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ABSTRACT
The sharp increase in the number of smartphones on the
market, with the Android platform posed to becoming a
market leader makes the need for malware analysis on this
platform an urgent issue.

In this paper we capitalize on earlier approaches for dy-
namic analysis of application behavior as a means for detect-
ing malware in the Android platform. The detector is em-
bedded in a overall framework for collection of traces from an
unlimited number of real users based on crowdsourcing. Our
framework has been demonstrated by analyzing the data
collected in the central server using two types of data sets:
those from artificial malware created for test purposes, and
those from real malware found in the wild. The method is
shown to be an effective means of isolating the malware and
alerting the users of a downloaded malware. This shows the
potential for avoiding the spreading of a detected malware
to a larger community.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); H.2.8 [Database Applica-
tions]: Data Mining)

General Terms
Security, Experimentation

Keywords
smartphone security, malware detection, anomaly detection,
dynamic analysis, crowdsourcing, intrusion detection, data
mining
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1. INTRODUCTION
Malware has threatened PCs for many years. Due to the

high growth of smartphone sales, it was only a question
of time when malware developers would get interested in
smartphone platforms to perform attacks. According to a
study made by International Data Corporation, smartphone
vendors will ship more than 450 million devices in 2011, com-
pared to the 303.4 million units shipped in 2010 [24]. More-
over, the smartphone market will grow four times faster than
mobile phone market and the demand of smartphones will
rise considerably reaching the point where customers will
replace their old mobile phones with smartphones.

The sales growth of mobile phone companies like Sam-
sung and HTC between 2009-2010, has revolutionized the
smartphone market. According to this, IDC predicted that
Android OS would pass Nokia’s Symbian OS in 2011 and
would continue leading the smartphone OS Market in the
upcoming years. Furthermore, they predicted that Android
OS and Windows Mobile would grow almost 50% between
2010-2014, having a high probability of becoming leaders of
smartphones Operating Systems vendors in the future.

Google’s Android Market [19] is the official online mech-
anism for delivering software to an Android based smart-
phone. Unfortunately Android application developers can
upload their applications without any check of their trust-
worthiness. The applications are self signed by developers
themselves, without the intervention of any certification au-
thority. Unofficial repositories also exist, where developers
can upload applications, including cracked applications or
trojan horses. This has allowed malicious attackers to up-
load malware to the Market [1] and also to spread malware
through unofficial repositories.

According to Juniper Networks, their Global Threat Cen-
ter found a 400% increase in Android malware since sum-
mer 2010 [20]. “Fake Player”, “Geinimi”, “PJApps” and
“HongToutou” are some known examples. A number of ap-
plications have been modified and the malware have been
binded, packed and spread through unofficial repositories.
Android’s Market has also been targeted, where more than
50 infected applications were found in March 2011, all of
them infected with“DroidDream”trojan [1] application. Re-
cently John Oberheide, made a proof of concept malware
application as an Angry Birds bonus to show the weakness
of security of the Android Marketplace [27].

In this paper we propose a new approach to analyze the
behavior of Android applications, providing a framework to
distinguish between applications that, having the same name



Operating System 2011
Market
Share

2015
Market
Share

2015/2011
Evolution

Android 39.5% 45.4% 23.8%
BlackBerry OS 14.9% 13.7% 17.1%

iOS 15.7% 15.3% 18.8%
Symbian 20.9% 0.2% -65.0%

Windows mobile 7 5.5% 20.9% 67.9%
Others 3.5% 4.6% 28.0%
Total 100% 100% 19.6%

Table 1: Worldwide Smartphone Operating System Market Share 2011 and 2015

and version, behave differently. The aim is to detect anoma-
lously behaving applications, thus detecting malware in the
form of trojan horses.

The main contribution of this work is the use of a crowd-
sourcing system to obtain the traces of applications’ behav-
ior, which helps researchers to collect different samples of
application execution traces. These traces can then be used
into two different groups, leading to clear differentiation be-
tween the benign applications from those containing mal-
ware.

Our experimental results show that our system was ca-
pable of detecting every malware execution in self-written
malware, giving a 100% of detection rate for this particu-
lar malware. We also provide results for the analysis and
detection of real malware that can be found in the wild.

This work is organized as follows. Section 2 describes
related work. In Section 3 we explain the behavior-based
malware detection system framework, detailing the process
of building a crowdsourcing application to collect and give
information about malware detection system internals. In
Section 4, we present the results of the malware detection
system performed with a set of self-written malware appli-
cations as well as applications containing real malware. In
Section 5 we conclude and give possible future work to re-
duce limitations of the system proposed.

