
Resource Footprint of a Manycast Protocol Implementation
on Multiple Mobile Platforms

Ekhiotz Jon Vergara∗, Simin Nadjm-Tehrani∗, Mikael Asplund∗ and Urko Zurutuza†
∗Dept. of Computer and Information Science, Linköping University, Sweden

{ekhiotz.vergara,simin.nadjm-tehrani,mikael.asplund}@liu.se
†Dept. of Computer and Information Science, Mondragon University, Spain

uzurutuza@mondragon.edu

Abstract—Wireless communication is becoming the domi-
nant form of communication and ad hoc wireless connections
are posed to play a role in disaster area networks. However,
research efforts on wireless ad hoc communication protocols
do not pay enough attention to measurable and reproducible
indications of the mobile footprint including power consump-
tion. Protocols and applications are initially designed and
studied in a simulation environment and are hard to test in
in-field experiments. In this work we report a multi-platform
implementation of Random-Walk Gossip, a manycast protocol
designed for message dissemination in disaster areas. Our work
is focused in studying the resource footprint and its impact
on performance on commercially available devices. We show
both how different aspects of the protocol contributes to the
footprint and how this in turn affects the performance. The
methodologies used here can be applied to other protocols and
applications, aiding in future optimisations.

Keywords-resource footprint; energy; mobile ad hoc net-
works; disaster area networks; multi-platform;

I. INTRODUCTION

Wireless communication is becoming the dominant form
of communication and taken for granted in both urban and
rural areas. For example, in countries like USA or Ghana
there are more mobile subscribers than telephone main lines
[1]. However, just as the wired networks, wireless commu-
nication is dependent on existence of an infrastructure, i.e.
cellular technology or access points for WiFi in combination
with a wired Internet core. When a disaster strikes, this
infrastructure is typically rendered useless (e.g., wiped out
or severely overloaded). Thus, any infrastructure-less mode
of communication is worth exploring as a possible solution
in such scenarios.

Rescue professionals typically rely on special equipment
like satellite phones or tactical radios, not available for
volunteers or victims located at a disaster area. As these
equipments are scarce and expensive, new approaches to
complement information exchange are proposed. Mobile ad
hoc networks (MANET) are envisioned to allow communi-
cation [2]–[4] without any infrastructure. However, due to
node mobility and sparse topology, connectivity disruptions
can occur leading to intermittently connected mobile ad hoc
networks (IC-MANET).

Mobile communication with handheld devices, and
IC-MANET communication in disaster scenarios in partic-
ular, are naturally focused on limited resources. This would
appear to make a case for extensive studies of the resource
consumption characteristics of protocols and applications
and their impact on performance aspects such as response
time. However, we find that neither the massive volume of
research on communication protocols nor the emerging focus
on mobile applications pays enough attention to measurable
and reproducible indications of the mobile footprint. Most
protocols are initially designed and studied in a simulation
environment, and at best, their resource consumption is
based on rough indications of the aggregated signalling
overhead.

This paper is a first attempt at studying the resource
footprint of a protocol that has been proposed as an energy-
efficient dissemination protocol in IC-MANET. First, the
protocol had to be implemented on a range of wireless
devices to study their comparative resource footprints. Then
we studied the basic resource characteristics of the pro-
tocol as well as their interdependencies and implications
on performance. We believe that the methods in this study
can act as a base for further systematic evaluations of
resource footprint and performance for optimisations of
mobile applications and protocols.

The contribution of this paper is two-fold: (1) a multi-
platform implementation of the existing manycast protocol
Random-Walk Gossip (RWG) designed for disaster areas [5]
and (2) the evaluation and analysis of the resource footprint
in terms of energy consumption, CPU usage and memory
consumption. This analysis presents resource footprint in-
terdependencies as well as the impact on performance in
terms of response time.

The rest of this paper is structured as follows. Section II
briefly reviews the fundamental features of the Random-
Walk Gossip protocol. Section III covers the architecture
and design of the protocol implementation. Section IV
presents the evaluation of the protocol resource footprint
and performance on various hardware platforms. Finally, the
related work and conclusions are presented in Section V and
Section VI respectively.



