourhood discovery pro-
tocol to keep track of its current neighbours.

In practice, we can approximate most broadcast pro-
tocols to be Q-b-fair. The parameter b is simply the num-
ber of messages that can be exchanged in a meeting be-
tween two nodes. One way of providing a probabilistic
bound on Q is to let the queuing order at a node be
randomised (Haas et al., 2006). Thus, at every meeting
there is a certain probability of the message being sent;
and given enough such meetings the probability of a suc-
cessful send will be high. More detailed analysis on how
to appropriately determine Q can be performed but is
outside the scope of this paper.

Theorem 4 will now give a bound on the time it takes
for a Q-b-fair protocol to inform k additional nodes start-
ing from s informed nodes. We will assume here that the
delay expansion time is less than a bound D for all set
sizes between s and s+ k. We will call the act of inform-
ing one new uninformed node a successful send.

Theorem 4: Let D and ε be positive real numbers and
s, k integers where 1 ≤ k ≤ dεse. Given a Q-b-fair pro-
tocol P , and a space-time connected model C for which
D(ε, s′) ≤ D for all s′ ∈ [s, s+ k], the spread time from s
informed nodes to k new nodes TP (s, s+ k), is bounded

by
⌈
Q
b

⌉
·D.

Now we have all the tools we need to actually derive
an expression for the worst-case latency for a Q-b-fair
protocol and some knowledge of the delay expansion of
a given connectivity model.

4.4 Worst-case Latency of Broadcast

We are now at the stage where we can calculate
the bound on worst-case latency from one node to
all n nodes using the sum TP (1, n) ≤ TP (1, x1) + . . .+
TP (xn − 1, n). In order to find the appropriate values
for xi, we can use the following iterative formula until
xi = n:

TP (1, xi) ≤ TP (1, xi−1) + TP (xi−1, xi) (1)

Where the next xi is calculated as xi = min(n/2,
dxi−1 · εe) if xi−1 < n/2 and as the biggest set size xi so
that xi−1 + dε(n− xi + 1)e ≥ xi otherwise. The size of
each new term can then be calculated using the appro-
priate theorem (i.e., Theorems 2 or 4).

However, for convenience, it is sometimes worthwhile
to have a single closed-form expression, which we now
proceed to present as a theorem for the case when the
least neighbour expansion ε = 1/u, u ∈ Z+. Considering
Figure 4 it does not seem unreasonable to consider a
single bound ε for all set sizes less than half the number
of nodes. For the cases where these assumptions are not
appropriate we suggest using the iterative approach.
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Theorem 5: Let D be a positive real number and n, Q,
b, u be positive integers. Given a network of size n, a Q-b-
fair protocol P (with Q ≥ b), and a space-time connected
model C where D(1/u, s) ≤ D for all set sizes s ≤ n/2,
the worst-case latency of broadcast for P is:

TP (1, n) ≤ 2

⌈
Q

b

⌉(⌈
log2

n

2u

⌉
+ 1
)
·D · u

As an example, consider a system with the follow-
ing parameters: maximum global queue length Q = 100,
minimum number of send opportunities on a stable link
b = 50, number of nodes n = 50, minimum least neigh-
bour expansion ε = 1/u = 1/3, maximum delay to get
the required expansion D = 5[s] (where [s] denotes sec-
onds). Then the worst-case broadcast latency of any mes-
sage sent with a Q-b-fair protocol will be:

TP (1, 50) ≤ 300[s]

This expression provides a quick method of getting
a bound on latency, and lets us see how the different
parameters affect the final result. However, it is less ex-
act than the iterative formula (1), which for the same
example results in TP (1, 50) ≤ 180[s].

5 Deriving the Connectivity Model

So far we have introduced the delay expansion D(ε, s)
as a theoretical concept to capture mobility and con-
nectivity properties of the nodes. We now consider how
to actually find this function. In this section we show
how this can be done using real mobility traces. Such
traces could for example be obtained by tracking node
movements using GPS devices in a real scenario or ex-
ercise, or by using a mobility trace generator. A trace is
typically composed of a large number of time-stamped
records that specifies the location and possibly the ve-
locity for a given node at that time point. Using such a
description, one can then extract a sequence of topolo-
gies (i.e., a connectivity model) from which the delay
expansion can be calculated.