2. RELATED WORK
So far two approaches have been proposed for the anal-

ysis and detection of malware: static analysis [10, 39] and
dynamic analysis [21, 11, 30]. Static analysis, mostly used
by antivirus companies, is based on source code or binaries
inspection looking at suspicious patterns. Although some
approaches have been successful, the malware authors have
developed various obfuscation techniques especially effective
against static analysis [26]. On the other hand, dynamic
analysis or behavior-based detection involves running the
sample in a controlled and isolated environment in order
to analyze its execution traces. Egele [14] provides a com-
plete overview of automated dynamic malware analysis tech-
niques.

David Dagon et al. alerted the community in 2004 predict-
ing the feasibility of malware in mobile phones [12]. Even
if wi-fi and bluetooth were considered as the most prob-
able infection paths, the growth of smartphone sales with
continuous Internet connectivity made the prediction come
true. Concretely, in June of the same year, the first malware
specifically written for Symbian OS platform was discov-
ered [7]. After the infection success carried out by Cabir mal-
ware and its variants [8], researchers proposed approaches
and developed different mechanisms in order to detect mal-
ware in smartphones.

Due to the lack of smartphone malware patterns by that
time, most of anomaly detection techniques used the battery
power consumption as the main malware detection system
feature [22, 6, 23]. These techniques were based on checking
and monitoring mobile phones power consumption and com-
paring them with the normal power consumption pattern to
detect anomalies. These techniques are specifically designed
to detect attacks targeting battery lifes.

Resource limitations of smartphones have lead researchers
to propose collaborative analysis techniques, where the anal-
ysis is made by a network of devices. Both static [31] and
dynamic analysis [9, 40] have been proposed using these
techniques.

Static analysis works have also been proposed for mal-
ware detection in individual smartphones. Antivirus compa-
nies have adapted their signature-based detection systems to
smartphones, but considering the level of resources needed
by antivirus techniques and the power and memory con-
straints of mobile devices, in-phone analysis is not a pre-
ferred solution to apply in smartphones. Schmidt et al. pro-
posed the analysis of static function calls from binaries ap-
plying a clustering algorithm in [33]. This technique was
used to detect Symbian OS malware depending on mobile
phones requirements, such as device efficiency, speed and
limited resource usage. Anomaly detection was also pro-
posed to detect malware on Symbian devices [5, 34].

Regarding Android Operating System, some authors pro-
vide overviews of its security model [17, 36, 16]. One of the
most important security measures of Android devices is the
permission-based security model. Each application specifies
which resources of the device needs to be used, and the user
grants or denies it’s installation regarding the permissions
needed. Analyzing and enforcing Android’s permission se-
curity model has been proposed by various authors [28, 41,
42, 43, 2, 13]. Even if a user can be warned about the risk
of having accepted suspicious permissions, the spreading of
real malware has demonstrated that users directly trust any
application request and install them on their phones.

As recently proposed by Antivirus companies, static anal-
ysis can be deployed for malware detection in Android de-
vices [31]. But due to the limited resources of smartphones,
most of the recent proposals for malware detection on An-
droid devices are based on behavior analysis for anomaly
detection.

Schmidt et al. proposed a solution based on monitoring
events occurring on Linux-kernel level [35]. They reviewed
Linux based tools for enhancing security, and extracting fea-
tures such as system calls, modified files, etc. from the
Linux kernel. These features were then used to create a
normal model for the smartphone behavior. At that time
there were still no real Android devices available, so they



Author Approach Detection

Method

Platform Description

Schmidt et

al.(2008)[35]

HIDS,

NIDS

Anomaly

Detection

Android

OS

Analyzes the security on Android smartphones from Linux-kernel view.

Uses Network traffic, Kernel system calls, File system logs and Event

detection modules to detect anomalies in the system.

Schmidt et

al.(2009)[32]

HIDS Signature-

Based

Detection

Android

OS

Performs static analysis on the executables to extract function calls in

Android OS using the command readelf. Function calls are compared

with malware executables for classification.

Bl̈ı£¡sing et

al.(2010)[3]

HIDS Signature-

Based

Detection

AndroidOS Uses an Android Application Sandbox to perform Static and Dynamic

analysis on Android applications. Static analysis scans Android source

code to detect Malware patterns. Dynamic analysis executes and

monitors Android applications in a totally secure environment.

