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Abstract—Mobile wireless handheld devices can support ad
hoc communication when infrastructure systems are overloaded
or not available. Unfortunately, the constrained capacity of
their batteries and the energy inefficiency inherent to the ad
hoc communication poses a challenge causing a short lifetime.
Protocols and application layer services, such as security, can be
designed (offline) to do an efficient use of the resources. Real-
time adaptation can further minimise their impact on the energy
consumption, increasing the network lifetime thus extending the
availability of network communication.

In this paper, we propose an energy-aware adaption compo-
nent for an Intrusion Detection System (IDS) in mobile ad hoc
networks (MANET). The component is in charge of adjusting
the parameters of the IDS based on the current energy level,
using the trade-off between the node’s response to attacks and
the energy consumption induced by the IDS. The approach is
based on a model for accounting CPU energy consumption in
network simulation, which has been implemented in an existing
IDS in ns-3. Simulations demonstrate that the adaption has a
positive impact on the battery life time, increasing it by 14%,
without deteriorating the network-wide performance of the IDS.

Index Terms—Adaptation, energy-awareness, CPU model, en-
ergy modelling, survivability, intrusion detection.

I. INTRODUCTION

The prevalence of handheld devices such as smartphones
will bring with it unforeseen opportunities for cooperation
and distributed sensing. While the infrastructure-based mode
of communication (cellular, WiFi) provides almost continuous
connectivity in time and space, it typically does not pay atten-
tion to handheld devices’ energy constraints when optimising
networking algorithms. On the opposite end of the spectrum
we have the totally distributed infrastructure-less mode of
communication whereby each device opportunistically con-
nects to neighbours in its vicinity in order to establish an
ad hoc chain of dissemination, collaboration, or distributed
sensing.

The deployment of opportunistic ad hoc communication
scenarios is unlikely on a large scale. Part of it is due to
business models and lack of trust and adequate security mech-
anisms. Another major obstacle is the inherent inefficiency of
using the ad hoc interface in current handsets. However, the
distributed nature of this setting makes it robust to failures,
and interesting as a platform for studying novel ideas in the
distributed setting. This paper addresses the energy issue in
distributed ad hoc communication, by providing means to

study the (global) network life time in presence of (local) node
level energy-based adaptation.

All handheld devices are power-hungry. In order to extend
the operating life time of a set of cooperating nodes protocol
design has a role to play. It may economise the use of
energy, by using low signalling overhead, both in terms of
message transmissions and CPU operation. However, other
layers are also important; both application and other service
layers such as security. In most cases, the adoption of security
solutions is in fact hampered due to the power drain on the
handsets. So in some sense, making studies on the security
mechanisms’ energy footprint is useful no matter what mode
of communication is envisaged.

When it comes to security, there is an obvious trade-off. We
get more protection if we have endless energy. In this paper we
show that we can adapt the sensitivity of security mechanisms,
tuning them based on energy estimates. We demonstrate this
idea of energy-based adaptation using an ad hoc protocol that
was created for surviving maximally in a disaster scenario,
even in hostile environments. This dissemination protocol and
the associated general survivability framework, in which local
anomaly detection, diagnosis, and mitigation are part of the
application needs, have been developed in a larger project on
Hastily Formed Networks [1] and published elsewhere [2],
[3], [4]. This paper focuses on how the environment for large
scale studies, such as ns-3 simulation platform can be extended
in order to model energy-based adaptations of protocol and
service layer modules. This will enable studies of network
life time in presence of various threats and different mobility
patterns. The paper also points out how each protocol/service
that is subject to study should be studied from an energy
perspective – both in terms of CPU usage and transmission
power.

The contributions of this work are as follows:
1) We present the impact of energy-aware adaptation for

a network (protocol) level anomaly detection architec-
tures.

2) We demonstrate that evaluation of energy-aware adap-
tation can be based on fairly simple models of CPU
utilisation applied to networking protocols in simulation
platforms, thus enabling evaluations of communication
scenarios that are hard to evaluate by large scale deploy-
ments.

3) We illustrate the above contributions on top of an978-1-4577-2028-4/11/$26.00 c© 2011 IEEE



energy-efficient protocol and an intrusion detection
framework earlier devised for disaster area scenarios,
and show the extended life time of the network despite
attack-induced energy drain and protocol/IDS overhead.

