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Abstract—In this paper we propose a distributed approach
to construct vicinity resource maps at each node in a delay-
tolerant network. The scheme uses recent encounters to estimate
the availability of the following resources: energy, buffer space,
and bandwidth, in the vicinity of a given node. We then show how
a store-carry-forward scheme may benefit from having access
to these resource estimates. While knowledge about resources
available in the vicinity allows nodes to implement meaningful
custodian election strategies, an evaluation of available band-
width and contact time allows them to carry out adaptive
queue management strategies. Thus, such strategies can be
approached from a holistic perspective based on the availability
of the three resources under consideration in node proximity. We
validate our model separately in time-varying and space-varying
environments. In addition to synthetic mobility models (random
waypoint) we validate our resource estimation in a disaster
area mobility model (using Bonn motion traces). We show that
by using this information a routing protocol may dramatically
improve its delivery rate and reduce energy overhead while
keeping delivery latency almost constant.

Index Terms—routing; resource management; delay-tolerant
networks

I. INTRODUCTION

Opportunistic routing schemes are designed to deliver mes-
sages in the absence of any scheduling information in parti-
tioned networks. The latter have often been referenced in the
literature as delay- and disruption-tolerant networks (DTN)
[1]. The idea is to allow some network nodes to participate in
forwarding messages in partitioned ad-hoc networks using the
store-carry-forward paradigm. Many opportunistic schemes as-
sume that nodes possess an average level of network resources
that are homogeneously distributed over the network [2], [3].

However, resource distribution is not homogeneous in real
networks, so the average resource assumption usually does
not hold. Real networks may be composed of handhelds, car
embedded computers, laptops, fixed throwboxes and sensors,
which obviously have different energy requirements and differ-
ent buffer space allowances. Moreover, neither message source
nodes, nor message destination nodes need to be uniformly
distributed across the node population. Therefore network
resource consumption is uneven. Given this resource hetero-
geneity, having a local estimate for the resources available in
the vicinity of each node would be highly beneficial for routing
decisions. For example, based on such estimates a node may
decide to whom to forward its messages (custodian election)

and which messages should be transferred first (queue man-
agement).

In an attempt to enhance delivery performance and to
minimise end-to-end delay in disconnected networks, recent
studies have looked at node behaviour from several new
perspectives. Some put forward the idea of social correlations
between nodes which may influence node contact distribution
[4], while others propose techniques based on a combination
of social context and node topology information [5], [6]. These
techniques select some key nodes, among those that are located
more centrally in the network or are more active socially,
considering them to be better suited for forwarding incoming
messages. In so doing, however, they place additional strain
on the resources available to these key nodes, and they will be
the first to fail as a consequence of network congestion, buffer
exhaustion, or battery depletion. Thus, in the absence of any
metrics for the resources available to nodes, these strategies
may actually jeopardise initial performance gains by losing
the most important nodes through overuse.

Other studies focus on the particular movements building
up higher densities around points of interest [7]. However,
in partitioned ad-hoc networks the localisation of such points
of interest, acting as resource concentrators, is difficult to
achieve. Moreover, resource concentrators may move in space
and vary in time. For example, the distribution of resources
in a disaster area cannot be planned in advance. Somewhat
similarly, the configuration of points of interest in case of a
traffic jam triggered by an accident varies in space and time
as an effect of the accordion phenomenon [8]. Finally, even
when the geographical distribution of resources is known in
advance and is constant in time, being able to detect them
autonomously, that is, without central knowledge, makes a big
difference in terms of protocol robustness.

Knowing the time-varying and space-varying resource dis-
tribution in a network can have a huge impact on the choice
of routing strategies, even when only approximate knowledge
is available. An important problem then is how to select
custodians efficiently, i.e. depending on own resources and
on resources available in the neighbourhood. For example, a
node may choose not to forward a message at a particular
encounter knowing that better opportunities may show up
in the near future. Another problem to consider is how to
prioritise messages in a message queue so as to give them
a good chance to be transferred within the limited contact



window of an encounter.
In this paper we propose a distributed algorithm for esti-

mating the resources available in the proximity of a node,
with no a priori knowledge. We study the accuracy of this
distributed algorithm and validate it in three different sim-
ulation settings. We consider separately space-varying and
time-varying resource maps, and perform validation in both a
random waypoint scenario and a disaster area scenario (using
Bonn motion traces [9]). We then go on to propose a set of
policies where those estimates are used for selecting a suitable
custodian (custodian election) and for choosing the right
message to transfer (queue management). By applying these
policies in the context of a standard Epidemic protocol [10]
we show substantial performance enhancement as compared
to the standard routing baseline.