Unfortunately, finding the maximal expansion of a
graph is a hard problem. This leaves us with two options,
either we try to find a suboptimal bound that is safe
(i.e., not optimistic) but that might provide very pes-
simistic results, or we try to find a way to approximate
the expansion and risk the possibility that the result is
optimistic. The former of these is appropriate if we want
a theoretically correct bound on the latency and the lat-
ter if we are interested in an approximate figure that is
closer to reality.

We will start by exploring the first option by finding
a safe bound on the expansion (and thereby, on the la-
tency) in the rest of this section. We have also tried the
second option as explained in Section 6. The presenta-
tion of the method to obtain a pessimistic bound will
rely on the fact that there is a close relationship between
least neighbour expansion and the all-multicommodity

flow problem. Therefore, in Section 5.0.1, we will first
introduce the concept of flows and describe the all-
multicommodity flow problem, followed by its applica-
tion in Section 5.0.2.

5.0.1 Multicommodity Flows

Given a graph G = (V,E), a source s, and a sink t a
flow is a mapping f : V × V → R such that (1) for all
x, y ∈ V , f(x, y) = −f(y, x), (2) for all x ∈ V \ {s, t},∑

y∈V f(x, y) = 0, and (3) if (x, y) /∈ E then f(x, y) = 0.
One can think of flows as commodities that are to be
shipped from one node to another through the network.
Using this analogy, the all-multicommodity flow prob-
lem states that every node wants to ship some distinct
amount of commodity to every other node in the net-
work, but where each link can handle only so much flow
at the same time. A little more formally we can express
this as (adapted from (Hoory et al., 2006)):

Definition 5.1: Given an n-vertex input graph G =
(V,E), an all-multicommodity flow assignment of size δ
is a set of n · (n− 1)/2 distinct flows, one for each pair
of nodes (source and sink) such that:

• For every flow i,
∑

y∈V fi(si, y) = δ, where si is the
source of the distinct flow, and δ is the flow size.

• Every edge has a maximum capacity of 1, so for all
edges (x, y) ∈ E,

∑
i |fi(x, y)| ≤ 1

The max all-multicommodity flow problem is to find
the largest possible flow size δ. The solution to this prob-
lem provides the total capacity of the network assum-
ing that each node wants to ship something to every
other node. The multi-commodity flow problem has in-
deed been used to find the capacity of wireless (and
other) networks (e.g. (Garetto et al., 2007)). However,
our reason for using this concept is not the capacity itself,
but rather the connection with graph expansion (Hoory
et al., 2006), as will be shown in the next section.

5.0.2 Finding the Delay Expansion from a Trace
File

We will now use an all-multicommodity flow assignment
to bound the least neighbour expansion of a graph. We
present a theorem which provides a bound on the least
neighbour expansion given some flow assignment.

Theorem 6: Given a graph G = (V,E), n = |V | and
an all-multicommodity flow assignment of size δ (accord-
ing to Definition 5.1), for every node x, let Fx be the
number of flows such that for some y: |fi(x, y)| > 0 and
let Fmax = max(Fx). Then for every set S ⊂ V , |S| =
s ≤ n/2, the least neighbour expansion is:

e(G,S) ≥ n− s
Fmax
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A (5)

B (5)

C (6)

D (8)

E (6)

F (5)

Flows:
A-B
A-C
A-D
A-C-E
A-D-F

B-D
B-C
B-D-E
B-D-F
C-D

C-E
C-E-F
D-E
D-F
E-F

Figure 7 Flow assignment example, each node is marked
with the number of flows going through it. The
table shows the nodes that each flow passes
through, with the sink and source marked as bold.