II. RELATED WORK

The work presented in our paper brings together an adap-
tive application, an IDS for MANET, with real-time energy
awareness. There is a broad variety of approaches of intrusion
detection applied to MANET (the interested reader is referred
to [5]). The energy aspect, when considered, is either used
to balance the workload in hierarchical IDSs [6], optimised
offline in terms of power consumption of the IDS itself [7],
or used as a feature to detect anomalous conditions from
suspicious discharge behaviours [8]. With regard to adaptation,
some approaches include techniques of tuning the detection
thresholds to cope with the changes in the network [9] [10].
On-line energy-based adaptation is not covered in any of the
reported approaches.

In an early work, energy aware adaptation has been in-
troduced in the context of mobile computing by Flinn and
Satyanarayanan [11] [12]. The operating system is in charge
of monitoring the energy supply and adapting multimedia
applications, degrading their quality according to the de-
creasing energy availability. More similarly to our case, self-
adaptation at application level is proposed by Peddersen and
Parameswaran [13]. This work first suggests some techniques
to generate self-adaptive applications, such as inserting code
that behaves differently based on the available energy. Two
online adaptation algorithms specifically targeting multimedia
processing are then proposed.

A. Adaptive security

Our approach adapts the tradeoff between the sensitivity
of the intrusion detector and its energy consumption. The
adaptation of the tradeoff between security provisioning and
resource consumption is currently a hot topic. A framework
for self-adaption of security at application level is proposed by
Ferrante et al. [14]. This work proposes a domain-independent
approach to adapt the security policies depending on the cur-
rent state and the security requirements. In the work of Chigan
et al. [15], a preliminary offline optimisation methodology is
proposed to select, among all the available security services,
the suboptimal candidate sets of cross-layer security protocols
that guarantee the minimum redundancy of functionalities
and performance cost at the desired level of security. The
online self-adaptive module adapts the security level based on
the perceived malicious activity. Although there is resource-
awareness, real-time adaptation is triggered by malicious activ-
ity instead of energy level. Switching security policies causes
high signalling overheads.

B. Energy modelling in simulations

Energy modelling in network simulations is required to
perform energy evaluation of protocols and applications and
to enforce energy awareness. An energy model for the ns-3

simulator is presented in [16]. In this framework, the device
energy consumption and energy source are modelled as two
separate elements. Although there are many energy source
models, characterised by different discharge curves, there is
currently only one device energy model available, the WiFi
energy consumption model.

A similar energy model targeting Wireless Sensor Networks
(WSN) has earlier been proposed by Chen et al. [17] for
OMNeT++ [18]. In addition, a simple CPU model, that
accounts the energy consumption in the active or inactive state,
is included. For the same simulation platform, a generic energy
model for wireless networks has been proposed by Feeney et
al. [19]. It improves the battery depletion handling, compared
to the existing model, but CPU energy consumption is not
modelled. The common limitation of network simulators is
that they normally assume unlimited computational power and
ignore process execution time. This hinders CPU modelling
and more detailed energy accounting.

Simulation of power consumption of programs running on
real systems can be done with instruction sets simulators, such
as ARMulator [20] or SimpleScalar [21] among the others.
Unfortunately, they are not suitable for simulating complex
programs, neither can they simulate networking scenarios.

Combined network simulation and CPU instruction set
simulation has been proposed in SunFlower [22], Real-Time
Network Simulator (RTNS) [23] or SliceTime [24]. However,
the first lacks nodes mobility support, while the two latter
works do not simulate energy consumption. In all the cases
the CPU instruction set simulator and the network simulator
need to be synchronised, and the simulation time is rather slow.
The CPU energy model for network simulation proposed in
our work could represent a way to include CPU energy con-
sumption, thus enabling adaptation studies based on energy.