To sum up, the contributions of this paper are as follows:
(1) We propose a distributed algorithm for calculating resource
availability in node vicinity; (2) We validate the algorithm
in different scenarios, showing that its inaccuracy is below
10% in the scenarios considered; (3) We propose and then
implement custodian election and message queue strategies
using all three resources in a holistic way. We demonstrate
a 30% gain in delivery rate and a 22% gain in energy
consumption as compared to a standard Epidemic routing
baseline in a disaster area scenario.

II. RELATED WORK

To the best of our knowledge, there is no unified proposal
in the literature linking together the most relevant resources
in DTN: energy, buffer space, and bandwidth, into one single
abstraction. In our case, past encounters are used to predict the
evolution of available resources in the near-term. Prediction-
based schemes have already been proposed in earlier works
[3], [11], but they mostly deal with contact probability, thus
ignoring the amount of resources nodes are contributing to
the network. On the other hand, in a heterogeneous environ-
ment, where resources range over a wide spectrum of types
and levels, estimating resource availability remains an open
question.

Another prediction-based protocol, MobySpace [12], pro-
poses to construct a high-dimensional Euclidean space from
node mobility patterns, while also assuming prior knowledge
(or learning) of those patterns. We have also used Euclidean
space in our approach, but we have focused on the resources
available in node vicinity. Moreover, the equations we have
proposed are not tightly constrained by one mobility model
or another, as demonstrated by the use of two alternative
scenarios.

Heterogeneity has been studied by Spyropoulos et al. [13],
who propose a utility function for the selection of appropriate
custodians. However, their paper does not consider accounting
for resources in general, or bandwidth in particular, which
leads to the questionable assumption that a message may be
conveyed over a meeting regardless of its size.

III. RESOURCE AVAILABILITY IN PARTITIONED
NETWORKS

In this section we propose an algorithm for calculating the
level of resources available in the vicinity of a node. We
start by developing a generic model, which we then apply
to individual network assets, such as buffer space, energy, and
bandwidth.

We consider a sparse network where resources are poten-
tially not uniformly distributed. As a consequence, there may
be pockets of resources in the network, in the form of energy
or buffer space, which may vary both in time and space.
Incidentally, the way in which resources are distributed in a
network may also be the consequence of mobility, but we are
not assuming any particular mobility pattern for our model.
As an effect of sparsity, we will assume that most meetings
happen between two nodes.

A. Resource variation in time and space. The generic model

We consider a generic resource R for a given node. Obvi-
ously, every node knows its own resource level. Let us denote
with RoA the own resource level available at node A and with
RvA the estimated resource available in the vicinity of node
A. Applying the algorithm below, every node will be able to
evaluate the expected virtual value of resource R available in
its vicinity.
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Fig. 1. Node A meetings history within observation time span

Let us consider a node A moving at speed ~v, and a set of
nodes Bi...Bj moving at speeds ~vi...~vj , respectively. Every
node knows its own vectorial speed and resource level, and
communicates them at each meeting. For instance, when a
meeting happens between node A and node Bi, node A
receives vector Ii from node Bi:

Ii = (~vi, R
o
i )

Consider a sequence of encounters between node A and nodes
Bi, ..., Bj at times ti, ..., tj at which A collects resources
Roi , ..., R

o
j from those nodes. We assume that A maintains a

log of maximum j − i + 1 encounters during a sliding time
window of size τ . After meeting the last node (Bj), node A
will have the following information available:

MA =

 ti ti+1 ... tj
~vi ~vi+1 ... ~vj
Roi Roi+1 ... Roj





MA is determined by adding local time information tk to
the vector Ik received at each meeting with node Bk. We
note that the information the node needs to store is limited for
two reasons: first, because the maximum number of columns
of the matrix (j − i + 1) is limited, and second, because all
information older than τ is discarded (such as tj − ti < τ at
any point in time).