To illustrate the application of this theorem consider
the graph G in Figure 7. There are n = 6 nodes, so there
are n(n− 1)/2 = 15 flows in the graph, one for each
pair of nodes. In the table, a possible flow assignment is
shown and the resulting number of flows going through
each node (denoted Fx in Theorem 6) is shown in paren-
theses beside each node. The maximum number of flows
going through any node is Fmax = max{Fx} = FD = 8.
We can now apply the theorem to see that the least
neighbourhood expansion for all subsets S of size 3 must
be:

e(G,S) ≥ n− s
Fmax

=
3

8

This means that any subset of size 3 must have at
least d3 · 3/8e = d9/8e = 2 neighbours outside the set it-
self. Similarly, a subset of size 2 will have a least neigh-
bour expansion e(G,S) = 1/2, so the nodes in set will
have at least one neighbour outside the set.

We will now use Theorem 6 to construct an algo-
rithm as seen in Listing 1 that will in polynomial time
heuristically find the delay D and expansion ε such that
D(ε, s) ≤ D. The input to the algorithm is a space-time
connected model C as defined in Section 3.1, Defini-
tion 3.2, and, a minimum link time Tm, and a set size
s. In order to get the connectivity model C from a trace
file, one needs to extract all contacts (e.g. using a tool
such as cbm (Khelil et al., 2005)) and remove all links
that are too short.

The algorithm works in two steps. The first step
(lines 1 to 7) will find the worst-case delay D required to
achieve delay neighbourhood graphs N(C, start(Gi), D)
so that any subset of size s is guaranteed to have ex-
ternal neighbours (lines 4-6). Finally, the resulting D is
found by taking the maximum (i.e., worst) of all Di (line
7). We add an extra Tm at the end since we will consider
only the delay neighbourhood at the start time of each
topology.

In the second step (lines 8-13), a bound on the least
neighbour expansion ε is calculated so that D(ε, s) ≤
D for all values of s. Again, we iterate over all
topologies of C and create the delay neighbourhood
N(C, start(Gi), Di) (line 9). We then create a flow
assignment using the CreateFlowAssignment function
(line 10) which can be any polynomial-time heuristic al-
gorithm that provides an all-multicommodity flow as-
signment (we have used a greedy algorithm when test-

ing the algorithm). The number of flows going through
each node is calculated (line 11), and by applying The-
orem 6 the resulting least neighbour expansion is found
(line 12). Finally, we take the minimum of all the εi to
get the worst-case bound (line 13).

Listing 1 GetDelayExpansion

Input: Space-time connected model C,
minimum link duration Tm
set size s

Output: Delay D, least neighbour expansion bound ε

GetDelayExpansion

//Get delay:
1 for every topology Gi ∈ C:
2 Di ← 0
3 N ← the N(C, start(Gi), Di)
4 while a subset of size s might be disconnected:
5 Di ← D + Tm
6 N ← N(C, start(Gi), Di)
7 D ← max{Di}+ Tm

//Get expansion:
8 for every topology Gi ∈ C:
9 N ← N(C, start(Gi), Di)

10 CreateFlowAssignment(N)
11 Fx ← the number of flows passing node x
12 εi ← (n− s)/(max{Fx})
13 ε ← min{εi}

14 return D, ε

Due to Theorem 6, we know that the algorithm gives
a proper least-neighbour expansion for every delay neigh-
bourhood. And since we go through every topology, we
will get the worst-case delay required to achieve this ex-
pansion.

To summarise this section, we have provided an algo-
rithm that takes as input a connectivity model (e.g., a
mobility trace file), a link duration and a set size s and
it will then return D and ε so that the delay expansion
D(ε, s) is less than or equal to the bound D. By running
the algorithm for all set sizes s up to half the number of
nodes, and using the methods explained in Section 4.4,
these numbers can then be used to derive the worst-case
latency of broadcast for this particular trace.

6 Validation

In order to assess the validity of our assumptions and to
put the latency results in perspective we have performed
some simulation-based studies. The main result of the
paper is an upper bound on the worst-case latency for
broadcast in intermittently connected networks (as pre-
sented in Section 4). In this section we will demonstrate
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that the upper bound is meaningful, and the interme-
diate tools to compute the upper bound can be used
to derive a useful approximation of the upper bound in
practice.