III. BACKGROUND

The General Survivability Framework (GSF) is a modular
architecture designed to provide a comprehensive security
approach for mobile ad hoc communications in challenging
environments, such as disaster area networks. In such environ-
ments, with the hypothesis that spontaneous ad hoc networks
need to be created on the fly, pre-existing trust relation-
ships among nodes cannot be assumed, limiting the use of
encryption-based or collaborative protection mechanisms. The
GSF, instead, is a standalone architecture which is installed on
each node. The framework is composed of four independent
modules that cooperate in order to detect, diagnose, and
react to network attacks (see Figure 1). The first module,
the anomaly detector [3], is responsible for monitoring the
network traffic from the vicinity in order to detect anomalous
conditions. It will have to be trained in order to build a
normality model prior to deployment in an attack state. When
an alarm is raised, the diagnosis component is triggered to
classify the attack type among the known cases. Then the
mitigation component is engaged to apply the appropriate
countermeasures to reduce or eliminate the attack impact.
Otherwise, if the attack cannot be matched to any of the known



cases, a generic mitigation strategy is employed. The adaption
module is responsible for changing the parameters of the other
components in order to cope with the changes in the state of
the network and the node. The work presented in this paper is
focused on the development of this module. Figure 1 shows
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Fig. 1: The General Survivability Framework control loop

the interconnections of the four modules, which is similar to a
closed loop control system, with the difference that the state of
a given node is dependent on the global state of the network,
i.e. the collective behaviour of other nodes. The framework
has been tested on top of Random-Walk Gossip (RWG) [2],
a manycast partition-tolerant protocol designed to efficiently
disseminate messages in disaster area networks.

IV. ADAPTIVE DETECTION

The adaptation process normally involves monitoring the
system under control, detecting changes, deciding and reacting
to adjust the system parameters in order to bring it to the
desired state, which often optimises towards some target
performance. The survivability framework presented earlier
differs from this concept due the fact that the state of the
network is not fully observable and controllable from the
point of view of an individual node, which has a partial
view restricted to its vicinity. The emerging global response
of the network determines a node’s reaction to the attack. In
this context the adaptation process that we aim for is a self-
adaptation [25] approach, meaning that the control system
itself (i.e. the GSF) should be adjusted with the changing
conditions of both the node and the network. The adaptation
solution proposed in this paper takes into account the perceived
state of the network, focusing mainly on the most valuable
feature of the internal state of the node, the energy. The
assumption is that while supporting resistance to the attacks,
the nodes should also be aware of their energy budget,
adapting their behaviour in an efficient way in order to extend
their lifetime as much as possible. With the support of energy
modelling and simulation, we show that aggressive energy-
agnostic attack survivability strategies, with excellent detection
performances, could become useless once their impact on the
energy consumption reduces the lifetime of the network.

A. Adaptation component

The adaptation component proposed (see Figure 2) consists
of a function that takes as input the current energy level of the
node, the perceived attack situation and the current parameter
set configuration. The output is a new set of parameters that

Fig. 2: Energy-aware adaptation of IDS parameters

is both relevant for the detection accuracy and has a strong
impact on the energy consumption.

The function is based on a decision table. Each action is a
parameter set configuration according to the perceived attack
situation, modelled as conditions, and different energy states,
modelled as rules. Rules based on energy levels could make the
system reactive to energy changes, tilting the trade-off towards
the energy aspect when this resource is limited. Prediction of
the energy depletion based on the actual traffic load and CPU
consumption could be the basis of a more proactive adaptation
of the IDS parameters. All the combinations can be selected
during a pre-design study on the trade-off between resource
usage and security provisioning.

B. Case study

As a case study, we consider the GSF presented earlier.
In this framework, there is a relevant parameter that governs
the detection, diagnosis and mitigation cycle and has a strong
impact on the CPU utilisation. It is the aggregation interval
Ia in which the network state observations are aggregated and
the alarm state is evaluated. The shorter the interval the faster
the response to the attacks, but at the same time the detection
accuracy is lower and the power consumption is higher. The
longer the interval, the better the detection accuracy, but the
detection latency would increase as well. In this case the
power consumption of the detector would be lower, but a
high latency could allow the attack to spread throughout the
network causing subsequent negative consequences.

In an extension of the work presented in [3], detection
accuracy and minimum latency has been obtained with Ia at
50 seconds. If we consider the energy aspect using the energy
model proposed in section V-A, a longer interval which gives
a better detection accuracy at the cost of a higher latency
could still be acceptable if the overall impact on the energy
consumption outperforms the case in which the latency is
shorter.