II. RANDOM-WALK GOSSIP

Random-Walk Gossip [5] is an efficient manycast protocol
designed for message dissemination in IC-MANET. This
section describes the basics of the operation of the protocol,
explaining its characteristics and terminology.

The protocol is designed to deal with the challenges
that a disaster area scenario presents. Since RWG does not
need any pre-existing infrastructure, the nodes can exchange
messages without having a priori knowledge of the network
topology. The goal of the protocol is to disseminate the
message to k nodes, where k is decided by the sender. When
the message has been received by k or more nodes, the
message will be k-delivered and nodes will stop sending
it. RWG uses a store-carry-forward like mechanism in order
to disseminate the messages overcoming network partitions.

Figure 1: Basic packet exchange in Random-Walk Gossip.

The basics of the message exchange are shown in Fig. 1.
When a node starts disseminating a certain message, it sends
a Request forwarding (REQF) as depicted in Fig. 1(a), which
is the only packet type carrying the data of the application.
A node issuing a REQF is called custodian and is in charge
of spreading the message in the network. In Fig. 1(b), nodes
B and C store a copy of the message and reply by sending an
Acknowledgement (ACK), whereby node A becomes aware
of which nodes are in its vicinity. Node A randomly chooses
one of the nodes among the nodes that have sent an ACK
and sends an OK to forward (OKTF) as in Fig. 1(c). The
intended receiver of the OKTF (node C) will be the new
custodian of the message, starting a new random-walk by
sending a REQF. The other nodes will silently keep an
inactive copy of the message.

The header’s structure of RWG is the same for all the
packets. Each message is identified by the concatenation of
a sequence number and the source address of the sender. The
informed field is a bit-vector which indicates the number
of nodes that are informed about a certain message. A
standard hash function is used to map a node to a bit,
thus a node knows whether a message has been received
by a certain node or not. A message will be deleted if it
is k-delivered or if its maximum time to live has expired.
There are also some further optimisations in addition to the
active spreading phase, such as a rejuvenation mechanism to
make sure that a message does not get stuck in a dead end
during the random walk, as well as the fact that a node will

send a message every once in a while to avoid the network
becoming permanently silent.

III. DESIGN AND ARCHITECTURE

The implementation relies on the IEEE 802.11 technology
in ad hoc. Bluetooth, as an alternative, would oblige the
nodes to establish a connection before sending any packet,
restrict the number of connected nodes to 10, and not allow
sending a broadcast message to all the neighbours [6].

The implementation was developed using Portable Oper-
ating System Interface (POSIX). Since in Symbian OS only
a subset of POSIX libraries was available, the development
of the protocol was focused on that subset. This implies that
it also works on the other platforms with few adaptations.
However, this also entailed overcoming the limitations of the
Open C plug-in, e.g. the logic of the algorithm is distributed
in 5 threads instead of 2 of the original design due to the
impossibility of using signals.

Fig. 2 describes the architecture which is briefly explained
below. Using this architecture we have implemented three
versions of the protocol that were used in the analysis of
Section IV.

Figure 2: Architecture overview.

DataStorage: every node has to keep a copy of the
original message. For that purpose, every message is stored
in an object (REQFobj) that provides functions to access the
needed information and perform operations of the protocol.
Data Storage contains the REQFobj that are still alive. The
ID and time to live of each message is used to sort and
store them efficiently, providing logarithmic access time and
avoiding duplicated messages. The Data Storage consists of
a map and a multimap of the Standard Template Library.

TaskStorage: the RWG protocol works in an event-based
manner, scheduling procedures that have to be executed at
certain times. This behavior is implemented by the Task
Storage, which contains the procedures in objects called
Task. The Task Storage consists of two multimaps of the
Standard Template Library.



Table I: Devices used to perform the tests.