We will start by demonstrating that the bound com-
puted according to the method described in Section 4 is
tight. That is, we can give an example of a node move-
ment trace where the resulting broadcast latency is equal
to the upper bound given by our calculations. We cre-
ated a mobility trace where 8 nodes were positioned in
a circle with a radius of 100 meters. Every 200 seconds,
a number of pairwise node meetings were created by
letting the nodes move to the centre of the circle. The
pattern with which the nodes met formed a connected
graph with least neighbour expansion 1, 1, 2/3, 1/2 for
set sizes 1, 2, 3, 4 respectively. Figure 8 shows the result-
ing latency for a protocol with parameters Q = 2, b = 1
(i.e., maximum queue length of 2). The simulated curve
was produced using the network simulator One (version
1.4) (Keränen et al., 2009) with a ideal broadcast proto-
col, and the theoretical upper bound using the iterative
approach described in Section 4.4, equation (1). We can
see that the two curves follow each other exactly, which
demonstrates that there is no way of getting a less pes-
simistic bound in the general case.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  3  4  5  6  7  8

La
te

n
cy

 [
s]

Number of nodes reached

Theoretical bound
Simulated worst case

Figure 8 Tightness of upper bound on worst case
broadcast latency

Next, we move on to a larger and more realistic
model, with 50 nodes moving in an area of 500m× 500m.
The mobility model was a location-based model intended
to mimic a disaster scenario where people cluster around
certain places but with some movement between the lo-
cations as well. There were 20 locations, and 20 of the
nodes were fixed at one of the locations. The 30 mo-
bile nodes moved at walking speed (1-2 m/s). Each node
moved in a circular area with a radius of 10 meters us-
ing the random waypoint model around one of the 20
locations location. Every 40 seconds a mobile node will
change to a new location to which it will travel at vehic-
ular speed (36-90 km/h). The transmission range of the
devices was 20 meters, and the simulation lasted for 2000
seconds. The traffic was generated by randomly choos-
ing a sender among all the nodes every 10-100 seconds.
Again the protocol is modelled in an abstract manner

by determining the Q and b parameters. In the simula-
tions the parameters were Q = 2 and b = 1 (thus, we let
a message queue for 10 seconds before being sent during
10 seconds).
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Figure 9 Latency for disaster area scenario

Figure 9 shows the worst-case latency as a function
of the number of nodes reached. The lowest three curves
show the actual simulation-based latency based on 50
runs with the worst case, the 99 percentile and the av-
erage.

The middle curve shows a theoretical bound of the
worst-case latency. This is based on the results of this pa-
per together with an estimation of the delay expansion.
The estimation of the delay-expansion was done by using
the Get delay part of the algorithm Listing 1, and the
following procedure for calculating ε. We first randomly
created 750 connected subsets, and then calculated the
least neighbour expansion for each subset using Defini-
tion 3.3. Finally, we let ε be the worst (smallest) of these
values. The result is fairly close to the simulated one,
and provides a practical upper bound on the latency for
a given mobility.

Finally, the upper curve in the figure represents a safe
upper bound on the latency as dictated by equation (1)
in Section 4. The difference to the previous curve is that
instead of trying to find a good estimate of D(ε, s) from
the trace file, we use the algorithm Listing 1 to get a safe
upper bound on the delay expansion. We then use the
same calculations as for the middle curve to derive the
bound on worst-case latency. As we can see, as opposed
to the result in Figure 8, the bound is very pessimistic
in this case. The for this is that the worst-case delay
expansion can be very high during some time periods in
the mobility trace file. While this bound is guaranteed
to be safe, the estimated worst-case is perhaps the most
useful outcome of the work in practical scenarios.