The decision table implemented in this scenario takes into
account two conditions: attack or non attack condition. A
reactive solution has been implemented considering the fol-
lowing four energy level ranges: 100% to 60%, 60% to 40%,
40% to 20%, and 20% to 0%. Since, as mentioned earlier,
the global response to the attack is given by the collective
response of the nodes in the network, the choice of the
aggregation interval is based on the idea that nodes with more
energy should compensate the higher latency of nodes with a
limited battery level that try to extend their lifetime slowing
themselves. Nodes that have a battery level bounded between
100% to 60%, in normal conditions, set the shortest interval Ia



Energy fraction (%) Attack Non-attack
100-60 IDS FAST IDS MEDIUM
60-40 IDS FAST IDS SLOW
40-20 IDS MEDIUM IDS SLOW
20-0 IDS SLOW IDS SLOW

TABLE I: Aggregation interval based on energy levels

(namely IDS FAST), to react more quickly in case of attacks.
During attacks, instead, the interval is set to longer value
(IDS MEDIUM) in order to improve the detection accuracy
and save energy at the same time. With a lower battery
level, between 60% and 40%, the interval during attack is
further increased (IDS SLOW), to save more energy. When
the level is between 40% and 20% the interval during attack-
free periods is set to IDS MEDIUM, since at that time the
nodes should start preserving battery more consciously. Below
20%, the node samples slower in all the cases, to preserve its
energy. Table I summarises the interval adaptations.

V. ENERGY MODELLING

Energy aware applications require access to the energy level
of the system in which they are running. As mentioned in sec-
tion II, network simulators focus on the energy consumption
of the network interface, ignoring the contribution of other
power-hungry components such as the CPU.

In this section we propose a simple model for accounting
CPU energy consumption in network simulators.

A. A CPU model for network simulation

Our model is based on the assignment of an energy footprint
to each application simulated. The model consists of a state
machine for each application that runs in the simulation en-
vironment. Each state represents a possible operational mode
of the application, that differs from the others in terms of
behaviour and consequent CPU usage. By the application run-
ning at each of its states in a real device, the isolated impact on
the power consumption can be profiled. Functions that produce
power consumption values depending on the inputs of the
application which have an impact on the energy consumption
can then be associated to the corresponding states. In the case
in which the power consumption cannot be directly measured,
one could for example analyse the CPU utilisation increase
caused by the application, which may be translated into power
consumption values for simulation purposes. In the simulation,
the global CPU energy consumption is then given by the
combination of all the individual power contributions of the
modelled applications at the current inputs.

To illustrate the approach, we show how this model can be
applied to account for the CPU energy consumption of our
case study.

B. Application of the model

In our environment, the applications that need to be ac-
counted for their energy consumption are the RWG protocol
and the GSF. For the RWG protocol, we can characterise the
following states: RWG, RWG mit gray and RWG mit drain.

The first state represents the normal working conditions of the
RWG protocol. The individual energy footprint of the protocol
running at different transmission rates can be measured as
in [4]. The function of the traffic load of the system that
provides the power consumption contribute of RWG can be
assigned to this state. The other states represent the protocol
behaviour when attack mitigation strategies change the way
the protocol operates. In the current implementation, RWG
can be operated in grey hole or drain attack mitigation. A
power consumption function can be assigned to those states
with the same logic as before. A separate finite state machine
is created for the GSF application, which consists of the intru-
sion detection, diagnosis and mitigation selection components.
Three states, that capture the frequency at which the analysis
cycle is performed, are defined: IDS FAST, IDS MEDIUM
and IDS SLOW for short, medium and long interval Ia used to
tune the GSF operation frequency. Again, power consumption
functions for each of these states can be extracted from
real devices emulating this application under similar working
conditions. Finally, the total CPU energy consumption is then
given by the sum of the power consumption contribution of
the RWG application and the GSF application, as depicted in
Figure 3

Fig. 3: CPU power consumption of the RWG and IDS frame-
work over some time interval

VI. EVALUATION

This section evaluates the implementation of an energy-
aware adaptive function applied to the survivability framework
for a disaster area network in ns-3. The goal of the evaluation
is to show that local adaptation based on per-node estimates
of the available energy leads to better overall performance in
the network and extends its lifetime.

A. Implementation and simulation setup

As baseline, the scenario presented in [3] has been consid-
ered. The network consists of 25 nodes moving in a disaster
area network [26]. The load of the network is 15 messages
per second sent from randomly chosen nodes. The messages
are disseminated in manycast to at least K = 10 nodes and
have an expiration time of 400 seconds.

