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Abstract. Given a mobility pattern that entails intermittent wireless
ad hoc connectivity, what is the best message delivery ratio and latency
that can be achieved for a delay-tolerant routing protocol? We address
this question by introducing a general scheme for deriving the routing la-
tency distribution for a given mobility trace. Prior work on determining
latency distributions has focused on models where the node mobility is
characterised by independent contacts between nodes. We demonstrate
through simulations with synthetic and real data traces that such mod-
els fail to predict the routing latency for cases with heterogeneous and
correlated mobility. We demonstrate that our approach, which is based
on characterising mobility through a colouring process, achieves a very
good fit to simulated results also for such complex mobility patterns.
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1 Introduction

Delay- and disruption-tolerant networks represent an extreme end of systems
in which a connected network cannot be relied upon. Instead, messages are
propagated using a store-carry-forward mechanism. Such networks can have ap-
plications for disaster area management [4], vehicular networks [19], and envi-
ronmental monitoring [17]. These systems offer many challenges and have been
extensively studied by the research community [1, 22, 23, 26].

Recent results indicate that to the extent that delay-tolerant networks will
be found on a larger scale, they will definitely be composed of islands of con-
nectivity, that is, some parts that are well-connected and some parts that are
sparse. This in turn implies correlated contact patterns [2, 11]. Most existing
analytical delay performance models fail to capture such scenarios, since they
assume independent node contacts. Moreover, although there are analyses done
also for quite complex mobility models [8, 9], it is not obvious how one should
go about to map such models from real traces.

We extend previous results by studying the routing latency distribution for
heterogeneous mobility movements. Our analytical model incorporates a colour-
ing technique for information propagation to derive the latency distribution for



an epidemic routing algorithm for a quite general case. The key strength of our
approach compared to other models of heterogeneous mobility is that we are
able to extract the relevant data from a real trace and produce the routing la-
tency distribution (not just expected latency). The results are verified with a
simulation-based study where we consider both synthetic and real-life mobility
traces. We show that while a model that assumes independent inter-contact times
works well for simple synthetic models such as random waypoint it is not able
to predict the routing performance for a heterogeneous mobility model whereas
our analytical results match very well.

There are two main contributions in this paper. First, a scheme for deriving
the routing latency distribution for complex heterogeneous mobility models and,
second, an experimental evaluation and validation of our model and a comparison
with a model that assumes homogeneous and independent mobility is presented.
The key insight of the evaluation is that heterogeneous mobility can result in
such a high correlation of contacts that theoretical results based on independent
inter-contact times are no longer valid.

The rest of the paper is organised as follows. Section 2 describes the system
model and the basic assumptions we make. Section 3 describes how to derive the
routing latency distribution given knowledge of the colouring rate distribution.
This latter distribution is discussed in Section 4, and we explain how it can be
determined from mobility traces. Section 5 contains the experimental evaluation.
Finally, Section 6 gives an overview of the related work and Section 7 concludes
the paper.

2 System Model

Consider a system composed of N mobile nodes (some possibly stationary).
Nodes can communicate when they are in contact1 with each other. During
the contact both nodes can send and receive messages. We focus on connection
patterns and ignore effects of queueing and contentions. Moreover, since we are
interested in intermittently connected networks, the time taken to transmit a
message is assumed negligible in relation to the time taken to wait for new
contacts. We call this assumption A.

We characterise the pattern with which contacts occur using a simple colour-
ing process (similar to [22, 23]). Note that the colouring does not necessarily
correspond to message dissemination, and should be seen only as an indication
of node contact patterns. The basic idea is that if node A is coloured and sub-
sequently comes in contact with node B, then node B will also become coloured
(if not already coloured).The only restriction we make on the contact pattern
(and thereby on the mobility of the nodes) is that the incremental colouring
times should be independent. More specifically, given a colouring process that
has coloured i nodes, the time to colour one more node is independent from the
time taken to colour the earlier i nodes. We call this assumption B. Note that

1 A contact is defined by a start and an end time between which two nodes are within
communication range.



Table 1: Notation

N Number of nodes in the system P (X) Probability of X being true
Ti Random variable, the time taken

for a randomly chosen colouring
process to colour i nodes

∆i Random variable, the time taken
for a randomly chosen colouring
process to colour one more node
given i coloured nodes

R Random variable, the message
delivery time

fi(t) PDF of the random variable Ti

f∆i(t) PDF of the random variable ∆i Fi(t) CDF of the random variable Ti
F∆i(t) CDF of the random variable ∆i FR(t) CDF of the random variable R

this is a much weaker restriction on the set of allowed mobility models compared
to assuming independent inter-contact times.