Finally, the last mobility trace we have analysed is
a large scale real-life trace based on the movement of
taxis in the San Francisco area. The trace was collected
by Piorkowski et al. (2009) based on data made available
by the cabspotting project during May 2008. We used a
subset of 272 cars that were in contact with some other
node in this group at least every 15 minutes. We assume
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that each taxi has a wireless device with a range of 300
meters, and simulated 10,000 seconds with each node
sending a packet every 10-500 seconds. Figure 10 shows
the results for the simulation (worst-case, 99 percentile
and average) at the bottom and the theoretical bound
at the top. We estimate D(ε, s) in the same way as for
the disaster scenario, but calculating a safe bound turns
out to be very time consuming for such a large scale
network. This further confirms our assessment that the
estimation-based approach is the more practically useful
application of our results.
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Figure 10 Latency for San Francisco cab scenario

7 Conclusions

In this paper we have presented an analytical method
for deriving the worst-case latency of broadcast in in-
termittently connected networks. A key strength of the
approach is that it is applicable to any kind of mobility
movement as opposed to other proposed schemes that
usually assume node movement to be homogeneous. An-
other benefit is that we decouple the analysis of the con-
nectivity model (which results in a more abstract repre-
sentation in the form of a delay expansion function) from
the properties of the protocol. Moreover, we have shown
that bounds on the delay expansion can be derived from
an arbitrary trace file of the mobility movements.

We believe that our method can be useful to protocol
and application designers in determining the envelope in
which the application is guaranteed to provide the de-
sired quality of service. Using this approach the appli-
cation designer can state that if the connectivity of the
network is well behaved (i.e., with a delay expansion less
than some ε), and the system load is so that the queue
length does not exceed Q, then the protocol is guaran-
teed to deliver a message within X seconds. The key
novelty is that we provide a metric to characterise dy-
namic and intermittently connected networks that can
actually be extracted from mobility traces.

Naturally, there are some limitations. First of all, the
delay expansion function does not rule out adversarial
mobility movements. This means that we must consider

some very improbable cases to really get the worst-case
latency. Although this is exactly what we intended (oth-
erwise one would perform an average-case analysis), one
might be able to find tighter bounds for a given mobility
model.

Moreover, we have assumed a medium access control
layer that can provide some guarantees on message de-
livery over a stable link. As future work, it would be
interesting to have a more fine-grained model of interfer-
ence and allocation of the medium, as well as other ways
to model message queues. This could also lead to more
detailed models of different protocols, thereby allowing
this method to help in determining the suitability of a
given protocol to some given mobility scenario.

We believe that there are many ways that one can
build upon the theoretical framework we have presented
in this paper. The delay expansion concept is well suited
for quickly characterising node mobility. We have already
found the concept interesting for application to prob-
abilistic analyses, providing an alternative to the com-
mon uniform inter-meeting time assumption (Asplund
and Nadjm-Tehrani, 2012).
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Table 1 Notation Summary

Symbol Description

Tm Maximum transmission time of a message
V Set of nodes in the system
S Subset of nodes (S ⊆ V )

S Complementary set (S = V \ S)
C Connectivity model (Definition 3.1)
Gi Topology graph (Definition 3.1)
Ei Set of links in topology Gi (Definition 3.1)
T i Duration of topology i (Definition 3.1)
e(G,S) Least neighbour expansion (Definition 3.3)
ε Bound on least neighbour expansion
N(C, t, d) Delay neighbourhood (Definition 3.4)
D(ε, s) Delay expansion (Definition 3.5)
TP (s, s′) Worst case spread time (Definition 4.1)
Q Bound on queue length (Section 4.3)
b Bandwidth (Section 4.3)
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Appendix

Proof of Theorem 1: (1) D(ε, s) ≤ D(ε, s): Consider
the connectivity model C with D(ε, s) = d and any time
point t, and let N = N(C, t, d) be the delay neighbour-
hood at that time. By Definition 3.5 we then know that
e(N,S) ≥ ε for all subsets S of size s. Now recall that we
can express the least neighbour expansion for the com-
plement set S as e(N,S) = e(N,S) · s/s, meaning that
e(N,S) ≥ ε · s/s = ε. Again by Definition 3.5, D(ε, s) is
the minimal delay for which this inequality is true, mean-
ing that D(ε, s) is defined and that D(ε, s) ≤ d = D(ε, s).
(2)D(ε, s) ≥ D(ε, s): By (1) we know that D(ε, s) is de-
fined. The rest of this step is analogous to (1). �

Proof of Theorem 2: Consider any space-time con-
nected model C, any run r of I, and any message m,
where there is a time t when exactly s processes are in-
formed of m. Let S be this set of informed processes,
and let d = D(ε, s). From Definition 3.5 we know that
N(C, t, d) is a graph with least neighbour expansion of
at least ε. Therefore, by Definition 3.3, S will have at
least ε · s neighbours outside S in N(C, t, d), and thereby
at least dε · se neighbours since ε · s is not necessarily an
integer. Moreover, since k ≤ dε · se, there will be at least
k such neighbours. Considering N(C, t, d), we see from
Definition 3.4 that these neighbours will appear some
time during the interval [t, t+ d− Tm]. By property (2)
of the ideal protocol, each process in S will send the mes-
sage m at all times in this interval, and by property (1)
all their neighbours will have received the message by
the time t+ d, which means that at least s+ k nodes are
informed of m at that time. Since we considered any run
of I, any message m, by Definition 4.1 the spread time
TP (s, s+ k) is no larger than t+ d− t = d = D(ε, s). �

Proof of Theorem 3: By Definition 4.1, there will be
at least one run of P in which there is a point t1
at which s1 nodes are informed and within TP (s1, s3)
of which s3 nodes are informed. Consider any such
run r, and let t3 = TP (s1, s3) (i.e., the first time point
when s3 nodes must have been informed). Since we
in the system model assume that there is a unique
time point for every event in the system, there is
also a time point t2, t1 < t2 < t3, where exactly s2
processes have been informed. By Definition 4.1 we
have that t2 − t1 ≤ TP (s1, s2) and t3 − t2 ≤ TP (s2, s3).
Adding these inequalities we get: t2 − t1 + t3 − t2 = t3 −
t1 = TP (s1, s3) ≤ TP (s1, s2) + TP (s2, s3). �

Proof of Theorem 4: The proof will be done in three
steps. (1) First, we will consider a subinterval of the en-
tire interval required to spread from s to s+ k nodes.

At the beginning of the subinterval we do not know how
many nodes are informed, except that it is between s
and s+ k. So, we will show that for any subinterval of
length D, where there are between s and s+ k informed
nodes at the start of the subinterval, the number of send
opportunities for all informed nodes will be at least b · k.
(2) We will then derive the number of send opportunities

in any interval of length
⌈
Q
b

⌉
·D. (3) Finally, by relat-

ing the number of send opportunities with the number
of successful sends (i.e., resulting in one more informed
node), we can show that in that interval there will be at
least k successful sends.

(1) Consider any space-time connected model C with
D(ε, s′) ≤ D for all s′ as described in the theorem, any
Q-b-fair protocol P , any message m, and any interval
starting at some time t with length D (i.e., this is a
subinterval of the total time interval required to spread
the message to k more nodes) such that for any run of
P , the number of m-informed nodes at time t is between
s and s+ k. Since the theorem assumes that there are at
least s informed nodes, at least one such interval must
exist. By Definition 3.5, and the fact that the expan-
sion delay cannot get worse for set sizes larger than s,
N(C, t, d) is a graph whose least neighbour expansion is
at least ε for all sets of sizes s to s+ k. By Definition 3.4,
this means that for at least ε · s of the informed nodes,
there will be some topology Gi where they are adjacent
to uninformed nodes. Since the number of informed bor-
der nodes must be integer, there are at least dε · se ≥ k
such nodes. By property 1 of the Q-b-fair protocol, this
means that any such node will have b send opportunities.
So in total, there will be at least b · k send opportunities.

(2) Now consider any run of P where at some time
t there are s nodes informed. We will now show from
t to t′ = t+