The ns-3 energy framework has been included and extended
with the proposed CPU energy model to create a model for
energy awareness. For simplicity, we have used the energy
source model characterised by an ideal linear discharge curve.
To consider the energy impact of the wireless device, the
WiFi energy model has been employed in the simulation. The
current draw values assigned to the different operational states



of the wireless interface are the same as in the work by Wu
et al. [16].

The CPU model is as described in section V-A. In order
to assign the power consumption values to the states that
characterise the RWG application model, the results from
Vergara et al. [4] have been considered. To be compliant
to the ns-3 energy model, the CPU energy model should
specify current draw values in Ampere instead of power
in terms of Watts. As the ns-3 source model assumes a
constant battery voltage, the conversion between Watts and
Ampere is immediate. Assuming that the transmission rate is
15 messages per second, according to the load injected in
the network, the energy consumed by the RWG application
in the normal operation mode at this rate is 0.025W, as
depicted in Figure 7 in Vergara et al. [4]. Furthermore, we
consider the additional contribution of 0.1W as the power
consumption due to message deletion at the same rate. The
power consumption value at a rate of 15 messages per second
is then 0.125W. Considering 3.7V constant battery voltage, the
current draw that we associated to this state is 0.034A. RWG
in mitigation mode usually performs less operations, since the
information contained in some signalling packets is discarded
or not processed. A lower footprint has been assigned to both
of the considered mitigation states. Table II summarises the
current draw assigned to RWG.

Rwg application state Current draw (A)
RWG 0.034
RWG Drain Mitigation 0.018
RWG Greyhole Mitigation 0.018

TABLE II: Current draw of the RWG application

For GSF, as mentioned earlier, the three states modelled
correspond to when the detection-diagnosis-mitigation analysis
are performed within short, medium or long, intervals, as
specified by the parameter Ia. The interval of aggregations Ia
chosen for IDS FAST is 50 sec, IDS MEDIUM is 75 seconds
and IDS SLOW is set to 100 seconds. The assigned constant
energy footprint of the IDS states is shown in Table III.

IDS application state Current draw (A)
IDS FAST 0.040
IDS MEDIUM 0.025
IDS SLOW 0.010

TABLE III: Current draw of the IDS application

In order to illustrate the benefits of adaptation, we focus
on two of the possible attack types: the drain attack and the
grey hole attack. In the first attack type the malicious nodes
act in order to drain the battery of the victims, injecting
fake signalling packets that cause benign node to perform
a lot of unnecessary disseminations. In the second type of
attack, malicious nodes target the message dissemination, by
sending fake signalling packets that cause the interruption of
the process before the messages have actually been delivered
to the intended K nodes. Both attacks are interesting to
analyse with regard to the adaptive function, since they are

complementary in terms of energy consumption. In the drain
attack nodes waste energy as a consequence of the attack,
thus good detection accuracy and low latency are necessary
to avoid energy waste. On the contrary, the goal of the grey
hole attack is that the dissemination of the messages in the
network is diminished, thus the nodes should consume less
energy due to the reduced amount of network traffic. Longer
detection latency in this case could be tolerated, from the
energy perspective, but adaptation should still guarantee good
detection to ensure network functionalities to be executed.

B. Simulation results

In order to test the complete set of actions performed by
the adaptivity function during an entire simulation period, the
initial energy level assigned to the nodes is selected to be lower
than needed to conclude the simulation over 3000 seconds.
In this way, one can determine whether the adaption extends
the lifetime of the network compared with the non-adaptive
case. In all of the following simulations, five randomly placed
malicious nodes start the attack at second 2067 and this lasts
until the end of the simulation (details same as [3]). Ten runs
of the same simulation are performed, and the results are
averaged.

The first attack type we simulated is the drain attack. Figure
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Fig. 4: Energy consumption and number of active nodes in the
drain attack

4a shows the comparison of the average available energy in
the network in the adaptive case compared to the non-adaptive
one when the network is under the drain attack with mitigation
enabled. As it can be observed from the figure, the adaptive
function outperforms the non-adaptive case by extending the
lifetime of the network by over 250 seconds. The difference of
the energy level is larger in the second half of the time window,
since there the nodes start preserving their battery adopting
longer aggregation intervals Ia. The confidence interval of
the ten rounds is up to 2% as long as all the nodes have
battery capacity, but can drop to 50% when the nodes start
to drop out due to depletion. Figure 4b shows the number of
active nodes in the network. A good detection accuracy and the
minor energy consumption due to the lower CPU utilisation of
the adapted IDS application has an impact on the lifetime of
the network, although the linear discharge behaviour in both
cases is still caused by the energy consumption of the wireless
interface in ad hoc mode (recall this mode has a strong impact



on the consumption due to the constant idle listening [27]).
This causes the nodes to have a similar discharge behaviour,
which results in a sharp drop of the number of active nodes,
as can be observed in Figure 4b.
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Fig. 5: Survivability performance in the draining attack

The impact of the adaption on the survivability performance
during the same attack is shown in Figure 5. Two metrics
are used to measure the network performance: the packet
transmission rate and the packet k-delivery rate. The first
indicates the number of transmitted packets (including data
and signalling packets) during the interval of study, which is
useful to analyse the impact of the attack on the bandwidth
usage. The second metric shows the performance of the
network as number of packets successfully delivered to K
nodes over the interval of study. We expect that if adaptation
of the interval is successful the results of attack detection
measured in terms of network performance are not any worse
than when we are not adapting. In Figure 5a, we can see a
peak on the number of transmissions at the beginning of the
drain attack (at second 2100). This is caused by some detection
latency, that leaves some bogus messages being disseminated
in the network. This number is slightly higher in the adaptive
case, but afterwards the number of messages sent during the
attack is similar to the case in which the interval is not adapted,
meaning that the adaptation does not decrease the detection
accuracy. In Figure 5b, we can see how the delivery ratio is
also very similar to the non-adaptive case, indicating that the
overall performance is preserved.
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Fig. 6: Energy consumption and number of active nodes in the
grey hole attack

The results of the adaption on the greyhole attack are
presented in Figures 6 and 7. As in the case of the drain
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Fig. 7: Survivability performance in the grey hole attack

attack, the average available energy in the network is higher
in the adaptive case compared to the non-adaptive one, as
shown in Figure 6. However, a more accurate analysis of the
survivability performance should be undertaken since in this
attack scenario a bad detection could give energy saving. As
shown in Figure 7, there is again some latency at the beginning
of the attack, in which we can see that a sharp decrease in
the number of transmissions is caused by the malicious nodes
causing packets to be dropped. After that, however, the number
of transmissions is greater in the adaptive case compared to the
non-adaptive one, showing that a longer interval of aggregation
in this case is a benefit and improves the detection accuracy.
Figure 7b in fact shows that the number of deliveries is higher
after second 2200.

For a more realistic scenario, we studied the case in which
nodes started with random initial battery levels. This test shows
how heterogeneity on adaptation and attack response impacts
our major metrics: the available energy and the survivability of
the network. In this case, all the nodes are assigned a random
initial energy between 100J and 500J.
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Fig. 8: Energy consumption and number of active nodes in the
drain attack with random initial energy levels

Again, Figure 8 shows that adaptation provides energy
efficiency while Figure 9 shows that the global impact on the
network survivability is further improved.

VII. CONCLUSION AND FUTURE WORK

This paper described the design and implementation of
an on-line energy-based adaptation component for the at-
tack survivability framework in the context of mobile ad
hoc communication. In order to study the network lifetime,
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Fig. 9: Survivability performance in the drain attack with
random initial energy levels

guaranteeing at the same time a good level of protection, a
decision table-based approach has been chosen. The adaptation
module selects, in a real-time fashion, the pre-configured IDS
parameter set depending on the available energy of the node
and the perceived attack situation. This module then adjusts
the trade-off between attack response time and energy con-
sumption based on the available energy. Furthermore, in order
to enable CPU energy consumption accounting in network
simulators, a CPU energy model has been proposed. The
adaptation component has been tested in ns-3 simulating the
network under two complementary kinds of attack in terms of
energy and detection latency impact. The results have shown
that the adaptation component gives an extension of about 14%
of lifetime without degrading the survivability performance.

Further research must address proactive energy-based ap-
proaches, as for example foreseeing the depletion based on
the current workload and adapting in advance. A more detailed
CPU model should also be included to enable more realistic
CPU usage and energy consumption simulation.
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