We use a number of random variables to describe the colouring and routing
processes, Table 1 summarises the most important notation. PDF is an abbre-
viation for probability density function and CDF stands for cumulative density
function, these abbreviations are used throughout the paper.

Our analysis builds on ideal epidemic routing since it corresponds to the opti-
mal performance any routing algorithm can achieve. Thus, these results provide
a useful theoretical reference measure on what is good performance for a given
mobility model. Such a reference can also be of practical use to decide whether
the measured performance in some network is due to the network characteristics
or to the protocol implementation. Moreover, this scheme can be extended to
other routing protocols, for example using the techniques described by Resta
and Santi [22].

3 Routing Latency

We now proceed to characterise the routing latency for epidemic routing in
intermittently connected networks. We begin by determining the colouring time
distribution which is then used to express the routing latency distribution.

3.1 Colouring Time

A colouring process (t0, s) is characterised by a start time t0 and a source node
s from which the colouring process begins (thus, s becomes coloured at time t0).
Every time a coloured node comes in contact with an uncoloured node, the un-
coloured node becomes coloured. Let Ti denote the random variable representing
the time taken for a randomly chosen colouring process to colour i nodes.

Moreover, we let ∆i denote the random variable that describes the time taken
for a randomly chosen colouring process to colour one more node given that i
nodes are already coloured. This means that we can express the time taken for
a colouring process to reach i+ 1 nodes as Ti+1 = Ti +∆i.



Note that since we start the process with one coloured node, the time to
colour the first node is T1 = 0, and the time to colour the second node is
T2 = ∆1. Slightly abbreviating standard notation we let fi(t) denote the PDF
of the random variable Ti and let f∆i(t) be the PDF of ∆i. For the purpose of
this presentation we assume that the latter of these functions is given since it
depends on the mobility of the nodes in the system. In Section 4 we show how
to extract f∆i(t) from an existing contact trace. Assumption B from Section 2
states that Ti and ∆i are independent, so the PDF of their sum can be expressed
as the convolution of the PDFs of the respective variables [10]:

fi+1(t) = (fi ∗ f∆i)(t) (1)

Since we know the characteristic of f2(t) we can use equation (1) to iteratively
calculate f3(t), f4(t), f5(t) and so on. The CDF for the variable Ti, here denoted
by Fi(t), can be computed in the standard manner from the PDF by integrating
over all time points. Thus, assuming that colouring times are independent, it is
straightforward to express the colouring time distribution Fi(t) given knowledge
of the PDF f∆i(t). In the next subsection, we show how to derive the routing
latency distribution from Fi(t).

3.2 Routing Latency and Delivery Ratio

Our aim now is to find the latency distribution for an ideal routing algorithm.
So, consider a randomly chosen time t0, source node s and destination node
d 6= s. Let R be the random variable that models the time to route a message
from s to d using ideal epidemic routing. We will try to find the CDF of R,
FR(t) = P (R ≤ t). Clearly, given assumption A (i.e., that the queueing and
transmission times can be neglected), this probability is the same as for d being
one of the coloured nodes by the colouring process (t0, s) after t time units.

Let Ct be the random variable that models the number of coloured nodes
after t time units. If Ct = i then the probability that d is coloured after t time
units is (i − 1)/(N − 1) since if we remove the source node s, there are i − 1
coloured nodes and N − 1 nodes in total. Thus, we can express FR(t) as:

FR(t) = P (R ≤ t) =

N∑
i=1

P (Ct = i) · i− 1

N − 1
(2)

Now let’s consider the probability P (Ct = i) that the number of coloured nodes
at time t equals i. This is the same as the probability that the time taken to
inform i nodes is less than or equal to t minus the probability that i + 1 nodes
can be reached in this time:

P (Ct = i) = P (Ti ≤ t)− P (Ti+1 ≤ t) (3)

Combining equations (2) and (3), and rewriting gives:

FR(t) =
1

N − 1

N∑
i=2

Fi(t) (4)