CPU Operating System
Nokia N97 ARM 11 @ 434 MHz Symbian OS v9.4

Nokia 5800 ARM 11 @ 369 MHz Symbian OS v9.4
MacBook Core 2 Duo @ 2.4 GHz Mac OS X 10.5.8

Dell Latitude E5400 Core 2 Duo @ 2.54 GHz Ubuntu 9.10
Asus EeePC 901 Atom N270 @ 1.6 GHz Ubuntu 9.10

Network: this module is a wrapper of network functional-
ities, containing UDP sockets to create the connection to the
default interface. It retrieves the MAC address of the node
and provides the functionalities of sending and receiving
broadcast packets.

RWG API: it provides the application functions to in-
teract with the protocol. The application and the protocol
exchange different types of messages using two named pipes
in order to achieve full duplex communication.

Receiver: the receiver threads take care of the new
messages arriving from the application and network. If a
new message arrives from the network it is delivered to the
application.

Sender: the sender threads are in charge of sending
the responses. They also ensure that the network will not
become permanently silent by sending a message when there
has not been any packet exchange for a while.

IV. ANALYSIS OF RESOURCE FOOTPRINT

The first implementation of RWG was developed and eval-
uated in NS-3 [5]. However, in the simulation environment
nodes have unlimited resources in terms of CPU and energy.
Radio range and transmission power are parameters of the
nodes, which are based on assumptions that make simulation
results differ from field tests [7]. This section describes how
the resource footprint was studied in real devices.

Before proceeding with the results of the experiments,
we will first describe the hardware platforms and the data
collection tools. Table I presents the devices used to perform
the experiments, ranging from smartphones to laptops with
different CPU, memory and operating systems.

Wireshark and KisMac were used to analyse the packet
exchanges of the protocol and the WLAN networks respec-
tively. Nokia Energy Profiler (NEP) is a stand-alone test and
measurement application for Series 60 3rd Edition and later
devices that was used to gather CPU and energy related data
in Symbian. The Activity Monitor of Mac OS X provided
the CPU load of the MacBook.

The following tools were developed for gathering and
analysing the data: RWGClient is a command line client
application used to isolate the performance with respect
to communication layers only. RWGChat is a chat user
application used in order to test the protocol from the point
of view of the end user. It was developed using the Qt
framework, offering portability between the three platforms.

The implementation of the protocol daemon creates a mes-
sage log in each node, gathering the relevant data for each
message.

Regarding the settings of the protocol, the k value was
fixed to 10 in order to avoid the messages being k-delivered
and deleted during the experiments (which were performed
in test beds with fewer devices). For all the experiments
except for the message deletion, the time to live was fixed
to 120 seconds. This value was big enough to avoid the
deletion of the messages during the experiments. The length
of the informed vector was set to 2 bytes for all the tests.

A. CPU load

High CPU load leads to high energy consumption. The
implementation of the protocol is designed to economise on
CPU usage. We performed the tests using NEP in a Nokia
N97 and the Activity Monitor in a MacBook, studying the
CPU load in idle state and while sending data at different
rates. Since the Activity Monitor provides the CPU load
per process, the data was gathered monitoring the RWG
process. NEP provides the percentage of the CPU load of
the whole system every 0.25 seconds with integer precision.
RWGClient was running on top of RWG in both the Nokia
N97 and in the MacBook. For each data rate and device,
the number of messages sent was the one needed to keep a
constant transmission during one minute (e.g., 60 messages
for 1 message per second) and the maximum CPU load
was recorded. The experiment was performed in office
environment on campus. The results are described below:

Figure 3: Maximum CPU load due to sending for different
transmission rates in logarithmic scale.

MacBook: the CPU load in idle state is 0%. However,
every once in a while a thread is woken up sending a stored
message if there is any. This is part of the RWG mechanism
to avoid the network becoming permanently silent and it is
reflected in the results, increasing the CPU usage to 0.01%
when the buffer is empty and to 0.03% when it contains
messages. Fig. 3 shows the maximum CPU load for each



sending rate. The CPU load is increased to 4.64% when
128 messages per second were sent.