Enck et

al.(2010)[15]

HIDS,NIDS Anomaly

Detection

Android

OS

TaintDroid is a real time monitoring system for Android OS. TaintDroid

monitors Android applications and alerts the user whenever a sensitive

data of the user is compromised. Uses “taint tracking” analysis to

monitor privacy sensitive information.

Portolakidis

et

al.(2010)[29]

HIDS,NIDS Anomaly

Detection

Android

OS

A remote security server in the cloud performs the Malware detection

analysis. Virtual environments will be used to analyze Android mobile

phone replicas.

Shabtai et

al.(2010)[37]

HIDS Anomaly

Detection

Android

OS

Intrusion detection for mobile devices using the knowledge-based,

temporal abstraction method (KBTA) methodology. Detects suspicious

temporal patterns and to issues an alert if an intrusion is found. These

patterns are compatible with a set of predefined classes of malware as

defined by a security expert.

Shabtai et

al.(2011)[38]

HIDS Anomaly

Detection

Android

OS

Host-based malware detection system that continuously monitors

smartphone features and events and applies machine learning to classify

the collected data as normal (benign) or abnormal (malicious) based on

a already known malware and behavior.

Table 2: Android-based malware detection systems

could not test their system properly. Same authors proposed
in [3] an Android application sandbox. First they perform
static analysis dissembling Android APK files in order to
detect Malware patterns. Then, dynamic analysis is car-
ried out, executing and monitoring Android applications in
a totally secure environment, also known as Sandbox. Dur-
ing dynamic analysis, all the events occurring in the device
(opened files, accessed files, battery consumption, etc.) were
monitored. The main drawback of their system is the use
of an application that simulates user interaction (known as
ADB Monkey), which will never be as real as a user.

Enck et al. presented TaintDroid in [15]. Their system
used dynamic taint analysis techniques to monitor sensitive
information on smartphones. Thus, they can track a suspi-
cious third-party application that uses sensitive data as GPS
location information or address book information. An appli-
cation using sensitive data does not necessarily correspond
to malware, though.

In Paranoid Android [29] Portolakidis et al. proposed a
system where researchers can perform a complete malware
analysis in the cloud using mobile phone replicas. Their ap-
proach needs running those replicas in a secure virtual en-
vironment, limiting their system to no more than 105 repli-
cas running concurrently. Then different malware detection
techniques can be applied.

Finally, Shabtai et al. presented in [37] a methodology
to detect suspicious temporal patterns as malicious behav-
ior, known as knowledge-based temporal abstraction. Later

in [38] same authors presented Andromaly, as a a framework
for anomaly detection on Android smartphones. Both works
use knowledge-based analysis while our system is behav-
ior based. These can be complementary techniques. Even
though, their approach is recommended for detecting con-
tinuous attacks (e.g., DoS, worm infection), and our frame-
work detects trojan horses, the most frequently seen attacks
nowadays. Once more, authors could not find real malware
to test their proposal.

Table 2 shows a summarized view of Android-based mal-
ware detection works.

3. BEHAVIOR-BASED MALWARE DETEC-
TION SYSTEM FRAMEWORK

The implementation of malware detection systems in mo-
bile devices is a relatively new concept. Security tools and
mechanisms used in computers are not feasible for applying
on smartphones due to the excessive resource consumption
and battery depletion. Hence, we decided to perform the
whole analysis process on a dedicated remote server. This
server will be used exclusively to collect information and
detect malicious and suspicious applications in the Android
platform.

Our framework is composed of several components which
provide enough resources and mechanisms to detect mal-
ware on the Android platform. First, we have developed
a lightweight client called Crowdroid, which can be down-



loaded and installed from Google’s Market. This application
is in charge of monitoring Linux Kernel system calls and
sending them preprocessed to a centralized server. Accord-
ing to a crowdsourcing philosophy, users will help with send-
ing non-personal, but behavior-related data of each appli-
cation they use. These applications could have been down-
loaded both from the official Market and also from unofficial
repositories, as shown in figure 1.