Considering that speeds ~v and ~vi, ..., ~vj remain constant
for the short observation time span τ , we can calculate the
Euclidean distance between node A and nodes Bi, ..., Bj at
a later point in time than the encounter time, as shown in
Figure 1. We can also calculate the contribution of node Bk
to the estimated virtual resources of A as being in reverse
proportion to the distance from Bk to A. We denote the
resource footprint in the vicinity of A as RvA, and compute
it as a function of resources met by node A during the time
span τ . Finally, RvA is proportional to the number of meetings
A had over the observation time τ . As we do not want to limit
our findings to one particular mobility model, we do not use
meeting probabilities. Consequently, we need to rely on some
derived measures. Putting all the information together, we can
apply the formula below to calculate the estimated available
resource in the vicinity of node A:

RvA =
nτ

ω × τ︸ ︷︷ ︸
cA

×

j∑
k=i

Rok
dk

j∑
k=i

1

dk︸ ︷︷ ︸
RA

(1)

where: τ = observation time span
ω = node’s average meeting frequency
nτ = j − i+ 1, number of nodes A actually met

during observation time τ

In other words, as meetings take place and resource in-
formation is exchanged, each node builds up its own map of
virtual resources, assigning greater weight to those at a shorter
distance.

Equation (1) can be decomposed into:
• an element cA reflecting the density of meetings in the

given region. This acts as a generic factor irrespective of
resource type R.

• an element RA representing the average availability of
resource R weighted by the inverse of the distance
between A and the nodes met.

The validation of this formula is done in extensive scenarios
in Sections IV and V but here we consider the following
special cases for discussion:
• if node A had no meetings over the τ time span:

lim
nτ→0

RvA = 0 because nτ respectively cA is 0
• if the node actually had an average number of meetings

over time span τ : lim
cA→1

RvA = RA

B. Modelling individual network assets

After having developed a generic model for calculating
resources available in node vicinity, let us now move on to
the second step in our modelling exercise, and refine this
equation for individual network assets: buffer space, energy,
and bandwidth. While buffer space and energy are properties
related to one node, bandwidth is a property linking together
two or more nodes. We treat the three categories of resources
in an increasing order of complexity.

1) Buffer space: The buffer space case is straightforward.
Equation (1) can be used directly for calculating buffer space
by simply replacing the generic resource with buffer space
in the formula. This is possible because buffer space remains
constant as long as no messages are exchanged between nodes.
That is, for short observation times τ and low network load,
we can approximate a node’s buffer space at time t with the
buffer space we have observed at time ti > t − τ . Denoting
the available buffer size with S, we can directly replace R by
S in Equation (1).

2) Energy: The energy model is more complex, because
energy levels do not remain constant, even in the absence
of message exchange. In case there is traffic, energy is
depleted by the sending and receiving of messages at a rate
approximately proportional to the size of messages exchanged.
In case there is no traffic, node energy decreases simply due
to network sensing. We can approximate the energy level at a
node, at one particular timepoint t, by relating it to the relevant
factors, as follows:

Eo(t) = Emax − es × t︸ ︷︷ ︸
Energy for sensing

− em ×m︸ ︷︷ ︸
Energy for message exchange

where: Eo(t) = node’s own energy at time t
Emax = maximum energy available for this type of node

es = energy factor for sensing
em = energy factor used for message exchange
m = total size of exchanged messages

Factors es and em can both be measured for different types
of nodes in a laboratory setup [14]. In a simpler setup, every
node can measure energy depletion as a function of time
just by retrieving battery levels at 2 different times. Denoting
this attenuation rate by e, the above equation is simplified as
follows:

Eo(t) = Emax − e× t︸︷︷︸
attenuation with time

Thus, time variable Eo(t) replaces the constant Rok in
Equation (1) as a node’s estimate for own energy.

3) Bandwidth: For the purposes of this model, we define
bandwidth as the maximum volume of data DN that a node N
can exchange at one meeting. Our model is meant to achieve
a twofold objective: first, to provide an estimate for a node’s
capacity to send and receive messages (at one meeting or
over a given time span); and second, to help determine which
message to send, depending on message size and the estimated
probability of success.



The theorem we propose below will allow us to estimate
the volume of data exchanged between two nodes, as well as
the probability of a message to pass, taking contact window
estimation as a basic factor. Contact window denotes the
time during which two nodes are in radio range of each
other, and represents a critical factor for realistically evaluating
bandwidth in mobile networks. As mentioned earlier, we
consider that most encounters will happen between only two
nodes, as a result of network sparsity.