Listing 1 GetRoutingLatencyDistribution

Input: f∆i : Vector representing the PDF of ∆i

1 f2 ← f∆1

2 for i = 3 . . . N
3 fi ← conv(fi−1,f∆i−1) /* equation (1) */
4 Fi ← cumsum(fi)

5 FR ← 1
N−1

∑N
i=2 Fi /* equation (4) */

6 return FR

In summary, if we know the probability PDFs of the random variables ∆i, we
can use equation (1) to determine fi(t). Equation (4) will then give us the cumu-
lative distribution function for the epidemic routing latency. Listing 1 shows an
algorithmic representation of how to derive the distribution for R using discrete
distributions. The procedure conv and cumsum are standard Matlab functions
and compute the convolution between two vectors and cumulative vector sum
respectively.

By knowing R we can easily deduce the delivery ratio of a protocol given a
certain time-to-live (TTL) for each packet. The probability that a message with
TTL of T will reach its destination is simply FR(T ) (i.e., the probability that
the message will be delivered within time T ).

4 Colouring Rate

Having derived the routing latency distribution based on knowledge of the dis-
tribution of the incremental colouring time ∆i we now proceed to show how to
find this latter distribution.

We consider two cases, when the mobility is homogeneous, and the more
interesting heterogeneous case. By homogeneous we mean that the pairwise inter-
contact times (i.e., the time between contacts) are identical and independently
distributed (often abbreviated iid). The homogeneous case is not really novel in
this context and is provided here briefly in order to explain the baselines we have
used and to show that this case is also covered by our general approach.

4.1 Homogeneous Mobility

For the particular case of homogeneous mobility we make three additional as-
sumptions commonly used to analyse homogeneous mobility [7, 12]. (H1) The
duration of contacts is negligible compared to the waiting times, (H2) the inter-
contact time has a finite expectation, and (H3) pair-wise contacts are indepen-
dent.

Now consider a set of coloured nodes that wait for a new contact to appear
so that a new node can become coloured. The time they have to wait is the
smallest of all pairwise waiting times for all pairs where one node in the pair
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Fig. 1: Complementary Cumulative Distribution Functions (CCDF) of ∆i

is coloured and one node is uncoloured. If i nodes are coloured, then there are
i(N − i) such pairs. Given assumption H3, we can express the CDF of ∆i as:

F∆i(t) = P (∆i ≤ t) = 1− (1− Fτ (t))i(N−i) (5)

where Fτ (t) is the cumulative distribution of the residual2 inter-contact time
between two nodes. We refer to Karagiannis et al. [12] for further explanation
and how to derive the residual distribution from the inter-contact distribution. If
the inter-contact time is exponentially distributed with rate λ, then the residual
waiting time is also exponentially distributed with the same rate and the incre-
mental colouring time ∆i will be exponentially distributed with rate λi(N − i).

4.2 Heterogeneous Mobility

If node contacts are not independent, then deriving an expression for the colour-
ing distribution ∆i will be more challenging. We now proceed to present a first
simple model for approximating it from real heterogeneous traces.

In order to explain the rationale behind the model we first show some data
from a real-life trace based on the movement of taxis in the San Francisco area.
The trace was collected by Piorkowski et al. [21] based on data made available
by the cabspotting project during May 2008 and we used a subset of the first
100 vehicles from the trace. In the simulation each taxi was assumed to have a
wifi device with a range of 550m.

Fig. 1 shows the Complementary Cumulative Distribution Function (CCDF)
of each ∆i (recall that i corresponds to the number of already coloured nodes)
for the San Fransisco cab scenario. We obtained this data by running 700 of
colouring processes on the contact trace and logging the time taken to colour
the next node. The plot uses a logarithmic scale on both axes to highlight the
characteristics of the distribution. This shows that they exhibit an exponential
decay (i.e., it approaches 0 fast, indicated by the sharp drop of the curves.).

2 The residual inter-contact time refers to the time left to the next contact from a
randomly chosen time t, as opposed to the time to the next contact measured from
the previous contact time.



The second phenomena that we have observed is that due to clustering of
nodes, it is often the case that the next node can be coloured without any waiting
time at all. Based on these two basic principles we conjecture that the colouring
time can be modelled as either being zero with a certain probability, or with a
waiting time that is exponentially distributed.