Figure 1: Behavior-Based Malware Detection
Framework

Then, the remote server will be in charge of parsing data,
and creating a system call vector per each interaction of
the users within their applications. Thus, a dataset of be-
havior data will be created for every application used. The
more users using our Crowdroid application, the more com-
plete and accurate will be our system. Finally, we cluster
each dataset using a partitional clustering algorithm. This
way we can differentiate between benign applications that
demonstrate very similar system call patterns, and malicious
trojan applications that, even if having the same name and
identifier, have a different behavior in terms of distance be-
tween example vectors. Partitional clustering is simply a
division of the set of data objects into non-overlapping sub-
sets (clusters) such that each data object is in exactly one
subset. Each cluster may be represented by a centroid or
a cluster representative. Partitioning algorithms either try
to discover clusters by iteratively relocating points between
subsets (probabilistic clustering, medoids methods, k-means
methods), or try to identify clusters as areas highly pop-
ulated with data (density-based clustering). We chose k-
means algorithm [25] due to it’s simplicity, efficiency, speed,
and a known number of k = 2 clusters as an input parameter:
we know that an application will be benign, or malicious.

In Linux, a system call is how a program requests a ser-
vice from the operating system’s kernel. Linux kernel 2.6.23
has more than 250 system calls and each one is identified by
a unique number that is written in the kernel’s system call
table. System calls provide useful functions to application
programs like network, file, or process related operations.
As shown in figure 2, when an application from user space
makes a request to the Operating System, the petition goes
through glibc library, System Call Interface, Kernel and fi-
nally to Hardware. glibc library interprets the petition and
CPU switches to kernel mode to execute the appropriate ker-
nel function looking into system call table. The kernel will
be responsible for understanding the petition and making
the request to the hardware platform. Afterwards the user
gets the information requested by the application in the user
space in an inverse process. Functions like getpid(), open(),
read() and socket() are some of the functions that glibc can
provide applications to invoke a system call.

Linux kernel is executed in the lowest layer of Android

architecture. This means that all requests made from upper
layers pass through the kernel using system call interface
before they’re executed in hardware. Capturing and analyz-
ing the system calls that pass through system call interface,
will provide accurate information about the behavior of the
application. Crowdroid will use a tool available in Linux
called Strace to collect the system calls. The aim of hijack-
ing these system calls, is to generate an output file with all
events generated by the Android application. This file will
provide useful information, like opened and accessed files,
execution time stamps and the count of each system call
number executed by the application. We will use this last
feature to represent the behavior of each Android applica-
tion execution.

Figure 2: Linux User and Kernel space

Next we see an example of an Android application behav-
ior system call feature vector. Each element represents a
count of the specific system call requested. Note that the
complete list of Android system calls is too large to show in
this paper, but the reader can find them on the Linux kernel
manual pages.
0 ,0 ,0 , 25 ,47 ,4 ,34 ,0 ,0 , 0 , 0 , 0 , 0 , 12 ,0 , 0 , 0 , 0 , 0 , 260 ,9 ,0 , 0 , 0 , 0 ,
1649 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 10 ,0 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 22 ,0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 3466 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 12 ,0 , 0 , 0 , 0 ,
132 , 0 , 0 , 0 , 0 , 0 , 0 , 40 , 41 , 0 , 0 , 0 , 0 , 0 , 76 , 0 , 0 , 00 , 0 , 0 , 4 , 0 , 87 , 17 , 0 , . . .

Each number separated by commas, represents how many
request/executions have been made by a specific Android
application during the monitoring process. For instance,
the system call open() is used 25 times and kill() 47 times.
This means that the monitored application opened files or
system libraries 25 times and killed processes 47 times, and
so on.

The framework creates as many datasets as application
identifiers, so we need as many Crowdroid users as possi-
ble to enrich the database and provide enough information
including benign and malicious application traces until the
system can discover anomalies. Figure 3 shows the architec-
ture of the whole framework. Summarizing, the framework
relies on three components: data acquisition, data manipu-
lation, and the malware analysis and detection system.

• Data acquisition: This component is responsible for
obtaining application data from users, using the Crow-



Figure 3: Android Malware Detection process

droid application. Collected data is composed by basic
device information, installed applications list and the
result of monitoring applications with Strace tool sys-
tem calls log file.

• Data manipulation: This component is responsible
for managing and parsing all the information collected
from Android users. It collects, extracts and analyzes
received information from Strace output files. Devices’
basic information are stored in a central database, and
system call traces are processed to produce the feature
vectors that will be used for clustering.

• Malware analysis and detection: This component
is responsible for analyzing and clustering the feature
vectors obtained from the previous phase in order to
create the normality model and detect anomalous be-
havior in Android applications, using K-means cluster-
ing over system call count feature vectors.