Nokia N97: the CPU load in idle state is between 0 and
1% 1. Fig. 3 shows that even when the sending rate is 16
messages per second the CPU usage is close to an acceptable
4%. All data was gathered with the screen switched off to
avoid the increase in CPU load due to rendering content on
the screen.

As the sending rate increases, the protocol performs more
operations, so the increase in CPU load is logical. As
expected, the CPU load in the Nokia N97 is higher than in
the MacBook due to CPU characteristics. However, given
that the x-axis is in logarithmic scale the increase is still
modest showing good scalability properties.

Note that increasing the number of neighbouring nodes
increases the number of ACKs that the sender has to process,
and therefore its CPU load. This increase was measured on
the Nokia N97 for the case of 4 messages per second. The
maximum CPU load of the sender with only one receiver
was used as baseline. The average CPU load increase
from the baseline is 3% and 7% when there are 2 and 3
neighbouring nodes respectively.

B. Timing measurements

In this section the relationship between the resource
footprint and the performance in terms of response time of
different devices running RWG is measured and studied.

All the experiments were performed sending messages
from a MacBook running RWG and some other device was
placed within radio range of the MacBook as the receiving
node. The experiments were performed outdoors on the
university campus using the same physical setup and the
measured device was placed at 10 metres from the MacBook.
The experiments were performed measuring one device at a
time. The round-trip time (from the sending of a REQF to
the reception of the ACK) was measured using Wireshark
on the MacBook.

The first experiment measures the average response time
of different devices running RWG. The test was performed
using both the RWGClient and the RWGChat in every
device. The transmission rate was 1 message per second
and 100 messages were sent. The average response time is
shown in Fig. 4.

One can note that smartphones are slower, and that
the Nokia N97 is a little bit faster than the Nokia 5800
XpressMusic. The difference is believed to be due to the
processor type. The response time of RWG in all the devices
is slower using the RWGChat application. The third exper-
iment studies this in detail (see below). Surprisingly, the
response time of the Dell platform is longer than the EeePC
platform. Therefore, we performed a second experiment to

1Every 6 seconds, whether the device is sending or not, there is a spike
of 8% due to the MAC layer in ad hoc mode that we have ignored here.

Figure 4: Average response time running RWG.

investigate whether the difference was due to the protocol
or the device. The average round-trip time over 100 packets
without running the protocol was 0,93 ms for the EeePC
and 1,74 ms for the Dell, proving that the difference in the
previous experiment was due to device characteristics and
not due to the protocol.

The third experiment studies the performance of the pro-
tocol in terms of response time at different transmission rates
in the EeePC and the Nokia N97 devices. For every trans-
mission rate and device, the MacBook sent 100 messages
measuring the average response time of the receiver device
placed at 10 metres from the MacBook. Since the response
time of the chat application is longer than the RWGClient,
its behaviour was also tested in this experiment.

Fig. 5(a) shows that the response time of the protocol
with the RWGClient remains constant in the Nokia N97.
Somewhat surprisingly, the response time of the protocol in
the EeePC with the RWGChat is almost constant whereas in
the N97 increases significantly.

The explanation is that the chat application renders the
content on the screen, which is CPU consuming. In Fig. 5(b)
the CPU load at different transmission rates is shown. One
can note that the CPU load of the N97 running RWG
with RWGChat rises close to 100% during the experiment,
with a big impact on the performance in terms of response
time. These experiments have shown that transmission rate
indirectly affects the response time through the increase in
CPU load.

C. Energy consumption

This section describes the experiments that were per-
formed in order to analyse the energy footprint of the
RWG protocol in a given device. We know that display,
radio transceivers and CPU are the main causes of battery
discharge. We performed the experiments on Nokia N97
since it can be used with an accurate measurement tool
(NEP) [8]. We used the RWGClient on top of the standard



Figure 5: Response time and average CPU load for different devices at different transmission rates.

software on the device and then tried to isolate the impact
of the protocol operation as follows.

Figure 6: Power consumption of Nokia N97.

First, we measured the power consumption on the Nokia
N97 in different states (the protocol was not running). Fig.
6 shows in the two leftmost bars that switching on the
screen consumes 0,79 W. The content of the screen was
the application menu, which does not have any graphical
activity. The implementation of the protocol uses the WLAN
interface in ad hoc mode, which means that the power
consumption will be around 0,7 W when the protocol is
running. This is shown by the 4th bar from the left in
Fig. 6. Note that the ad hoc mode consumes more energy
than infrastructure since the node is listening to the channel
all the time and uses less power saving mechanisms. This is
shown in the rightmost bar.

Second, the energy consumption when running the pro-
tocol was studied in the following experiments. The RWG-
Client was running on top of the protocol and as stated
before it was using the WLAN interface in ad hoc mode.
The transmission power was 100 mW by default.

In idle state, without sending any data, the most noticeable
increase in power consumption was due to using the WLAN
interface. As stated in Subsection IV-A, the CPU usage in

idle state is 0% and it increases to around 1% when the
mechanism that sends a message every once in a while
performs its duty. The following tests verify the impact
of that mechanism in idle state. First, RWG was running
in idle state without sending any message and the battery
(1500 mAh) was discharged after 7:27 hours. In the second
experiment, the protocol sent a message every second and
the battery lasted 7:18 hours. Therefore, we can conclude
that the impact of the mechanism on the lifetime of the
idle state is only 2%, not affecting significantly the energy
consumption. Consequently, the impact of the protocol on
the consumed energy in idle state is due to the use of the
WLAN interface.

In operation state, two Nokia N97 were used and a mes-
sage was sent from one device every second. Our intuition
was that the use of more memory can lead to more CPU
load, which consumes more energy. Therefore, the test was
performed with the message buffer of the phones empty as
well as with 500 messages to show the impact of message
storage on energy consumption. The energy consumption
difference was not significant. Thus, we conclude that the
implementation of RWG handles the messages in an energy-
efficient manner.

Third, the power consumption increase due to data rate
was tested. The consumed power in the idle state (WLAN
active in ad hoc mode) was taken as reference value. The
RWGClient was used to send messages at different transmis-
sion rates. The size of the packets was 98 bytes, including
MAC, IP, UDP and RWG headers. The average increase
in consumed power of the sending period is shown in Fig.
7(a), which shows that, as expected, the consumed power
increases when the message transmission rate increases.
However, the average increase in consumed power is very
small in comparison with the 0,7 W for having the WLAN
active in ad hoc mode.

Finally, the average increase in consumed power of some
CPU demanding operations was tested. One of the most
consuming operations is deleting many messages from the



Figure 7: Average increase in consumed power due to (a) data rate in logarithmic scale and (b) a CPU demanding operation.
The reference value is the consumed power in protocol’s idle state.

buffer at the same time. The test consisted of deleting
different number of messages from the buffer at the same
time when their TTL expired. The buffer was filled with the
intended number of messages and deleted by the message
deletion operation. The TTL of the messages was fixed to 1
second. Fig. 7(b) shows that the increase in consumed power
converges to a maximum when deleting more messages. This
maximum is reached when the CPU load is 100%. Even
though the consumed power level is the same deleting 300
and 400 messages, the latter consumes more energy due to
the deletion operation takes longer. Note that with the radio
being on by default due to the ad hoc mode, the quantitative
increase is larger due to higher CPU usage (Fig. 7(b)) than
due to higher transmission rate (Fig. 7(a)).

To summarise, one could conclude that the energy con-
sumption footprint of the implementation of the RWG pro-
tocol is mostly due to the use of the WLAN interface in ad
hoc mode, which is more significant than the other aspects.

D. Memory consumption

Since Nokia N97 was the most constrained platform in
terms of memory, these tests were performed in that context
and NEP was used to gather the data. The Nokia N97
has 128 MB of RAM of which some part is already used
by Symbian OS and its components. The amount of free
memory in the Nokia N97 was around 60 MB.

The increase in allocated memory of the system when the
protocol and the application ran was studied. The average
of 10 measurements shows that the memory usage of the
minimum configuration to use the RWG protocol (RWG +
RWGClient) is 1000 KB, whereas the memory usage of the
chat application using the protocol (RWG + RWGChat) is
7998 KB. The results show that using the RWGChat the
memory consumption is around eight times the usage of the
basic application.