If i nodes have been coloured, then we let Con(i) denote the probability that
one of those i nodes is connected to an uncoloured node (thereby allowing an
immediate colouring of the next node). Further we let fExp(t, λi) denote the
PDF of the exponential distribution with rate λi. Then, we let the PDF of the
the simple colouring distribution model be expressed as:

f∆i =

{
Con(i) if t = 0

(1− Con(i)) ∗ fExp(t, λi) otherwise
(6)

While this is clearly a simple model, it can be seen as a first step towards mod-
elling the colouring distribution and seems to work well enough for the scenarios
we have studied. We believe that further work is needed to better understand
how the colouring distribution is affected by different mobility conditions. Note
also that our general scheme is not tied to this particular model and allows
further refinements.

5 Evaluation

To validate our model and to test whether it actually provides any added value
compared to existing models we performed a series of simulation-based experi-
ments. We used three different mobility models, the random waypoint mobility
model, a model based on a map of Helsinki and a real-world trace from the cabs
in the San Francisco area. After explaining the experiment setup we give the
details and results for each of these models. Finally, we relate our findings on
the effects of heterogeneity for these cases.

We used the ONE Simulator [14] to empirically find the ideal epidemic rout-
ing latency distribution for the three different mobility models. For each mobility
model we ran the simulation 50 times. For the first 40000 seconds a new mes-
sage with random source and destination was sent every 50 to 100 seconds. The
simulation length was sufficiently long for all messages to be delivered. We used
small messages of size 1 byte, and channel bandwidth of 10Mb/s.

In addition to the simulated results we used two different theoretical models
to predict the latency distribution:

Colouring Rate: This model uses equation (6) from Section 4.2 to model the
colouring times. The necessary parameters Con(i) and λi are estimated from
the trace file by sampling.

Homogeneous: This model assumes independent and exponentially3 distributed
inter-contact times which are used to compute f∆i as described in Sec-

3 We also obtained nearly identical results when estimating the inter-contact distri-
bution from the mobility trace, which we have excluded for lack of space.
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Fig. 2: Routing latency

tion 4.1. This has been a popular model for analysing properties of delay-
tolerant networks [22, 23, 26].

In order not to get a biased value for the inter-contact time distributions due
to a too short sampling period, we analysed contacts from 200 000 seconds of
simulation. To further reduce the effect of bias we use Kaplan-Meier estimation
as suggested by Zhang et al. [26].

5.1 Effect of Mobility

Random Waypoint Mobility. In order to validate our model against already
known results, we start with considering the random waypoint mobility model.
Despite its many weaknesses [2, 25], this model of mobility is still very popular
model for evaluating ad hoc communication protocols and frameworks. The net-
work was composed of 60 nodes moving in an area of 5km× 5km, each having a
wireless range of 100m. The speed of nodes was constant 10m/s with no pause
time.

Fig. 2a shows the results of the two theoretical models and the simulation.
The graph shows the cumulative probability distribution (i.e., the probability
that a message will has been delivered within the time given on the x axis).



As expected, both models manage to predict the simulated results fairly well. In
fact, the exponential nature of the inter-contact times of RWP is well understood
and since the heterogeneous model is more general, we were expecting similar
results.

Helsinki Mobility. We now turn to a more realistic and interesting mobility
model, the Helsinki mobility model as introduced by Keränen and Ott [13]. The
model is based on movements in the Helsinki downtown area. The 126 nodes is
a mix of pedestrians, cars, and trams, and the move in the downtown Helsinki
area (4500x3400 m). We used a transmission range of 50 meters for all devices.
Fig. 2b shows the results. Again both theoretical models achieve reasonable
results. However, due to the partly heterogeneous nature of the mobility model,
the homogeneous model differs somewhat more from the simulated result. In
particular, we see that the s-shape is more sharp compared to the observed
data. We further discuss possible explanations for this in Section 5.2.

San Francisco Cabs. Finally, the last mobility trace we have analysed is
a real-life trace based on the movement of taxis in the San Francisco area as
explained in Section 4.2. Fig. 2c shows the results. In this case the homogeneous
model fails to capture the routing latency that can be observed in simulation.
However, the heterogeneous model based on equation (6) is still quite accurate.
We were surprised to find such a big difference between the simulated data and
the homogeneous model. Something is clearly very different in this trace com-
pared to the synthetic mobility models. An estimate of the fraction of messages
being delivered within an average latency of 2500s in such a scenario would be
misleadingly optimistic by 20%.