Theorem 1: For a meeting between two nodes (disk radio
range with radius r), moving at a relative speed of ~vrel and
communicating over a protocol with nominal bandwidth bn
we can calculate:

(I) the maximum volume of data exchanged during the
meeting as:

Dmax =
2r

|~vrel|
× bn

(II) the expected volume of data exchanged during the
meeting as:

Dexp =
πr

2|~vrel|
× bn

(III) the probability of an exchange exceeding a given size:
Pr{D ≥ pDmax} =

√
1− p2 where p ∈ [0, 1]

Proof: As shown in Figure 2, a node crosses the radio
range of another on a trajectory PQ. This trajectory is covered
at a speed ~vrel and P is the incidence point between the nodes’
radio ranges. Using geometry we can calculate the trajectory
between P and Q as a function of x:

f(x) = PQ = 2
√
x(2r − x)

2
r

x
P Q

C

R

S

2r

2rr

f(x)

x

vrel

Fig. 2. Contact window as a function of incidence point

If we start out from the assumption that nodes meet, x ∈
[0, 2r] and contact point P may be anywhere on the circle arc
R̂PS. Moreover, in the generic case, x is a random variable
uniformly distributed over the interval [0, 2r]. Thus, Dmax can
be calculated as:

Dmax =
PQmax
|~vrel|

× bn =
2r

|~vrel|
× bn (I)

Dexp =
PQexp
|~vrel|

× bn =

∫ 2r

0

f(x) dx

2r
|~vrel|

× bn =

2r2 arctan(

√
x

√
2r − x

) +
√
x(2r − x)(x− r)|2r0

2r|~vrel|
× bn =

πr

2|~vrel|
× bn (II)

Now, we calculate the probability of having an exchange
exceeding a given fraction p ∈ [0, 1] of the maximum Dmax

as:

Pr{D ≥ pDmax} = Pr{f(x) ≥ p2r} =

Pr{2
√
x(2r − x) ≥ 2pr} = |x1 − x2|

2r
=

√
1− p2 (III)

where x1 and x2 are the solutions of the quadratic equation
2
√
x(2r − x) = 2pr

Theorem 1 allows us to estimate one particular network
asset – bandwidth – characterised at one node, namely the
expected data volume that this node can exchange at one
particular meeting. We can now easily integrate bandwidth
into our model for generic resources in order to estimate
the expected bandwidth value in the vicinity of a node, as
follows. At each meeting time ti, ..., tj a node knows its own
speed as well as that of its neighbours, so it can calculate
the relative speeds vrel,i, ..., vrel,j . In a given scenario, r
and bn are approximated as known constants. Therefore, by
using Theorem 1.II, each node can calculate the array of
expected data to be exchanged (Dexp,i, ..., Dexp,j) and, by
using Equation (1), it can estimate the expected amount of
data Dv

A that can be exchanged by node A over the observation
time τ .

One additional application of Theorem 1 is that, if node A
actively manages its message queue, it can also choose which
message to send by evaluating the probability of successful
message transmission given by Theorem 1.III.

IV. ALGORITHM VALIDATION

In this section we demonstrate how the virtual resources in
the neighbourhood of a node can be estimated by applying
Equation (1) upon exchanges between nodes, as proposed
in Section III. The goal of validation is to show that these
estimates are indeed close enough to the real resource levels
in the network. We have organised our validation exercise in
two sections: in this section we validate our algorithm applied
to buffer space in three different scenarios, while in Section V
we validate our holistic approach considering all three network
resources.

A. Validation in a space-varying environment

As shown by Hyytiä et al. [15], when nodes move according
to random waypoint mobility in a square, node density is
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Fig. 3. Calculation versus baseline in a simulation environment; we plot available buffer space in the vicinity of a node

maximum in the middle of the area and decreases to 0
towards the borders. This observation allows us to validate
Equation (1) in a simple, yet revealing experiment where we
can isolate the time-varying element from the space-varying
element. Assuming constant buffer space per node (i.e. nodes
do not exchange large messages, but only small amounts
of information, as required for Equation (1)), virtual buffer
distribution is given predominantly by node densities and is
constant in time.