4. EXPERIMENTAL RESULTS
In this section we provide the detailed results of the ex-

periments carried out using the proposed framework. We
test our system with different types of malware. First, self-
written malware is used, giving us a 100% of detection rate.
In order to create the normality model of self-written pro-
grams, a calculator, a countdown application, and a money
converter have been used (Calculator G, Countdown G, Mon-
eyConverter G). We have developed modified versions of
those applications in order to simulate trojan malware.

Next, we have tested the whole framework using two real
malware specimens: PJApps [45] contained in Steamy Win-
dow application, and HongTouTou [4] trojan binded in Mon-
key Jump 2 application. We used Virustotal Malware Intel-
ligence Service [44] to obtain the infected applications, and
manually downloaded the benign applications from the Mar-
ket. In this case, we obtained a 100% detection accuracy for
PJApps, and an 85% for the HongToutou trojan.

The set up for the experiments can be summarized as
follows:

• We have used 20 clients running Crowdroid applica-
tion. The idea is that in the future more users will
contribute to the system, and thus a richer dataset
will be in our system.

• We consider 60 interactions of users with each applica-
tion enough for malware discovery in self-written ap-

plications, while real malware have been tested with
our prototype using 6 and 20 interactions. This was
due to the lack of available crowd at the time of the
experiments.

• The data transfer/communication between the client
application and the server uses FTP protocol.

• Our system will create models to differentiate between
benign and malicious applications, like trojans. An
unknown malware with no respective goodware will
not be discovered.

• We assume that benign applications are those which
have been executed more times. A trojan will be up-
loaded to an unofficial repository later than the orig-
inal application, as malware writers need the original
applications in order to create such programs.

4.1 Self-Written Malware
The results of our behavior-based Android malware detec-

tion system on self written applications are shown in table
3.

In order to test the system, we obtained 60 execution
traces from each of the self-written applications. 50 traces
of benign applications and 10 traces of malicious ones. The
50 benign interactions will represent the normality model of
the application. The system collects all generated output
files from every interaction and creates 3 files, one per ap-
plication. We finally obtain 60 feature vectors one per appli-
cation (calculator, countdown, money converter) including
goodware and malware application behavior feature vectors.

App. Interactions Clustering result Detection
rate

Good
App

Malware
App

Good
Clustered

Malware
Clustered

Calculator 50 10 50 10 100%
Countdown 50 10 50 10 100%
Money
Converter

50 10 50 10 100%

Table 3: Self-written malware result

As shown in the table above, the system was able to clas-
sify the feature vectors in two different clusters, grouping
the benign applications interactions and malicious ones cor-
rectly.



4.2 Real Malware
As the results obtained with self-written malware in the

system were successful, we decided to make a deeper anal-
ysis for malware contained in Steamy Window and Monkey
Jump 2 applications, using the Crowdroid client.

4.2.1 Steamy Window application with PJApps mal-
ware

Steamy Window is a free application available at the An-
droid Market that covers the screen of the smartphone with
steam and lets the user to wipe it off with the fingers. The
malicious version of the application containing PJApps mal-
ware, which was discovered in unofficial repositories, sends
sensitive information containing the IMEI, Device ID, Line
Number and Subscriber ID to a web server. Then the in-
fected smartphone gets registered in a Command and Con-
trol botnet waiting for instructions. It has the ability to send
text messages to premium-rate numbers, SMS-spamming,
install more applications, navigate, and even bookmark web
sites.

For Steamy Window, six interactions were performed to
test the system, 4 using the original Steamy Window ap-
plication and 2 with malicious code of PJApps malware at-
tached. System call feature vectors where collected and clus-
tered with k-means algorithm. Figure 4 shows how the sys-
tem obtained the applications from different sources. Some
users installed Android’s Official Steamy Window applica-
tion and others downloaded the application from Android
unofficial repositories.

Figure 4: Six different users running the experiment

Next, we show the feature vectors of processed system
calls collected during the different interactions of users with
the application, each one consisting in the interactions made
by the users of figure 4:

I n t e r a c t i on A= 0 ,0 ,0 , 3 , 7 , 7 , 7 , 0 , 0 , 1 , 1 , 0 , 0 , 11 ,0 , 1 , 0 , 0 , 0 , 3 ,
438 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 12 , 7 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 8 , 1 , 3 , 4065 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 2 , 2 , 0 ,
0 , 0 , 0 , 0 , 14011 ,0 ,0 , 0 , 0 , 0 , 648 ,0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 0 , 0 ,
0 , 12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

I n t e r a c t i on B =0 ,0 ,0 ,34 ,43 ,45 ,87 ,0 ,0 ,5 ,5 ,0 ,0 ,47 ,0 ,5 ,0 ,
0 , 0 , 31 ,2695 ,0 ,0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 22 ,0 ,0 , 0 , 5 , 5 , 0 , 0 , 27 ,
0 , 0 , 0 , 46 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 48 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 16 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 132 ,88 ,0 , 0 , 0 , 0 ,
2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 60 ,5 ,27 ,13717 ,0 ,0 , 0 , 0 , 0 , 0 , 0 ,
0 ,0 , 0 , 0 ,16 ,0 ,0 ,0 , 0 ,68 ,262 ,0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 2328 ,0 ,0 ,
0 , 0 , 0 , 0 , 0 , 0 , 38 ,0 , 0 , 0 , 0 , 0 , 0 , 132 ,0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 1 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

I n t e r a c t i on C =0 ,0 ,0 ,19 ,12 ,28 ,29 ,0 ,0 ,1 ,1 ,0 ,0 ,22 ,0 ,1 ,0 ,
0 , 0 , 19 ,1718 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 11 ,0 , 0 , 0 , 3 , 1 , 0 , 0 ,
4 , 0 , 0 , 0 , 8 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 36 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 41 , 21 ,0 , 0 , 0 , 0 , 2 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 24 , 1 , 19 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 ,
0 , 0 , 0 , 0 , 27 ,15 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1855 ,0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 ,
11 , 0 , 0 , 0 , 0 , 0 , 0 , 41 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

In t e ra c t i on D =0 ,0 ,0 ,16 ,12 ,27 ,28 ,0 ,0 ,1 ,1 ,0 ,0 ,19 ,0 ,1 ,0 ,
0 , 0 , 16 ,1214 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 0 , 2 , 1 , 0 , 0 , 4 , 0 ,
0 , 0 , 7 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 24 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 40 ,20 ,0 , 0 , 0 , 0 , 2 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 21 ,1 , 16 ,8597 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

6 ,0 ,0 ,0 ,0 ,27 ,15 ,0 ,0 ,0 ,0 ,0 ,29712 ,0 ,0 ,0 ,0 ,0 ,1549 ,0 ,0 ,0 ,
0 , 0 , 0 , 0 , 0 , 11 , 0 , 0 , 0 , 0 , 0 , 0 , 40 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

I n t e r a c t i on E =0 ,0 ,0 ,48 ,73 ,67 ,139 ,0 ,0 ,8 ,8 ,0 ,0 ,56 ,0 ,8 ,
0 , 0 , 0 , 38 ,2964 ,0 ,0 , 0 , 8 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 28 ,0 , 0 , 0 , 6 , 8 , 0 , 0 ,
45 ,0 , 0 , 0 , 78 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 48 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 24 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 210 ,151 ,0 , 0 ,
0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 93 , 8 , 37 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 ,0 ,21 ,0 ,0 ,0 ,0 ,108 ,501 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,2328 ,0 ,0 ,0 ,
0 , 0 , 0 , 0 , 0 , 65 ,0 , 0 , 0 , 0 , 0 , 0 , 210 ,0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

I n t e r a c t i on F =0 ,0 ,0 ,22 ,13 ,29 ,30 ,0 ,0 ,1 ,1 ,0 ,0 ,32 ,0 ,1 ,0 ,
0 , 0 , 22 ,2512 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 14 ,0 , 0 , 0 , 4 , 1 , 0 , 0 , 4 ,
0 , 0 , 0 , 12 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 48 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 44 , 22 ,0 , 0 , 0 , 0 , 2 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 27 , 1 , 22 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7 ,
0 ,0 ,0 ,0 ,28 ,15 ,0 ,0 ,0 ,0 ,0 ,48565 ,0 ,0 ,0 ,0 ,0 ,2328 ,0 ,0 ,0 ,0 ,
0 , 0 , 0 , 0 , 12 , 0 , 0 , 0 , 0 , 0 , 0 , 44 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

Table 4 shows the distance matrix between each interac-
tion of Steamy Window applications with Euclidean distance
as similarity metric:

Interaction A B C D E F

A 0 0.1818 0.1414 0.1414 0.1818 0.1414

B 0.1818 0 0.1768 0.1768 0.1616 0.1667

C 0.1414 0.1768 0 0.1010 0.1818 0.1212

D 0.1414 0.1768 0.1010 0 0.1818 0.1212

E 0.1818 0.1616 0.1818 0.1818 0 0.1717

F 0.1414 0.1667 0.1212 0.1212 0.1717 0

Table 4: Steamy Window system call vectors dis-
tance matrix table

Distances close to 0, are identical or similar vectors. Dis-
tances with a value far from 0, are non-similar vectors. The
distance matrix shows that values for interactions B and E
compared to the benign application interactions are higher
than others.

Finally, k-means algorithm has been used to cluster the in-
teractions. Results are shown in table 5. First row shows the
cluster number that each interaction is given as a result of
applying k-means. This row contains the number of the clus-
ter to which the data belongs. Second row shows which of
the interactions were benign (X) and malware
(7). The system is able to correctly identify the two mali-
cious applications, B and E, which is an indication that the
behavior-based Android malware detection system is able to
detect malicious executions of the Steamy Window applica-
tion.

Interaction A B C D E F

Cluster 1 2 1 1 2 1
Application X 7 X X 7 X

Table 5: Steamy window clustering result

Another way of representing the system call vectors ob-
tained, is using bar graphs as shown in figure 5. Blue col-
ored bars, represent the behavior of Steamy Window benign
application executions, and the red colored bars, represent
the Steamy Window behavior infected with PJApps trojan.
Every system call has its own number, and the X axis rep-
resents the designated number for the executed system call.
On the other hand, Y axis represents the number of times
that such system call has been executed. We have removed
from the graphs those system calls with very high invoca-
tion ratio in all of the interactions including malware (ioctls,



Figure 5: Steamy Window Application Interactions bar plot

time, recv and ptrace) in order to focus on relevant system
calls. Considering that blue bars represent the normal be-
havior of Steamy Window application, we can see that the
trojanized version is executing more and additional system
calls in the device. Taking into account that both applica-
tions have the same version, we can assume that the Steamy
Window application downloaded from unofficial repositories,
executed in interactions B and E, are anomalous Android
applications. The last graph shows a mixture of the rest
of the bars. There we can easily identify which system calls
are responsible for such a behavior. Specifically, system calls
read(), open(), access(), chmod() and chown() have been the
most relevant. The original application also uses the first
two calls, but with a lower frequency. access(), chmod()
and chown() are invoked by the malware, allowing to access
and change permissions and ownerships of a set of files and
directories.

4.2.2 Monkey Jump 2 application with HongTouTou
Malware

Second experiment with real malware is done using a game
called Monkey Jump 2. Even if this application is free and
can be installed via Android Market, HongTouTou is in-
cluded in repackaged apps made available through a variety
of alternative app markets and forums targeting Chinese-
speaking users. When Monkey Jump 2 infected with Hong-
TouTou is executed, it sends device IMEI and IMSI data to
a remote host. Then it receives instructions to click on web
search result sites depending on received keywords. It also
has the ability to download an application with the ability

to monitor SMS conversations, and insert spam contents on
them.

Using the Crowdroid framework we have obtained 20 fea-
ture vectors of both benign and malicious applications, cor-
responding to 15 interactions with the benign Monkey Jump
2, and the rest to the same application and version con-
taining the HongTouTou malware. In this case we found
three false positives, as k-means algorithm classified three
benign interactions as malicious. The five malicious appli-
cations were correctly classified though. Table 6 summarises
the clustering results for both Steamy Window and Monkey
Jump 2. Detection rate is the proportion of correctly iden-
tified interaction among all application interactions.

App. Interactions Clustering result Detection
rate

Good
App

Malware
App

Good
Clustered

Malware
Clustered

Steamy
Window

6 2 6 2 100%

Monkey
Jump 2

15 5 12 8 85%

Table 6: Result for Monkey Jump 2 Application Be-
havior Clustering



Figure 6: Monkey Jump 2 Application Interactions bar plot

The reason for obtaining a worse detection rate on Mon-
key Jump 2 is the simpler nature of the actions performed
by the malware. As we have explained, HongTouTou sends
information and browses the Internet, while PJApps starts a
background application and has more functions programmed.
Bar plots for Monkey Jump 2 are shown in figure 6. There,
we have plotted 6 interactions, 3 of them are benign and cor-
rectly clustered interactions (blue bars), while the rest cor-
responds to malware. The different patterns can be clearly
distinguished. In comparison with figure 5 for the Steamy
Windows application, Monkey Jump 2 makes use of less sys-
tem calls, which makes it more difficult to obtain a normal
behavior model, and thus false positives are more likely. As
with the previous malware, the most relevant system calls
executed are read(), open(), chmod() and chown(). In this
case files are not accessed, but permissions and ownerships
of files and directories are changed.