⌈
Q
b

⌉
·D there will have been at least Qk

send opportunities. We restrict our attention to the runs
where there are no more than s+ k informed nodes at
time t′ (as in the other case, at least k nodes have been
informed and there is nothing left to prove). By the first
step of the proof, we know that any sub interval of length
D in [t, t′] will result in at least b · k send opportunities.
So the total number of send opportunities o during the
interval [t, t′] will be:

o ≥
⌊

(t′ − t)
D

⌋
· b ·


⌈
Q
b

⌉
·D

D

 · b· = ⌈Q
b

⌉
· b · k

≥ Q

b
· b · k = Qk

(3) Finally, for the same runs selected under (2)
above, we will now connect the number of send opportu-
nities with the number of new informed nodes. By prop-
erty 2 of Q-b-fair protocol, having Qk consecutive send
opportunities for message m during some interval of time
means that there will be at least k send(m) actions. By
property 3, all those send actions will also result in a
new informed node.
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Thus, we have shown that, starting from s nodes,

during the time
⌈
Q
b

⌉
·D at least k more nodes have been

informed. Since we considered any run of P , and any
message m, we know that this is true for all runs, and
therefore by Definition 4.1, the worst-case spread time is

TP (s, s+ k) ≤
⌈
Q
b

⌉
·D. �

Proof of Theorem 5: The proof will be done in several
steps. First we will express how long it takes to double
the number of informed nodes (given that less then n/2
nodes are informed). Then we use this to express the
time taken to spread from 1 to n/2 nodes. Similarly for
the case when more than n/2 nodes are informed we
derive the time taken to halve the number of uninformed
nodes, and use this to find the time to spread from n/2
to n nodes.

Let k = d sue, then by Theorem 4, for any set size s,
such that 1 ≤ s, and s+ k ≤ n/2:

TP (s, s+ k) ≤
⌈
Q

b

⌉
·D (2)

This means that if we start with s informed nodes, the

time to spread to k more nodes is at most
⌈
Q
b

⌉
·D. By

applying Theorem 3, we can use inequality (2) u times
starting from l · u nodes, where l ≥ 1 getting:

TP (lu, 2lu) ≤
⌈
Q

b

⌉
·D · u

Similarly, we see that TP (1, u) ≤
⌈
Q
b

⌉
·D · u. We can

now express the time taken to spread from one node to
n/2 nodes:

TP (1, n/2) ≤ TP (1, u) + . . .+ TP (2L−1u, n/2)

≤
⌈
Q

b

⌉
(L+ 1) ·D · u (3)

where L = dlog2
n
2ue. For set sizes s, where n/2 ≤ s ≤ n

we first let ε = s/us so that by Theorem 1 D(ε, s) =
D(ε · s/s, s) = D(1/u, s). Since s ≤ n/2, we also know
that D(1/u, s) ≤ D so D(ε, s) ≤ D. As before, we can
now use theorems 3, and 4 u times starting from n− 2lu
nodes:

TP (n− 2lu, n− lu) ≤
⌈
Q

b

⌉
·D · u (4)

The spread time from n− u to n nodes TP (n− u, n) is

bounded by
⌈
Q
b

⌉
·D · u (again by theorems 3, and 4).

Using this together with (4) we can now express the time
taken to spread from n/2 to n nodes (with L defined as
above):

TP (n/2, n) ≤ TP (n/2, n− 2L−1u) + . . .+ TP (n− u, n)

≤
⌈
Q

b

⌉
(L+ 1) ·D · u (5)

Finally, by combining (3) and (5), we get the result
of the theorem. �

Proof of Theorem 6: Consider any cut U (i.e., set of
edges) in the graph that partitions the graph into two
sets S and S = V \ S, where we can let S be the smaller
of the two sets. Clearly, the total flow going through the
cut is∑
∀i,∀(x,y)∈U

|fi(x, y)| = |S||S|δ (6)

Now consider the set Γ(S) \ S which are all the nodes in
S with neighbours in S. The sum of flows going through
Γ(S) \ S must be less than or equal to |Γ(S) \ S| · Fmax ·
δ. Since the flow through the cut must be less than or
equal to the total flow through Γ(S) \ S we have:

|S||S|δ ≤ |Γ(S) \ S| · Fmax · δ

Rewriting (recall that |S| = n− s):

|Γ(S) \ S|
|S|

≥ n− s
Fmax

(7)

The same reasoning for the flow through Γ(S) \ S gives:

|Γ(S) \ S|
|S|

≥ n− s
Fmax

(8)

Putting together Definition 3.3 with inequalities (7) and
(8) gives the desired expression. �


