
Modular Anomaly Detection for Smartphone

Ad hoc Communication ⋆

Jordi Cucurull, Simin Nadjm-Tehrani, Massimiliano Raciti

Department of Computer and Information Science, Linköping University
SE-581 83 Linköping, Sweden

[jordi.cucurull,simin.nadjm-tehrani,massimiliano.raciti]@liu.se

Abstract. The capabilities of the modern smartphones make them the
obvious platform for novel mobile applications. The open architectures,
however, also create new vulnerabilities. Measures for prevention, de-
tection, and reaction need to be explored with the peculiarities that
resource-constrained devices impose. Smartphones, in addition to cellular
broadband network capabilities, include WiFi interfaces that can even be
deployed to set up a mobile ad hoc network (MANET). While intrusion
detection in MANETs is typically evaluated with network simulators, we
argue that it is important to implement and test the solutions in real de-
vices to evaluate their resource footprint. This paper presents a modular
implementation of an anomaly detection and mitigation mechanism on
top of a dissemination protocol for intermittently-connected MANETs.
The overhead of the security solution is evaluated in a small testbed
based on three Android-based handsets and a laptop. The study shows
the feasibility of the statistics-based anomaly detection regime, having
low CPU usage, little added latency, and acceptable memory footprint.

Keywords: intrusion detection, resource footprint, ad hoc networking

1 Introduction

With the expected replacement of the majority of phone handsets with smart-
phones the need for addressing security issues on Internet-connected devices
becomes more urgent. Strengthening the security of handsets, specially on open
platforms on which the owner is allowed to make unrestricted downloads and
create potential threats to the platform or applications is a major concern of the
research community. Measures to enhance security through both prevention and
detection need to be explored and the peculiarities of the resource-constrained
handsets compared to earlier platforms is an exciting field of research. In this
paper we explore the impact of one such security mechanism in terms of the
resource claims on a modern smartphone platform.

Smartphones add the possibility of WiFi-based Internet connections to the
cellular communication. However, the phones also enable the peer-to-peer mode

⋆ The original publication is available at www.springerlink.com



of communication that has been subject of studies in the mobile ad hoc net-
works (MANET) research for over a decade. With the increased connectivity
provided by the infrastructure-based technologies there are no major deploy-
ments of ad hoc networks in every day scenarios. However, experience shows
that when disaster strikes the existing infrastructures are severely overloaded,
or rendered useless due to damages. Thus, message dissemination in disaster area
networks using a phone-to-phone mode of communication is a potential means
for establishing situational awareness. Our earlier work, among others, has been
focused on studies of energy and bandwidth constrained communication using
specially devised protocols for such scenarios [1, 2]. This work is part of the
larger context of the Hastily Formed Networks project supported by Swedish
Civil Contingencies agency [3].

While imposing policies and methods for preventing threats from malware
and adversary actions on modern smartphones is a subject attracting a lot of
attention [4–9], to our knowledge there is little earlier work that addresses in-
trusion detection with a focus on the resource footprint. There is, of course, a
large body of research on intrusion detection techniques for MANET [10], in-
cluding our own earlier evaluation of a distributed statistical anomaly detection
system [11]. However, these techniques are commonly evaluated in simulation
platforms due to the difficulty of performing large scale evaluations on physical
testbeds. This can act as a proof of concept for a protocol or a proposed defence
mechanism, but will not be able to answer questions on the resource claims.

Detection Diagnosis Mitigation

Adaptation

Alarm+

evidence

Attack

type

Performance monitoring

Parameter tuning

Observations Modified node

behaviour

Fig. 1: General Survivability Framework (GSF)

Some approaches based on intrusion detection combine misuse and anomaly
detection and one or more techniques for mitigation. An approach we have
adopted, called General Survivability Framework (GSF), combines four modules
that can be independently developed for various communication protocols (see
Figure 1). The detection module is an anomaly detector. It detects deviations
from normality by observing the traffic pattern in and out of the observed node.
The diagnosis module, reminiscent of a misuse detector, matches the observed
anomalous patterns with known attack patterns in order to aid a more direct
and focused mitigation. The mitigation module has an action to curb the effects
of each known attack, to be performed in the node that detects that attack. It



also has a generic mitigation for unknown attacks, e.g. acting in a more care-
ful mode with respect to peer communication. Finally, the adaptation module
is intended to adjust the GSF by inducing changes in the other algorithms to
adapt to changes in the operating conditions, including the handset’s monitored
features. In this paper we provide a modular design and partial implementation
(detection and mitigation boxes) of the GSF on top of an implementation of an
opportunistic dissemination protocol over the Android smartphone platform.

The design and implementation has been carefully devised to care for modu-
larity. This allows convenient replacements of the detection-diagnosis-mitigation
modules as well as the ad hoc communication protocol. This should provide a
basis for evaluating other detection engines and separate the effects of the GSF
from the underlying protocol that provides the means of communication. The
design has been realised on two modern Android smart phone platforms with
the goal of evaluating and isolating the added overhead imposed by the GSF.

The contributions of the paper are as follows (1) We have implemented Ran-
dom Walk Gossip (RWG) [1], a manycast algorithm for resource-efficient dis-
semination in disaster area (infrastructure-less) networks on top of an Android
platform. (2) We have implemented an instance of the modular GSF, a statistical-
based anomaly detection and a mitigation module, thus enabling the study of
its performance overheads on a physical device, which extends the earlier NS3-
based simulations [11] of the proposed technique. (3) We perform experiments
on a small testbed with 3 handsets and a laptop which indicate that the resource
overhead of anomaly detection and mitigation, in terms of CPU, memory and
latency, is quite low when the load in the network is within a measured operating
range.

The paper is organised in the following sections: Section 2 provides the back-
ground on the existing GSF and RWG, Section 3 explains the design and im-
plementation for Android, Section 4 details the evaluation done with the real
smartphones, Section 5 briefly describes the related work, and Section 6 con-
cludes the paper.

2 Background

2.1 General Survivability Framework

GSF is a generic framework in which arbitrary detection, diagnosis, mitigation,
and adaptation elements can be introduced. In this paper we base our imple-
mentation and evaluation on certain instances (detection and mitigation) of the
components named in Section 1. The detection component is based on the statis-
tical anomaly detection algorithm proposed in Cucurull et al. [11]. A statistical
approach is chosen due to its small footprint, ideal for the resource-constrained
nature of smartphones. The GSF periodically captures the network state, an
observation, which is represented by a vector of numerical values called features.
An observation is composed of network statistics, such as packet rates, estima-
tion of number of neighbour nodes, and so on. Each observation is taken every a



certain time defined by the evaluation period parameter. The detector algorithm
calculates the Euclidean distance between an observation and a normality model
local to the smartphone. The normality model of the system is generated in a
two-step process during a training period. First, a vector which is the average
of many observations is created. Second, a number of observations is taken to
calculate the threshold, which is the mean of the distances plus three times their
standard deviation. An observation is categorised as anomalous if the distance is
above a threshold. When an anomaly is detected a general mitigation, or specific
one if the attack is identified, is engaged. Earlier work [11] and an extension of
it for multiple mitigations and known attack classifications has provided a proof
of concept for feasibility of this approach in a distributed ad hoc communica-
tion setting. This paper will elaborate on realisation of some instances in a real
handset deployment.

2.2 Random Walk Gossip

RWG [1], the routing protocol chosen in the implementation, is a message dis-
semination protocol for intermittently connected ad hoc networks. The protocol
copes with intermittent connectivity, scarcity of bandwidth, and energy, as well
as unknown and unpredictable network topologies with partitions. RWG is a
manycast protocol, which means that a message is intended to reach a given
number k of nodes, with no knowledge of the node IDs in the topology. RWG is
based on a store-and-forward mechanism, i.e. each node keeps the messages to
forward in a local buffer until it realises they are k-delivered or they expire. The
protocol follows a three-way packet exchange (see Fig. 2).

Fig. 2: Random Walk Gossip

First, a Request to Forward (REQF), that includes the message payload,
is sent by the current custodian of the message (grey nodes in the picture).
The neighbouring nodes hear the REQF reply with an acknowledgement packet
(ACK). The custodian randomly chooses one of these nodes and sends an OK
to Forward (OKTF) indicating the next custodian. The other nodes retain the
message without actively disseminating it. Partitions can be overcome by the
movement of nodes. Thus, new uninformed nodes will be informed by some node
that keeps the message as inactive and restarts to disseminate. In order to keep
track of which nodes have seen a given message, each packet header contains
a bit vector, informed. Each position of the vector maps to one encountered



node ID, using a hash function. This is also used to indicate whether a current
encountered node has seen the message earlier. The vector enables the protocol
to know when a message is k-delivered (when k bits are set). Finally, when a
node realises that a message is k-delivered it sends a Be Silent (BS) packet to
its vicinity.

3 Layered Communication and Anomaly Detection

This section proposes a layered modular design for the implementation of the
described GSF and RWG services in Android smartphones with an emphasis on
component independence and interchangeability.

3.1 Overall architecture

The communication and anomaly detection services described in this paper are
offered over arbitrary point-to-point ad hoc network connections and for any set
of applications. An organisation based on a stack of loosely coupled services,
such as the well-known IP network stack, is therefore the most appropriate. The
service stack is composed of three layers, each one implementing one possible
service. Figure 3 details the layers and each implemented service.

Fig. 3: Layered communication and anomaly detection structure

The network, routing, and anomaly detection layers compose a block that
provides the main communication and anomaly detection service. The layers
interact among themselves with a well-defined and generic inter-layer service
API, which allows to easily exchange, aggregate, or bypass them. For example,



the anomaly detection layer is optional and can be bypassed. The application
layer comprises the applications that use the service. A specific API to interact
with the applications is provided by the topmost layer of the service stack.

In Android we have implemented each of the lower three layers as locally
bound services running all of them in a single process. At the same time, the
topmost layer of the stack offers the main service via inter-process communica-
tion open to the applications, which run as independent processes.

The inter-layer and inter-process service APIs support send, receive, and
other control operations. In the inter-layer service API the receive operation is
implemented with an event listener, provided by the upper layer, that is invoked
when a packet is received. The inter-process API provides the same operations,
but they are invoked by inter-process messages. The network packets are ex-
changed among the layers as raw byte arrays, allowing the abstraction of the
APIs from the specific type of packet and communication protocol.

3.2 Network Layer

The network layer provides an abstraction of the network over which the routing
protocol will actually run. It includes basic services to initialise the network
interface, set up an ad hoc network, and send and receive packets. As defined by
the inter-layer service API there is an operation to send packets and a listener,
provided by the upper layer, for notifying their reception. A dedicated thread
calls the listener each time a packet is received.

In the present implementation the packets are encapsulated within UDP
datagrams, which are present in virtually all current network stacks. Further-
more, this guarantees compatibility with an earlier implementation of RWG for
the Symbian platform [2].

3.3 Routing Layer

The routing layer provides the service to route the messages sent by the applica-
tion layer. This layer also provides the inter-process service API to interact with
the applications. This paper describes the implementation of manycast rout-
ing using RWG as described in Section 2. However, other protocols can also be
implemented since the inter-layer interface is generic enough to support them.

The realisation of the protocol is based on a former implementation for Sym-
bian OS [2]. Due to the extensive use of timers, the architecture follows an
event-oriented approach implemented with a task scheduler. The architecture,
depicted on Figure 4, includes the following components:

– Data Storage: data buffer that stores control information and payload of
the messages sent and received to and from the network.

– Task Storage: data buffer that stores tasks pending to execute. The tasks
may include sending specific types of packets or deletion of expired messages.

– Task Dispatcher: thread that executes the tasks present in the task storage
at the scheduled time.



Fig. 4: Random Walk Gossip architecture

– Wake One Packet: thread that regularly sends a packet when there is no
network activity, to discover neighbours.

– Application Handler: method that initiates the transmission of a message
sent from the application layer. It creates an entry to the data storage and
the required new task to execute.