V. RELATED WORK

Several works propose different approaches and imple-
mentations to communicating in disaster areas [9]–[11],
however their survey is beyond the scope of this report.

A similar study to ours is performed analysing the per-
formance of two different Host Identity Protocol (HIP)
implementations in Symbian OS [12] in terms of CPU
load, memory usage and power consumption but only at
initialisation time.

The response time of a payment transaction was analysed
for evaluating the performance of an implementation of a
payment protocol for vehicular ad hoc networks [13]. Our
work studies response time of a different protocol (RWG)
in a wider range of devices (e.g., handhelds and laptops)
showing the relationship between the resource footprint and
the performance in terms of response time.

Many works, as surveyed below, focus on measuring
the power and energy consumption of different wireless
technologies, whereas the focus of our efforts is on analysing
the energy footprint of a wireless message dissemination
protocol.

The energy consumption of IEEE 802.11 in ad hoc mode
is analysed studying a wireless interface [14] and a particular
mobile device (Nokia N95) [15]. Perrucci et al. [8] study the
impact of 2G and 3G networks in battery consumption of a
Nokia N95 and Balasubramanian et al. [16] compared 2G,
3G and IEEE 802.11 in terms of energy consumption. NEP
is often used as measurement tool in Nokia phones, e.g.,
Xiao et al. [17] studied the energy consumption of mobile
Youtube. Approaches requiring more equipment are needed
for other platforms, ranging from the use of a power meter
and custom software [18] to creating their own measurement
framework replacing the battery [19].

In summary, very little prior work can be found in the
literature about studies of the resource footprint of MANET
protocols in multiple mobile platforms.



VI. CONCLUSION

This work has presented the implementation of a manycast
protocol (RWG) for disaster areas in commercially available
devices. It has focused on studying the resource footprint of
the protocol on some devices, showing both some qualitative
values of interest and some methodologies that can be
applied to future devices in order to reveal important aspects
for future optimisations.

The study has provided some insights on the impact of the
hardware and protocol on the footprint. The CPU usage of
the protocol is very low and the memory usage is small.
The performed experiments have shown that features of
nodes that are usually not considered in simulations such
as CPU, response time or energy consumption are worth
studying. In particular, we have shown how a platform and
its resources impact performance in terms of response time.
The transmission rate can indirectly imply significant delays
in the response time through the CPU load. Moreover, it has
been shown that a faster CPU does not always lead to faster
response (e.g., in the netbook and laptop comparison).

Since energy consumption is crucial in disaster area net-
works, the most power consuming aspects of a mobile phone
were considered. The most significant aspect in the energy
consumption footprint of the protocol is due to reliance on
an IEEE 802.11 ad hoc network, which restricts the lifetime
of a mobile phone to less than 8 hours.

Future work includes optimisations to reduce the ex-
pensive IEEE 802.11 ad hoc mode in terms of energy
consumption to increase the lifetime of nodes in disaster
area networks. This includes adopting energy efficient ad
hoc MAC layers from related research areas like wireless
sensor networks or combinations with cellular technologies.
Porting the protocol to more devices that are increasing their
market share (e.g., iPhone and Android devices) would be
interesting. Although adaptations of the source code may be
necessary, fortunately the same architecture can be reused.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Swedish
Civil Contingencies Agency (MSB), the national Graduate
school in computer science (CUGS) and the Department
of Education, Universities and Research of the Basque
Government.

REFERENCES
[1] P. M. Aoki, R. Luk, and M. Ho, “When mobile experience comes

apart at the seams – emerging markets infrastructure brings us back to
nomadic computing in more ways than one,” in Workshop on Mobile
and Ubiquitous User Experience, (Ubicomp), LNCS 4717, Springer,
2007.

[2] R. Mahapatra, T. A. Abbasi, and M. S. Abbasi, “A propose architec-
ture of manet for disaster area architecture,” J. Comput. Theory and
Eng., vol. 2, no. 1, pp. 31–34, 2010.