We used the ONE simulation environment [16] where we
considered a set of 100 nodes moving at 20 m/s according to
random waypoint mobility within a space defined by a square
with an edge length of 1800 m, as well as a ”spy” node A
moving very slowly at 0.04 m/s on a rectilinear path starting
from the middle of the northern edge and ending in the middle
of the southern edge. Initially, all nodes have a fixed amount
of buffer space (500 MB) and, since no message is delivered
between nodes, the resource map is defined exclusively by
node density. We modelled the random waypoint movement
by creating 100 different movements and computing the av-
erage value of RvA over time, according to Equation (1). We
considered an observation period of τ = 5 minutes over a 12-
hour scenario, while limiting the MA columns to 40. In Figure
3 (A.) we plot the values calculated for RvA (as recorded by
the ”spy” node A using Equation (1) for buffer space) versus
the values given by the baseline (node density probability
mass computed according to the formula presented in [15]),
for the same ”spy” node. As can be seen in Figure 3 (A.),
Equation (1) closely follows the baseline values for buffer
space in the vicinity of the ”spy” node. An explanation for
the slight difference between the baseline and the calculated
values may be that while baseline values consider a 0 radio
range (calculating only node densities), values calculated using
Equation (1) consider a radio range of 20 m.

B. Validation in a space- and time-varying environment

In the previous subsection, the spatial distribution of re-
sources provided us with a simple baseline. However, if we
move on to a space- and time-varying model, or a non-
synthetic mobility model, choosing a baseline becomes more
complicated. In this subsection we propose two scenarios, with
two different baseline alternatives:

• future encounters, calculated as the sum of own re-
sources (Ro) of all peers that will be actually met by
the observed node over a reference timespan1 τf .

• cell resources, calculated as the sum of own resources
(Ro) of all nodes sharing the same cell as the node
itself at a given time. (Cells are obtained by dividing the
simulation playground into a number of equal squares.)

1) Random waypoint scenario: In this scenario, our setting
was again a 100-node network performing random waypoint
movement in the 1800 m × 1800 m square playground. We
then injected a large number of messages over a short period
of time in this network, which reduced buffer space in most
nodes to a minimum level. This was followed by a period of
slow recovery in buffer space, as the messages were gradually
delivered and therefore deleted from the buffers.

Figure 3 (B.1.) shows the evolution in time of RvA for a
representative node, using buffer space data, as compared to
the future encounters baseline. However, comparable accuracy
can be found for all the other 99 nodes. If we define inaccuracy
I as the distance between the calculated curve c(t), and
the baseline curve b(t), we can come up with the following
formula:

I =

∫ T

0

|c(t)− b(t)| dt∫ T

0

b(t) dt

(2)

where T is the simulation time (12h). By applying this
formula, we find that inaccuracy I is between 2% and 6% for
all 100 nodes in this scenario, for both baselines proposed:
future encounters and cell resources.

2) Disaster area scenario: We consider a 150-node net-
work moving according to a disaster management scenario as
described earlier [9], known as Bonn Motion. In order to create
some heterogeneity in the system, nodes were divided into 3
groups, each including 50 nodes. Only the first group of nodes
were injecting messages over the first half of the 12 h scenario,
addressed uniformly to all nodes. Buffer space allocation was
also uneven: it was 500 MB for the first two groups of nodes

1For the sake of simplicity we will use τf = τ
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Fig. 4. Performance comparison of plain Epidemic routing (E) with Custodian Election (E+CE) and Queue Management (E+CE+QM)

and only 50 MB for the third one. Playground was 360 m ×
170 m and the cell used to calculate the cell resource baseline
was 10 m × 10 m.

In Figure 3 (B.2.) we present the evolution of RvA for one
particular node, calculated for buffer space, compared with the
cell resources baseline. For this scenario, maximum inaccuracy
as compared to cell resource baseline is 10% and typically
below 6%.

We have now demonstrated that the generic notion of virtual
vicinity resource can be used in two mobility contexts to
estimate the buffer resource with a low level of inaccuracy. We
have done this considering both time-varying parameters (load
and movement) and space-varying parameters (movement).

V. APPLYING THE HOLISTIC APPROACH

In Subsection III we proposed the idea that every node
can estimate the resource level available in its vicinity by
keeping a small matrix MA derived from the history of its
previous encounters. These were shown to be quite accurate
for estimating available resources in the vicinity. Whenever
a reference node N meets a node A, information about the
resources in A’s vicinity, such as energy (EvA), buffer space
(SvA) and bandwidth (Dv

A) becomes available to N .
Our goal is to show how this information can be potentially

used to optimise the store-carry-forward scheme in intermit-
tently connected networks. Since our strategy is based on an
analysis of information available about three resources, we
have called our approach holistic. We propose here custodian
election and message queue management policies, as elements
of strategy that can contribute to improving overall network
performance.