– Packet Receiver: method that processes a packet received from the under-
lying layer, i.e. network or anomaly detection layers. It creates or updates
entries to the data storage and new tasks to execute.

The packets sent and received to and from the network are encapsulated in
objects of a class called RWGPacket. This class provides access to the packet
headers and payload. Since the service APIs only support arrays of bytes, the
object also provides methods to marshall and unmarshall the packets.

3.4 Anomaly Detection Layer

The anomaly detection layer provides a service to detect anomalies at network
routing level. It is placed between the routing layer and the network layer to
intercept the packets sent and received. Thus, it is able to detect anomalies and
apply a response without any modification to the other layers’ code. The archi-
tecture of the service, depicted on Figure 5, includes the following components:

– IDS Engine: main thread that governs (and periodically runs) the steps of
the intrusion detection loop, i.e. data collection, anomaly detection, diagno-
sis, and mitigation.



Fig. 5: General Security Framework architecture

– Data Source: component that processes each packet received or sent to
generate statistics for further analysis. It returns the statistics generated, as
a vector of doubles, when they are requested.

– Anomaly Detector: implements the detection box of GSF. This compo-
nent periodically analyses the statistics created by the data source to detect
anomalies. It returns alarms if an anomaly is detected.

– Diagnoser: implements the diagnosis box of GSF. This component diag-
noses a specific attack when a detected anomaly matches a known attack. It
returns a code that indicates the diagnosed attack.

– Mitigation: implements the mitigation box of GSF. This component applies
mitigation measures, such as modifying or rejecting the flow of packets sent
and received, when an anomaly is detected.

The service requires the RWGPacket class of the routing protocol to read and
manipulate the packets received. The Data Source and Mitigation components
are the only ones dependant on this class and the routing protocol present in
the routing layer. Hence the replacement of the routing protocol only requires
the modification of these two components.

3.5 Application Layer

The application layer comprises all the applications that use the main commu-
nication and anomaly detection service. It communicates with the service stack



through the inter-process service API. Many applications connected at the same
time to the service and running on different processes are supported.

3.6 Implementation on Android

This section discusses the implementation details of the communication and
anomaly detection service. It describes the decisions taken during the imple-
mentation, and the configuration of the system. Java has been the language
used for most of the project, with the exception of a few tools used for config-
uring the network. Since the service is intended to run on resource-constrained
handheld devices, performance has been a main criteria for the implementation
decisions.

UDP Network This module is implemented as a local Android service. It
runs on the main thread of the service stack and has an additional thread that
monitors the reception of packets, calling the listener provided by the upper layer
when a message is received. This component also initialises the ad hoc network.
A rooted phone is required for this purpose, since the network ad hoc mode is
not supported by the Android API and a set of native tools must be run with
administrator rights.

Random Walk Gossip This module, implemented as a local service, runs on
the main thread of the service stack and includes two additional threads for the
Task Dispatcher andWake One Packet components. These two threads only wake
up when new tasks or actions are scheduled or ready to be executed by using
signals and a timer respectively. This saves up resources spent on polling lists or
checking the state of the system. Other aspects optimised are frequent protocol
operations, such as the sending, reception, and management of messages, which
involve:

1. Creation, search, and elimination of packet entries in the Data Storage: the
Data Storage has a doubly-indexed organisation based on a HashMap and
a TreeSet. The HashMap provides constant access to the entries by the ID
of the message, operation repeated each time a packet arrives. The TreeSet
provides fast sequential access, O(n), to the entries sorted by the time-to-live
parameter of the message to speed up the deletion of expired messages.

2. Creation, search, and elimination of tasks in the Task Storage: the Task
Storage has a two-indexed organisation also based on a HashMap and a
TreeSet. In this case the hashmap organises sets of tasks by message ID,
which provides fast access, O(log n), to all the tasks related to a message,
e.g. to remove them when the message expires. And the TreeSet provides
fast creation and access, O(log n), to the tasks ordered by their release time.

3. Marshalling and unmarshalling of packets to/from byte array : the marshall
and unmarshall methods of the RWGPacket class have been implemented



minimising the creation and destruction of objects. It is also worth mention-
ing that special classes have been created to support unsigned integers and
binary operations to deal with the headers of the network packets.

General Survivability Framework This module, implemented as a local
service, runs on the main thread of the service stack and includes one additional
thread for the IDS Engine component. This thread is waken up following the
evaluation period of the IDS. The value chosen for this period is a trade-off
between the IDS performance and the CPU utilisation.

Each of the four components (as described in Figure 5) that are part of
the IDS loop have a well defined interface (IDataSource, IAnomalyDetector,
IDiagnoser, and IMitigation) and are easily replaceable. This facilitates the im-
plementation and evaluation of different detection and diagnosis algorithms and
mitigation techniques. Other aspects that have been considered are:

1. Anomaly detection frequency : in earlier versions of GSF, the anomaly detec-
tor was triggered each time a packet was received, and later the alarm were
aggregated to issue a verdict. In this implementation, the anomaly detection
is triggered periodically, and when a packet is received, only the statistics to
feed the detector are updated, reducing the number of operations performed.

2. Marshalling and unmarshalling of packets to/from byte array : the Data
Source and Mitigation components of the IDS unmarshall the packets using
the RWGPacket class. The IDataSource and IMitigation interfaces are inde-
pendent of the routing protocol and oblivious to this class. Hence, a generic
IPacket base class was created to ease the exchange of generic packet objects
among the components. Thus, packets are unmarshalled by the Data Source
and forwarded in this state to the Mitigation component, avoiding the need
to do the operation twice.

4 Performance evaluation

This section describes the evaluation of the performance of the implemented
services by testing over a simple setup with three Android smartphones. The
main phones are a LG P990 Optimus 2x and a Samsung I9100 Galaxy S2, both
with dual core ARM Cortex-A9 processors at 1Ghz and 1.2Ghz, 512MB and
1GB of RAM, and Android v2.2 and v2.3, respectively. The Samsung and LG
phones, with implementations of RWG and GSF, were used to set up an ad hoc
network. An application to generate load, which creates messages periodically,
were installed in the LG phone. An HTC G1 smartphone and a regular laptop
were used to create an attack and monitor the network respectively.

Four tests were performed with different network loads, half of them with
GSF enabled and half of them with the drain attack [11]. This attack sends ACK
packets with random non-existing identities that trigger the retransmission of
the messages that the neighbours store in their buffers. A flood of packets sent
to the network and processed by the receivers is created. The generic mitigation



described in Cucurull et al. [11] has been implemented. Hence the ACK, OKTF,
and BS packets coming from unknown nodes during an alarm period are rejected
(known nodes are the ones that sent at least one REQF packet during non alarm
periods). This mitigation also includes a limited forwarding of the information
contained in the informed vectors exchanged, although in this particular case
without effect. The mitigation is strictly applied during periods in which an
alarm is raised.

All the tests lasted 10 minutes, plus one minute for network initialisation.
The last 5 minutes of each test contained the drain attack. The normality models
were trained during 5 minutes with each network load. The rate of the attack
was set to 2 ACK packets/second. The parameters used for the routing protocol
are the ones described in Asplund et al. [1], except the time the protocol waits
for ACK messages after sending a REQF. This parameter was set to 0.3 seconds
following further studies on the Symbian platform [12]. To keep compatibility
with previous implementations, the chosen size for the informed vectors was lim-
ited to 16 bits each. The time to live of the packets was set to 60 seconds, which
scales it to be consistent with earlier simulations. The main parameter of GSF
is the evaluation period, which is also used to derive the packet statistics. The
value used was 5 seconds, that is enough to get relevant statistics in the net-
work created and provide reasonable attack detection delays given the explained
setup.

4.1 Evaluation scenario

The scenario comprised one phone (LG) sending messages and another one (Sam-
sung) receiving and retransmitting them. The main purpose of these tests is to
analyse the overhead of the GSF implementation and demonstrate its function.

The performance tests use four metrics: the CPU usage, the memory usage,
the propagation latency for a message, and the Packet Transmission Rate (PTR)
in the network. The CPU and memory usage were obtained with a small C
application installed in the Samsung phone that monitored the process of the
service. The CPU usage is read every 250ms and the values shown in the next
sections are the average of all the observations. The CPU usage covers both CPU
cores, i.e. when only one core is used at 100% the metric shows a total CPU usage
of 50%. The propagation latency has been calculated in the LG phone. It is the
average time elapsed starting from the time a message is sent until it is received
back again because of its dissemination by the other phone. The PTR, which
shows the total number of packets exchanged per second in the network, has
been calculated with a laptop sniffing the traffic with the Wireshark application.

The tests have been performed in four different settings which are the product
of enabling and disabling the GSF and applying or not applying the drain attack.

4.2 CPU and memory usage

The system was evaluated for different network loads up to 16 messages per
second. The average CPU usage obtained, depicted in Figure 6, shows that:



 0

 20

 40

 60

 80

 100

4 8 16

A
ve

ra
ge

 C
P

U
 u

sa
ge

 (
%

)

Network load (msgs/sec)

RWG
RWG + GSF (no attack)

RWG + Drain Attack
RWG + GSF + Drain Attack

Fig. 6: Average CPU Usage

– The GSF functionality only imposes a slight increment to the CPU usage.
GSF, by the virtue of its design, has been optimised to consume as little
resources as possible despite the fact that the evaluation interval is kept
short for a faster detection latency.

– When GSF is enabled and an attack is introduced, the CPU usage is kept
to levels similar to the case without an attack, except for the load of 16
msgs/sec. Instead, when an attack is introduced and GSF is not enabled,
the CPU usage easily exceeds the 40%.

The maximum CPU usage for the three network loads applied (4, 8, and 16
msgs/sec) with GSF enabled, but without attack, was found to be 20%, 25%,
and 84% respectively.

The CPU usage increase during the attack is a consequence of the high num-
ber of packets produced. The packets saturate the service causing message re-
transmissions that produce more saturation. When the load is set at 16 msgs/sec,
the attack produces a cascading chain of retransmissions that saturate the sys-
tem before giving any chance to GSF to completely mitigate the effects of the
attack. Due to this increase of packets (around twice the normal rate) and the
overhead of GSF processing them, the CPU usage is a bit higher than when GSF
is not enabled.

Another aspect observed is that, although the service stack is composed of
many threads, the CPU use is not well-balanced. Only one thread takes care of



the received packets, and too many resource consuming operations are assigned
to it. When the number of packets exceed a certain limit, one core is used at
100% while the other is idle. It is worth mentioning that most of the CPU usage
is due to the cost of processing each packet received in the routing layer.

Regarding the memory, in all the cases the service stack used between 21 and
27 MB. No significant changes were observed either when enabling the GSF or
in presence of the drain attack.

4.3 Latency

The propagation latency was evaluated for the same network loads. The results,
depicted in Figure 7 with logarithmic scale, show that:

 100

 1000

 10000

 100000

4 8 16

P
ro

pa
ga

tio
n 

la
te

nc
y 

(m
s)

Network load (msgs/sec)

RWG
RWG + GSF (no attack)

RWG + Drain Attack
RWG + GSF + Drain Attack

Fig. 7: Message propagation latency

– GSF does not impose an increment to the message latency when it is enabled.
– Similar to observations on the CPU usage, when GSF is enabled and an

attack is introduced, the latency is kept close to the one without attack
except in the high load case (16 msgs/sec). Instead, if GSF is disabled the
latency increases exponentially, because the attack saturates the network
with unnecessary packets.

As mentioned before, with the 16 msgs/sec load the whole network is desta-
bilised before GSF can mitigate the attack.



4.4 Packet transmission rate

The PTR was also evaluated for the above three loads with similar effects. When
measuring PTR we are considering the total load on the network, both data
(embedded in the REQF packet of the protocol) and signalling (ACK, OKTF,
BS). Figure 8 shows a segment of a curve that represents the packet rate observed
under different loads of data with the GSF enabled and the drain attack.