[3] Y. Bai, W. Du, Z. Ma, C. Shen, Y. Zhou, and B. Chen, “Emergency
communication system by heterogeneous wireless networking,” in
Proc. of IEEE Wireless Communications, Networking and Information
Security (WCNIS), June 2010.

[4] S. Underwood, “Improving disaster management,” ACM Communica-
tions, vol. 53, pp. 18–20, Feb. 2010.

[5] M. Asplund and S. Nadjm-Tehrani, “A partition-tolerant manycast
algorithm for disaster area networks,” in Proc. of IEEE Symposium
on Reliable Distributed Systems (SRDS), 2009.

[6] F. Gao and M. Hope, “Collaborative middleware on symbian os via
bluetooth manet,” WSEAS Trans. Commun., vol. 7, no. 4, pp. 300–310,
2008.

[7] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott,
“Experimental evaluation of wireless simulation assumptions,” in
Proc. of ACM Modeling, analysis and simulation of wireless and
mobile systems (MSWiM), 2004.

[8] G. P. Perrucci, F. Fitzek, G. Sasso, W. Kellerer, and J. Widmer, “On
the impact of 2G and 3G network usage for mobile phones’ battery
life,” in European Wireless, 2009.

[9] J. Kim, D. Kim, S. Jung, M. Lee, K. Kim, C. Lee, J. Nah, S. Lee,
J. Kim, W. Choi, and S. Yoo, “Implementation and performance
evaluation of mobile ad hoc network for emergency telemedicine
system in disaster areas,” in IEEE Engineering in Medicine and
Biology Society (EMBC), 2009.

[10] M. Luglio, C. Monti, C. Roseti, A. Saitto, and M. Segal, “Interworking
between manet and satellite systems for emergency applications,” Int.
J. Satell. Commun. Netw., vol. 25, no. 5, 2007.

[11] H. Tazaki, R. Van Meter, R. Wakikawa, T. Wongsaardsakul, K. Kan-
chanasut, M. Dias de Amorim, and J. Murai, “Selecting an appropriate
routing protocol for in-field manemo experiments,” in Proc. of ACM
Performance evaluation of wireless ad hoc, sensor, and ubiquitous
networks (PE-WASUN), 2009.

[12] A. Khurri, D. Kuptsov, and A. Gurtov, “Performance of host identity
protocol on symbian os,” in Proc. of IEEE Communications (ICC),
June 2009.

[13] J. Téllez Isaac, S. Zeadally, and J. C. Sierra, “Implementation and
performance evaluation of a payment protocol for vehicular ad hoc
networks,” Electronic Commerce Research, vol. 10, pp. 209–233, June
2010.

[14] L. Feeney and M. Nilsson, “Investigating the energy consumption of
a wireless network interface in an ad hoc networking environment,”
in Proc. of IEEE INFOCOM, 2001.

[15] M. Pedersen, F. Fitzek, G. P. Perrucci, and T. Larsen, “Energy and
link measurements for mobile phones using ieee 802.11b/g,” in IEEE
Workshop on Wireless Network Measurements (WiNMEE), 2008.

[16] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy Consumption in Mobile Phones: A Measurement Study and
Implications for Network Applications,” in Proc. of ACM Internet
Measurement Conference (IMC), Nov. 2009.

[17] Y. Xiao, R. S. Kalyanaraman, and A. Yla-Jaaski, “Energy consump-
tion of mobile youtube: Quantitative measurement and analysis,” in
Proc. of IEEE Next Generation Mobile Applications, Services, and
Technologies (NGMAST), 2008.

[18] A. Gupta and P. Mohapatra, “Energy consumption and conservation
in wifi based phones: A measurement-based study,” in Proc. of IEEE
Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
June 2007.

[19] A. Rice and S. Hay, “Measuring mobile phone energy consumption
for 802.11 wireless networking,” IEEE Pervasive and Mob. Comput.,
vol. 6, pp. 593–606, Dec. 2010.