A. Custodian election (CE) and message queue management
(QM) policies

In a routing or dissemination context, in order to increase
the probability of successful message delivery, nodes need
to choose the right custodians in the network. For example,
choosing a custodian with insufficient amounts of energy may
lead to imminent battery depletion, causing not only loss of
connectivity in the network, but also loss of all the messages
currently stored in that node’s buffer. This situation can be
improved by applying our custodian election policy, provided

that custodian candidates signal to elector nodes the amount
of resources found in their vicinity, as well as their own
resource level. By comparing these two values – own resource
versus resource level available in the vicinity – a node will
choose node A as a custodian if and only if A’s own energy,
available buffer space and bandwidth are relatively abundant
as compared to the resources expected in A’s vicinity. The
idea is for the nodes to choose a custodian when the chances
of them finding a better opportunity are small.

On the other hand, signalling the amount of resources
expected to be available in the neighbourhood of a node
may also improve message queue management. It is highly
important for a node to choose the right-sized message from
its message queue in order to actually be able to convey it over
the estimated contact window. Starting to transmit a message
whose size is uncorrelated with the contact window may
increase the risk of partial transmission. Partial transmissions
are unwanted phenomena as they imply retransmissions, thus
wasting bandwidth and increasing energy requirements [17].
Let us then formalise these policies as follows:
CE) When encountering a node A in the neighbourhood,

elect A as custodian only if EoA/E
v
A, SoA/S

v
A and

Do
A/D

v
A are above a threshold value

QM) Send message m of size s only if probability to be
conveyed over the contact window - as calculated by
Theorem 1.III - is above a threshold value

B. Performance measurements

In order to establish the end-to-end impact of the policies
presented in Section V-A, we have implemented them on
top of the Epidemic routing protocol [10]. In our simulation
environment, we compared the plain Epidemic protocol (E)
first with the same protocol together with the Custodian Elec-
tion policies (E+CE), and then with the Queue Management
policies (E+CE+QM) added to the scheme. We used Bonn
motion mobility traces and the same network configurations
as described in Section IV-B2 above. In order to validate our
approach at different loads, we gradually increased the number
of messages sent by a factor of 1 to 8, and plotted the results
in Figure 4. This figure shows that the implementation of



these policies can yield significant benefits: while delivery rate
increases by 30%, and energy consumption decreases by 22%,
there is only a 10% increase in latency.

C. Costs

A legitimate question concerns the costs incurred (i.e. added
overhead) for information exchange between nodes. Costs can
be approximated as follows:

• network costs. In order to implement custodian election
and queue management policies, custodian candidates
need to send EoA/E

v
A, SoA/S

v
A and Do

A/D
v
A at each

meeting. For calculating the resource level available in
the vicinity (EvA, SvA and Dv

A), nodes need to exchange
the vector I = (~v,Eo, So) at each meeting. Considering
that each scalar value is expressed by 2 bytes and each
vectorial value by 4 bytes we can consider that data
exchanged by one node at each encounter is 14 bytes.

• storage costs. Each node stores a matrix sized nτ×sizeI .
This translates into storage requirements of 320 bytes in
the current setting.

These are simple metrics that can be easily compared with
aggregated network workload (for all nodes and the whole
duration of the experiment) and buffer size. In our settings,
aggregated network workload was about 106 times above
network costs and node average buffer was about 106 times
above storage costs.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a distributed scheme al-
lowing nodes in a partitioned (DTN) network to estimate the
energy, buffer space, and bandwidth levels available in their
vicinity. We have tested the validity of the proposed model by
simulations and have demonstrated a good accuracy of values
calculated using the proposed scheme as compared to different
baselines.

We have proposed an optimisation approach that uses this
information for custodian election and message queue man-
agement policies. These policies may be easily adapted to
different store-carry-forward protocols. We have then demon-
strated that the benefits of these policies are substantial when
combined with an Epidemic routing baseline in a disaster
management scenario. We believe that our preliminary findings
and proposed solutions may show benefits particularly in
networks with heterogeneously distributed resources.

Future work includes refinements of the policies by integrat-
ing delivery constraints related to message time-to-live versus
estimated delivery latency. It would be interesting to analyse
how tuning the different parameters used in the algorithm for
resource estimation as well the threshold values for custodian
election and queue management may further improve the
results shown in Section V. Another direction of future work
would be validating this collaboration scheme in a real-life
delay-tolerant network.
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