Fig. 8: Packet transmission rate

The behaviour is analogous to the one observed in simulation studies [11]. The
normal rate without attack, until 360 seconds when the attack starts, is around
16, 30, and 100 pkts/sec for the loads of 4, 8, and 16 msgs/sec respectively.
When the attack starts it increases to 400, 750, and 800 pkts/sec respectively.
But, after 5 seconds when the attack is detected, and matching with the evalu-
ation interval, the rate decreases to around 20, 40, and 200 pkts/sec because of
the mitigation applied. These rates, after around 60 seconds, go down close to
the initial levels, except for the 16 msgs/sec load. This difference of rate before
the attack and during mitigation is inherent to RWG and due to some retrans-
missions of messages lost during the traffic peak produced by the attack in the
first 5 seconds.

5 Related work

With the large number of smartphones sold [13], the security aspects have be-
come matter of concern. Recently, many studies [4, 14, 15] are devoted to the
analysis of smartphone security. Shabtai et al. [15] study the security mecha-
nisms integrated in the Android devices. They also include a taxonomy of the
identified threats and possible types of solutions. These include network ma-
licious activity and draining mobile device’s resources as threats and anomaly



detection as a potential solution among others. In Android most of the intru-
sion detection work is devoted to malware detection (for an overview see [16]).
Nevertheless, the mechanisms applied share many characteristics with the ones
applied for mobile ad hoc networks.

Cheng et al. [5] present SmartSiren, a collaborative mechanism for virus
detection and mitigation on smartphones. The system detects viruses spread via
SMS/MMS and Bluetooth by monitoring the messaging activity.

Bose et al. [6] propose a behaviour-based malware detector for smartphones.
It monitors the behaviour of the applications, taking into account the temporal
patterns of the system calls and events, creating behaviour signatures. The sig-
natures are compared and classified against a database that contains samples of
fair applications and malware.

Schmidt et al. [7] present a technique for malware detection for smartphones.
The work is focused on the selection and management of features to monitor
the phone. The system is composed of a client (for Symbian S60 and Windows
Mobile 6), installed in the phone. It periodically collects and sends a number of
features to a server that analyses them with existing knowledge-based learning
algorithms.

Kim et al. [8] describe a misuse detection approach based on monitoring
the power consumption of smartphones. A database is populated with power
signatures of fair applications and malware. They propose a two component
approach that includes a client in the phone that collects the signatures and
a data analyser, which can be in the phone or in a server, that performs the
detection. The system is implemented over Windows Mobile 5.0.

Shabtai et al. [9] present Andromaly, a behavioural host-based malware de-
tection system for Android devices. The system is composed of many components
grouped as feature extractors, processors (for detection and analysis), main ser-
vice, and graphical user interface. They perform extensive tests with six different
machine learning classification algorithms and three feature selection algorithms
to study the obtained detection performance. This paper shares the philosophy
of our work, but it is applied to malware instead of network attacks.

Our approach, compared to Cheng et al. [5] and Schmidt et al. [7], is not
dependent on external servers and, as opposed to Bose et al. [6], it is fully imple-
mented within the smartphone. These two characteristics are very important in
an ad hoc environment in which communications are not reliable. The approach
also includes mitigation, usually not present in other works [7, 8, 6, 9]. As shown
in Section 4 the cost of our solution is not expensive in terms of CPU or memory
overhead. A complete resource usage evaluation, as covered by our work, is not
usually provided [5–8].

6 Conclusions

This paper described the design of an intrusion detection service for Android
smartphones applied to network routing level. The design emphasises the mod-



ularity of the service to facilitate its implementation with different routing pro-
tocols and with different detection algorithms and attack mitigation techniques.

An implementation of the service on top of a dissemination protocol for
intermittently-connected networks was developed. Its performance was tested
and analysed using several metrics, such as the CPU and memory usage, the
rate of packets exchanged in the network, and the latencies to propagate the
messages. These tests demonstrated that the intrusion detection service produces
a low overhead on the phone and the network, and confirmed the reduction of
the impact of attacks. The code for the implementation can be shared in the
context of research cooperation. However, due to reuse of some parts of the code
in a critical infrastructure project, the code is not public.