5.2 The Effects of Heterogeneity

In the previous subsection we have seen that the accuracy of the homogeneous
model is high for the random waypoint model, but is lower for the Helsinki
model and completely fails for the San Francisco cab trace. In this subsection
we present our investigation into why this is the case. We proceed by identifying
four different aspects of how this model differs from reality.

Correlation. We begin with the most striking fact of the results presented
so far. The homogeneous model is way off in predicting the routing latency
distribution in the San Francisco case. There are a number of different ways
that one can try to explain this, but we believe that the most important one has
to do with correlation (i.e., non-independence) of events. The main assumption
that makes equation (5 possible, and thereby the homogeneous model is that
the contacts between different pairs of node are independent from each other.
However, this seems to be a false assumption.

We analysed the contact patterns of the three different mobility models by
considering the residual inter-contact times for each node during a period of
20000 seconds. Fig. 3a shows the percentage of nodes who’s average correlation
among its contacts is higher than a given value (i.e., it is the complementary
CDF of nodes having a given average correlation). If the pairwise contacts are
independent, they will have no (or very low) average correlation and we would
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Fig. 3: (a) Correlation of contacts, (b) Time to colour one more node in the San
Francisco trace

expect to see a sharp decay of the curve in the beginning of the graph. This is also
what we see for the random waypoint model. Since the nodes move around com-
pletely independently from each other, the contacts also become independent.
The Helsinki trace shows a higher degree of correlation, but not as significant as
for the San Francisco cab case. In this case 40% of the nodes have an average
correlation of their contacts which is higher than 0.2 (a correlation of 1 would
mean that all contacts are completely synchronised). This shows a high degree
of dependence and we believe provides an explanation of the result we have seen
in Section 5.1.

Note that correlated mobility does not necessarily lead to slower message
propagation, in fact there are results indicating the contrary [8]. What we have
seen is that the prediction of the latency becomes too optimistic when not taking
correlation into account. If the model assumes that contacts are “evenly” spread
out over time, whereas in reality they come in clusters, the results of the model
will not be accurate.

Lack of Expansion. The second prominent effect is what we choose to call
lack of expansion (motivated by the close connection to expander graphs [3]).
This means that the rate of the colouring process seems not to correspond to
the number of coloured nodes. Fig. 3b shows the expected time to colour one
more node for the San Francisco trace. The x-axis represents the number of
nodes already coloured (up to half the number of nodes). We can see that the
homogeneous model predicts that the time decreases (i.e., the rate of colouring
increases) as the number of coloured nodes increase. On the other hand, the data
based on sampling the distribution of ∆i from the mobility trace file (indicated
as “From trace” in the figure) shows that after the first 5-10 nodes have been
coloured, the rate is more or less independent from the number of coloured nodes.
We believe that this is partly due to the fact that most of the node mobility is
relatively local and that nodes are often stationary for long periods of time.

Slow Finish. Another effect that can be observed is that in some rare cases
it can take a very long time for a message to reach its destination. For example
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in Fig. 2c, even after 10000 seconds not all messages have been delivered to
their destinations. This has to do with the fact that the time to colour all nodes
take significantly longer time than to colour almost all the nodes. The models
based on independent contacts predict that it takes the same amount of time to
colour the second node as it takes to colour the last node. In both cases there
are N − 1 possible node pairs that can meet and result in a colouring. However,
we have seen that in reality colouring the last node takes significantly longer
(on average). Fig. 4a shows the effect for the Helsinki trace, by plotting the
expected colouring time as a function of the number of coloured nodes. While
the homogeneous model is completely symmetrical around the middle, the actual
data shows that it takes roughly three times longer to reach the last node than
to reach the second node.

Fast Start. Finally, we consider why the homogeneous model predict a lower
probability for delivering messages fast. This can be seen in both the Helsinki
and San Francisco cases, but is more distinct in the former case. It can be seen
visually in Fig. 2b in that the homogeneous model has a slightly flatter start
compared to the other curves. This is because there is a chance that when a
message is created, the node at which it is created has a number of neighbours.
Thus, the message will not need to wait any time at all before being transmitted.
Or if we express it as a colouring process, the time to colour the second node is
sometimes zero. For a model based on inter-contact times, this is not considered.