5. CONCLUSIONS AND FURTHER WORK
All market indicators foresee a massive increase in the

number of smartphones purchased in the next 5 years. This
will create a potential for a massive increase in malware
generation, and in particular in the sector dominated by the
market leader, potentially the Android platform.

In this paper we have proposed a new framework to obtain
and analyze smartphone application activity. In collabora-
tion with the Android users community, it will be capable of
distinguishing between benign and malicious applications of
the same name and version, detecting anomalous behavior
of known applications. Furthermore, by deploying our plat-

form on a number of test smartphones, we have created a
proof of concept for this mechanism, as a means of analyzing
emerging threats.

We have indicated that monitoring system calls is a feasi-
ble way for detecting malware. This analysis technique has
been widely used in the literature [18]. According to the
brief survey in section 2, we have seen that there’re many
different approaches to detect malware. We considered that
monitoring system calls is one of the most accurate tech-
niques to determine the behavior of Android applications,
since they provide detailed low level information. We do
realize that API call analysis, information flow tracking or
network monitoring techniques can contribute to a deeper
analysis of the malware, providing more useful information
about malware behavior and more accurate results. On the
other hand, more monitoring capability will place a higher
demand on the amount of resources consumed in the device.

We have seen that open(), read(), access(), chmod() and
chown() are the most used system calls by malware. A be-
nign application could make moderate or heavy use of those
system calls and thus trigger false positives, but authors
trust that slight differences would make the system classify
trojans correctly. We have seen that trojanized applications
made more system call executions and invoke different sys-
tem calls to the Kernel.

The most important contribution of this work is the mech-
anism we propose for obtaining real traces of application be-
havior. We have seen in previous works that it is possible
to obtain behavior information using artificially created user
actions, or creating replicas of smartphones, but crowdsourc-



ing helps the community to obtain real application traces of
hundreds or even thousands of applications.

Next step is to deploy the Crowdroid lightweight client on
Google’s Market and distribute it to as many users as possi-
ble. Users running our application will have the opportunity
to see their own smartphone behavior. We could even alert
the users when one of their applications shows an abnormal
trace. The system can also act as an early warning system,
being capable of detecting malicious or abnormally behaving
applications in early stages of propagation.

By implementing a set of tools we have demonstrated that
one can obtain behavior-based information and get it pro-
cessed and clustered on a central server. Clustering results
have been flawless for self written malware, and promising in
real malware. Whether the performance of a central server
would suffice for a large scale deployment is an interesting
topic for further study. A configuration with multiple co-
operating servers each with lower load and faster response
would be a direction to explore.

We have chosen a simple 2-means clustering algorithm to
distinguish between benign applications and their correspon-
dent malware version. The results have been encouraging,
although we need to address some open issues. First, the
system would always separate the system call data vectors
in two clusters even if there is no malware on it. The cluster
mapping would change drastically whenever a malicious exe-
cution vector enters into the dataset. These issue requires
some manual check or further automatic analysis. Second,
one could intentionally submit incorrect data to the system
leaving the dataset corrupt. One next step is to authenti-
cate the submitting application so we can ensure that no-
body is directly sending wrong data to the system. Regard-
ing the communication mechanism between the Crowdroid
client and our server, it is made using the FTP protocol in
this first version, without focusing on protecting the privacy
of transferred data. If an attacker sniffs and manipulates the
traffic in the communication process, it can lead to misclas-
sification errors. In order to avoid this, we are introducing
encryption mechanisms to provide integrity of data and au-
thenticity of the sender. We have to take into account that
applying this technique in the mobile device, it might have
an extra overhead in the processor, resulting in a fast battery
drain.

Finally, we have the challenge of convincing the Android
user community to install the Crowdroid application. We
need to manage the perception of loss of privacy when sup-
porting research community with their behavior informa-
tion, against the benefit of having access to up-to-date
behavioral-based detected malware statistics.
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