Further work can be done along two different lines. While the implementa-
tion has provided evidence for the feasibility of the deployment of a survivability
framework, a more comprehensive implementation would need to address diag-
noses of different known attacks and mitigations thereto. At the same time larger
testbeds, with tens of smartphones, can be created to evaluate the capacity of
the GSF to detect and mitigate attacks on a more realistic testbed. Further work
could also include more detailed studies of the energy consumption and energy
profiling of the whole service.

Acknowledgements

This work was supported by a grant from the Swedish Civil Contingencies
Agency (MSB) within the project “Hastily Formed Networks” [3], and the na-
tional Graduate school in computer science (CUGS). We want also thank Ekhiotz
Jon Vergara and Mikael Asplund for cooperation based on earlier works.

References

1. Asplund, M., Nadjm-Tehrani, S.: A partition-tolerant manycast algorithm for
disaster area networks. In: IEEE Symposium on Reliable Distributed Systems,
Los Alamitos, CA, USA, IEEE Computer Society (Sept. 2009) 156–165

2. Vergara, E.J., Nadjm-Tehrani, S., Asplund, M., Zurutuza, U.: Resource footprint
of a manycast protocol implementation on multiple mobile platforms. In: The
Fifth International Conference on Next Generation Mobile Applications, Services
and Technologies. NGMAST’11., IEEE (Sept. 2011)

3. Hastily Formed Networks: http://www.ida.liu.se/∼rtslab/HFN.
4. Landman, M.: Managing smart phone security risks. In: 2010 Information Security

Curriculum Development Conference. InfoSecCD ’10, New York, NY, USA, ACM
(2010) 145–155

5. Cheng, J., Wong, S.H., Yang, H., Lu, S.: SmartSiren: virus detection and alert
for smartphones. In: Proceedings of the 5th international conference on Mobile
systems, applications and services. MobiSys ’07, New York, NY, USA, ACM (2007)
258–271

6. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile
handsets. In: Proceeding of the 6th international conference on Mobile systems,
applications, and services. MobiSys ’08, New York, NY, USA, ACM (2008) 225–238



7. Schmidt, A.D., Peters, F., Lamour, F., Albayrak, S.: Monitoring smartphones for
anomaly detection. In: Proceedings of the 1st international conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications. MOBILWARE ’08,
Brussels, ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering) (2007) 40:1–40:6

8. Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy anomalies and mobile
malware variants. In: Proceeding of the 6th international conference on Mobile
systems, applications, and services. MobiSys ’08, New York, NY, USA, ACM (2008)
239–252

9. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a be-
havioral malware detection framework for Android devices. Journal of Intelligent
Information Systems (2011) 1–30

10. Xenakis, C., Panos, C., Stavrakakis, I.: A comparative evaluation of intrusion
detection architectures for mobile ad hoc networks. Computers & Security 30(1)
(2011) 63 – 80

11. Cucurull, J., Asplund, M., Nadjm-Tehrani, S.: Anomaly detection and mitigation
for disaster area networks. In Jha, S., Sommer, R., Kreibich, C., eds.: Recent Ad-
vances in Intrusion Detection. Volume 6307 of Lecture Notes in Computer Science.,
Springer Berlin / Heidelberg (2010) 339–359

12. Vergara, E.J.: Implementation of a manycast protocol for intermittently connected
mobile ad hoc networks in disaster areas (2010) Master Thesis. Linköping Univer-
sity, http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58603.

13. IDC: Press Release (June 2011)
http://www.idc.com/getdoc.jsp?containerId=prUS22871611.

14. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android security. Security
Privacy, IEEE 7(1) (Jan.-Feb. 2009) 50 –57

15. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google an-
droid: A comprehensive security assessment. Security Privacy, IEEE 8(2) (March-
April 2010) 35–44

16. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-based mal-
ware detection system for Android. In: Workshop on Security and Privacy in
Smartphones and Mobile Devices 2011. SPSM 2011, ACM (October 2011)