Fig. 4b shows the CDF of T2, (i.e., the time taken to colour the second node)
for the Helsinki case with the colouring rate and homogeneous model. We see
that both curves are similar (the expected value for T2 is the same for both
models) but that the start value differs. That is, in the homogeneous model, it is
predicted that the chance that the second node is immediately coloured is zero,
whereas in fact it is roughly 0.3. Recall that the colouring time only reflects
the contact patterns of the mobility and does not consider message transmission
delays.



In this section we have seen how heterogeneous mobility causes correlated
contacts and how that affects predictions of routing latency. Our model which is
based on colouring rate of nodes was the only model able to accurately predict
the routing latency distribution in these cases.

6 Related Works

There is a rich body of work discussing detailed analytical models for latency
and delivery ratio in delay-tolerant networks. The work ranges from experimen-
tally grounded papers aiming to find models and frameworks that fit to observed
data to more abstract models dealing with asymptotic bounds on information
propagation. Many of these approaches are based on or inspired by epidemio-
logical models [15]. We have previously characterised the worst-case latency of
broadcast for such networks using expander graph techniques [3].

Closest to our work in this paper is that of Resta and Santi [22], where the
authors present an analytical framework for predicting routing performance in
delay-tolerant networks. The authors analyse epidemic and two-hops routing
using a colouring process under similar assumptions as in our paper. The main
difference is that our work considers heterogeneous node mobility (including
correlated inter-contact times), whereas the work by Resta and Santi assumes
independent exponential inter-contact times.

Zhang et al. [26] analyse epidemic routing taking into account more factors
such as limited buffer space and signalling. Their model is based on differen-
tial equations also assuming independent exponentially distributed inter-contact
times. A similar technique is used by Altman et al. [1], and extended to deal
with multiple classes of mobility movements by Spyropoulos et al. [24].

Kuiper and Nadjm-Tehrani [16] present a quite different approach for analysing
performance of geographic routing. Their framework can be used based on ab-
stract mobility and protocol models as well as extracting distributions for arbi-
trary mobility models and protocols from simulation data. The main application
area for this model is geographic routing where waiting and forwarding are nat-
urally the two modes of operation in routing.

The assumption of exponential inter-contact times was first challenged by
Chaintreau et al. [7] who observed a power law of the distribution for a set
of real mobility traces (i.e., meaning that there is a relatively high likelihood
of very long inter-contact times). Later work by Karagiannis et al. [12] as well
as Zhu et al. [27] showed that the power law applied only for a part of the
distributions and that from a certain time point, the exponential model better
explains the data. Pasarella and Conti [20] present a model suggesting that an
aggregate power law distribution can in fact be the result of pairs with different
but still independent exponentially distributed contacts. Such heterogeneous but
still independent contact patterns have also been analysed in terms of delay
performance by Lee and Eun [18].

Our work on the other hand, suggests that the exact characteristic of the
inter-contact distribution is less relevant when contacts are not independent.



Correlated and heterogeneous mobility and the effect on routing have recently
been discussed in several papers [6, 5, 8, 11], but to our knowledge, we are the first
to provide a framework that accurately captures the routing latency distribution
for real traces with heterogeneous and correlated movements.

7 Conclusions and Future Work

We have presented a mathematical model for determining the routing latency
distribution in intermittently connected networks based on trace analysis. The
basic idea that we have built upon is that the speed of a colouring process
captures the dynamic connectivity of such networks. This was confirmed by
a set of simulation-based experiments where we demonstrated that our model
matched the simulation results very well. On the other hand, the models based on
independent and homogeneous contacts did not provide accurate results except
for the case with the random waypoint mobility model.

Our scheme allows accurate analysis of a much wider range of mobility mod-
els than previously possible. This analytical technique also has the possibility
to increase our understanding of the connection between mobility and routing
performance, potentially leading to new mobility metrics and classifications. We
used a rough estimation-based model for the colouring distribution, and there is
certainly room for considering other ways of expressing these distributions.

There are several possible extensions to this work. First, it would be in-
teresting to study the accuracy of the analysis in the context of other routing
paradigms such as social and geographic routing, as well as considering effects
of limited bandwidth and buffers. Moreover, the effects of correlation of node
contacts should be further investigated by analysing other real-life traces, also
considering under which circumstances our assumption of independent colouring
times is valid.
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